Skip to main content

Advertisement

Log in

Changes in retinal neuronal populations in the DBA/2J mouse

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

DBA/2J (D2) mice develop a form of progressive pigmentary glaucoma with increasing age. We have compared retinal cell populations of D2 mice with those in control C57BL/6J mice to provide information on retinal histopathology in the D2 mouse. The D2 mouse retina is characterized by a reduction in retinal thickness caused mainly by a thinning of the inner retinal layers. Immunocytochemical staining for specific inner retinal neuronal markers, viz., calbindin for horizontal cells; protein kinase C (PKC) and recoverin for bipolar cells, glycine, γ-aminobutyric acid (GABA), choline acetyltransferase (ChAT), and nitric oxide synthase (NOS) for amacrine cells, and osteopontin (OPN) for ganglion cells, was performed to detect preferentially affected neurons in the D2 mouse retina. Calbindin, PKC, and recoverin immunoreactivities were not significantly altered. Amacrine cells immunoreactive for GABA, ChAT, and OPN were markedly decreased in number, whereas NOS-immunoreactive amacrine cells increased in number. However, no changes were observed in the population of glycine-immunoreactive amacrine cells. These findings indicate a significant loss of retinal ganglion and some amacrine cells, whereas glycinergic amacrine cells, horizontal, and bipolar cells are almost unaffected in the D2 mouse. The reduction in amacrine cells appears to be attributable to a loss of GABAergic and particularly cholinergic amacrine cells. The increase in nitrergic neurons with the consequent increase in NOS and NO may be important in the changes in the retinal organization that lead to glaucomain D2 mice. Thus, the D2 mouse retina represents a useful model for studying the pathogenesis of glaucoma and mechanisms of retinal neuronal death and for evaluating neuroprotection strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Anderson MG, Smith RS, Hawes NL, Zabaleta A, Chang B, Wiggs JL, John SWM (2002) Mutations in genes encoding melanosomal proteins cause pigmentary glaucoma in DBA/2J mice. Nat Genet 30:81–85

    Article  Google Scholar 

  • Avila MY, Mitchell CH, Stone RA, Civan MM (2003) Noninvasive assessment of aqueous humor turnover in the mouse eye. Invest Ophthalmol Vis Sci 44:722–727

    Article  Google Scholar 

  • Bayer AU, Neuhardt T, May AC, Martus P, Maag KP, Brodie S, Lütjen-Drecoll E, Podos SM, Mittag T (2001) Retinal morphology and ERG response in the DBA/2NNia mouse model of angle-closure glaucoma. Invest Ophthalmol Vis Sci 42:1258–1265

    Google Scholar 

  • Beckman JS, Beckman TW, Chen J, Marshall PA, Freeman BA (1990) Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci USA 87:1620–1624

    CAS  PubMed  Google Scholar 

  • Brooks DE, Garcia GA, Dreyer EB, Zurakowski D, Franco-Bourland RE (1997) Vitreous body glutamate concentration in dogs with glaucoma. Am J Vet Res 58:864–867

    Google Scholar 

  • Chan HL, Brown B (1999) Multifocal ERG changes in glaucoma. Ophthalmic Physiol Opt 19:306–316

    Article  Google Scholar 

  • Chang B, Smith RS, Hawes NL, Anderson MG, Zabaleta A, Savinova OV, Roderick TH, Heckenlively JR, Davisson MT, John SWM (1999) Interacting loci cause severe iris atrophy and glaucoma in DBA/2J mice. Nat Genet 21:405–409

    Article  Google Scholar 

  • Chun MH, Kim IB, Ju WK, Kim KY, Lee MY, Joo CK, Chung JW (1999) Horizontal cells of the rat retina are resistant to degenerative processes induced by ischemia-reperfusion. Neurosci Lett 260:125–128

    Article  Google Scholar 

  • Colotto A, Falsini B, Salgarello T, Iarossi G, Galan ME, Scullica L (2000) Photopic negative response of the human ERG: losses associated with glaucomatous damage. Invest Ophthalmol Vis Sci 41:2205–2211

    Google Scholar 

  • Dawson VL, Dawson TM (1998) Nitric oxide in neurodegeneration. Prog Brain Res 118:215–229

    Google Scholar 

  • Dawson TM, Bredt DS, Fotuhi M, Hwang PM, Snyder SH (1991) Nitric oxide synthase and neuronal NADPH diaphorase are identical in brain and peripheral tissues. Proc Natl Acad Sci USA 88:7797–7801

    Google Scholar 

  • Dreyer EB, Grosskreutz CL (1997) Excitatory mechanisms in retinal ganglion cell death in primary open angle glaucoma (POAG). Clin Neurosci 4:270–273

    Google Scholar 

  • Dreyer EB, Zhang D, Lipton SA (1995) Transcriptional or translational inhibition blocks low dose NMDA-mediated cell death. NeuroReport 6:942–944

    Google Scholar 

  • Dreyer EB, Zurakowski D, Schumer RA, Podos SM, Lipton SA (1996) Elevated glutamate levels in the vitreous body of humans and monkeys with glaucoma. Arch Ophthalmol 114:299–305

    CAS  PubMed  Google Scholar 

  • Evans K, Bird AC (1996) The genetics of complex ophthalmic disorders. Br J Ophthalmol 80:763–768

    Google Scholar 

  • Franco-Bourland RE, Guizar-Sahagun G, Garcia GA, Odor-Morales A, Alvarez A, Esquivel F, Rodriguez S (1998) Retinal vulnerability to glutamate excitotoxicity in canine glaucoma: induction of neuronal nitric oxide synthase in retinal ganglion cells. Proc West Pharmacol Soc 41:201–204

    Google Scholar 

  • Freed MA (1992) GABAergic circuits in the mammalian retina. Prog Brain Res 90:107–131

    Google Scholar 

  • Ghosh KK, Bujan S, Haverkamp S, Feigenspan A, Wässle H (2004) Types of bipolar cells in the mouse retina. J Comp Neurol 469:70–82

    Article  Google Scholar 

  • Glovinsky Y, Quigley HA, Dunkelberger GR (1991) Retinal ganglion cell loss is size dependent in experimental glaucoma. Invest Ophthalmol Vis Sci 32:484–491

    Google Scholar 

  • Glovinsky Y, Quigley HA, Pease ME (1993) Foveal ganglion cell loss is size dependent in experimental glaucoma. Invest Ophthalmol Vis Sci 34:395–400

    CAS  PubMed  Google Scholar 

  • Gwon JS, Ju WK, Park SJ, Kim IB, Lee MY, Oh SJ, Chun MH (2001) The regulatory expression of neuronal nitric oxide synthase in the ischemic rat retina. NeuroReport 12:3385–3389

    Article  Google Scholar 

  • Haverkamp S, Wässle H (2000) Immunocytochemical analysis of the mouse retina. J Comp Neurol 424:1–23

    Article  CAS  PubMed  Google Scholar 

  • Haverkamp S, Ghosh KK, Hirano AA, Wässle H (2003) Immunocytochemical description of five bipolar cell types of the mouse retina. J Comp Neurol 455:463–476

    Article  Google Scholar 

  • Hood DC, Greenstein VC, Holopigian K, Bauer R, Firoz B, Liebmann JM, Odel JG, Ritch R (2000) An attempt to detect glaucomatous damage to the inner retina with the multifocal ERG. Invest Ophthalmol Vis Sci 41:1570–1579

    Google Scholar 

  • Jampel HD, Nickells R, Zack DJ (1996) Glaucoma. In: Rimoin DL, Connor JM, Pteritz RE (eds) Principles and practice of medical genetics. Churchill Livingstone, New York, pp 2505–2521

    Google Scholar 

  • Janssen P, Naskar R, Moore S, Thanos S, Thiel HJ (1996) Evidence for glaucoma-induced horizontal cell alteration in the human retina. Ger J Ophthalmol 5:378–385

    Google Scholar 

  • John SWM, Smith RS, Savinova OV, Hawes NL, Chang B, Turnbull D, Davisson M, Roderick TH, Heckenlively JR (1998) Essential iris atrophy, pigment dispersion, and glaucoma in DBA/2J mice. Invest Ophthalmol Vis Sci 39:951–962

    Google Scholar 

  • John SWM, Anderson MG, Smith RS (1999) Mouse genetics: a tool to help unlock the mechanisms of glaucoma. J Glaucoma 8:400–412

    Google Scholar 

  • Ju WK, Kim KY, Cha JH, Kim IB, Lee MY, Oh SJ, Chung JW, Chun MH (2000) Ganglion cells of the rat retina show osteopontin-like immunoreactivity. Brain Res 852:217–220

    Article  Google Scholar 

  • Kendell KR, Quigley HA, Kerrigan LA, Pease ME, Quigley EN (1995) Primary open-angle glaucoma is not associated with photoreceptor loss. Invest Ophthalmol Vis Sci 36:200–205

    Google Scholar 

  • Kerrigan LA, Zack DJ, Quigley HA, Smith SD, Pease ME (1997) TUNEL-positive ganglion cells in human primary open-angle glaucoma. Arch Ophthalmol 115:1031–1035

    CAS  PubMed  Google Scholar 

  • Kim IB, Lee EJ, Kim KY, Ju WK, Oh SJ, Joo CK, Chun MH (1999) Immunocytochemical localization of nitric oxide synthase in the mammalian retina. Neurosci Lett 267:193–196

    Article  Google Scholar 

  • Kim IB, Oh SJ, Chun MH (2000) Neuronal nitric oxide synthase immunoreactive neurons in the mammalian retina. Microsc Res Tech 50:112–123

    Article  Google Scholar 

  • Korth M (1997) The value of electrophysiology testing in glaucomatous diseases. J Glaucoma 6:331–343

    Google Scholar 

  • Lambrecht HG, Koch KW (1992) Recoverin, a novel calcium-binding protein from vertebrate photoreceptors. Biochim Biophys Acta 1160:63–66

    Google Scholar 

  • Laquis S, Chaudhary P, Sharma SC (1998) The patterns of retinal ganglion cell death in hypertensive eyes. Brain Res 784:100–104

    Article  Google Scholar 

  • Lee EJ, Kim KY, Gu TH, Moon JI, Kim IB, Lee MY, Oh SJ, Chun MH (2003) Neuronal nitric oxide synthase is expressed in the axotomized ganglion cells of the rat retina. Brain Res 986:174–180

    Article  Google Scholar 

  • Liesegang TJ (1996) Glaucoma: changing concepts and future directions. Mayo Clin Proc 71:689–694

    Google Scholar 

  • MacNeil MA, Masland RH (1998) Extreme diversity among amacrine cells: implications for function. Neuron 20:971–982

    Article  CAS  PubMed  Google Scholar 

  • MacNeil MA, Heussy JK, Dacheux RF, Raviola E, Masland RH (1999) The shapes and numbers of amacrine cells: matching of photofilled with Golgi-stained cells in the rabbit retina and comparison with other mammalian species. J Comp Neurol 413:305–326

    Google Scholar 

  • Marc RE (1989) The role of glycine in the mammalian retina. Prog Ret Res 8:67–107

    Article  Google Scholar 

  • Masland RH (2001) Neuronal diversity in the retina. Curr Opin Neurobiol 11:431–436

    Article  Google Scholar 

  • Massey SC, Redburn DA (1987) Transmitter circuits in the vertebrate retina. Prog Neurobiol 28:55–96

    Article  Google Scholar 

  • Moroni F, Lombardi G, Pellegrini-Faussone S, Moroni F (1993) Photochemically-induced lesion of the rat retina: a quantitative model for the evaluation of ischemia-induced retinal damage. Vision Res 33:1887–1891

    Article  Google Scholar 

  • Neufeld AH, Hernandez MR, Gonzalez M (1997) Nitric oxide synthase in the human glaucomatous optic nerve head. Arch Ophthalmol 115:497–503

    Google Scholar 

  • Osborne NN, Ugarte M, Chao M, Chidlow G, Bae JH, Wood JPM, Nash MS (1999) Neuroprotection in relation to retinal ischemia and relevance to glaucoma. Surv Ophthalmol 43 (Suppl 1):S102–S128

    Article  PubMed  Google Scholar 

  • Panda S, Jonas JB (1992) Decreased photoreceptor count in human eyes with secondary angle-closure glaucoma. Invest Ophthalmol Vis Sci 33:2532–2536

    Google Scholar 

  • Peichl L, Gonzalez-Soriano J (1994) Morphological types of horizontal cell in rodent retinae: a comparison of rat, mouse, gerbil, and guinea pig. Vis Neurosci 11:501–517

    Google Scholar 

  • Pourcho RG (1996) Neurotransmitters in the retina. Curr Eye Res 15:797–803

    CAS  PubMed  Google Scholar 

  • Pow DV, Wright LL, Vaney DI (1995) The immunocytochemical detection of amino-acid neurotransmitters in paraformaldehyde-fixed tissues. J Neurosci Methods 56:115–123

    Article  CAS  PubMed  Google Scholar 

  • Quigley HA (1996) Number of people with glaucoma worldwide. Br J Ophthalmol 80:389–393

    Google Scholar 

  • Quigley HA, Green WR (1979) The histology of human glaucoma cupping and optic nerve damage: clinicopathologic correlation in 21 eyes. Ophthalmology 86:1803–1830

    Google Scholar 

  • Quigley HA, Addicks EM, Green WR, Maumenee AE (1981) Optic nerve damage in human glaucoma. II. The site of injury and susceptibility to damage. Arch Ophthalmol 99:635–649

    Google Scholar 

  • Quigley HA, Sanchez RM, Dunkelberger GR, L’Hernault NL, Baginski TA (1987) Chronic glaucoma selectively damages large optic nerve fibers. Invest Ophthalmol Vis Sci 28:913–920

    CAS  PubMed  Google Scholar 

  • Quigley HA, Dunkelberger GR, Green WR (1988) Chronic human glaucoma causing selectively greater loss of large optic nerve fibers. Ophthalmology 95:357–363

    Google Scholar 

  • Quigley HA, Dunkelberger GR, Green WR (1989) Retinal ganglion cell atrophy correlated with automated perimetry in human eyes with glaucoma. Am J Ophthalmol 107:453–464

    Google Scholar 

  • Raz D, Perlman I, Percicot CL, Lambrou GN, Ofri R (2003) Functional damage to inner and outer retinal cells in experimental glaucoma. Invest Ophthalmol Vis Sci 44:3675–3684

    Article  Google Scholar 

  • Röhrenbach J, Wässle H, Heizmann CW (1987) Immunocytochemical labelling of horizontal cells in mammalian retina using antibodies against calcium-binding proteins. Neurosci Lett 77:255–260

    Article  Google Scholar 

  • Schuettauf F, Quinto K, Naskar R, Zurakowski D (2002) Effects of anti-glaucoma medications on ganglion cell survival: the DBA/2J mouse model. Vision Res 42:2333–2337

    Article  Google Scholar 

  • Spencer WH (1996) Glaucoma. In: Spencer WH (ed) Ophthalmic pathology: an atlas and textbook. Saunders, Philadelphia, pp 438–512

    Google Scholar 

  • Strettoi E, Masland RH (1996) The number of unidentified amacrine cells in the mammalian retina. Proc Natl Acad Sci USA 93:14906–14911

    Article  Google Scholar 

  • Vaney DI (1990) The mosaic of amacrine cells in the mammalian retina. Prog Ret Res 9:49–100

    Article  Google Scholar 

  • Wässle H, Boycott BB (1991) Functional architecture of the mammalian retina. Physiol Rev 71:447–480

    Google Scholar 

  • Wygnanski T, Desatnik H, Quigley HA, Glovinsky Y (1995) Comparison of ganglion cell loss and cone loss in experimental glaucoma. Am J Ophthalmol 120:184–189

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Myung-Hoon Chun.

Additional information

Jung-Il Moon and In-Beom Kim contributed equally to this work.

This work was supported by a Korea Research Foundation Grant (FP 0005) and by BK 21 in Korea.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moon, JI., Kim, IB., Gwon, JS. et al. Changes in retinal neuronal populations in the DBA/2J mouse. Cell Tissue Res 320, 51–59 (2005). https://doi.org/10.1007/s00441-004-1062-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-004-1062-8

Keywords

Navigation