Skip to main content

The Anatomy and Physiology of Laboratory Mouse

  • Chapter
  • First Online:
Essentials of Laboratory Animal Science: Principles and Practices
  • 4415 Accesses

Abstract

Among the different types of vertebrate and invertebrate animals used in biomedical research, the laboratory mouse is the widely used vertebrate animal model. It remains the choice of model for many research hypotheses due to its small size, shorter life span, easy maintenance, short generation time and manipulable genetics. The mouse is used in understanding basic research, testing, teaching, genetics, physiology, psychology and many more areas of biomedical research. An important advancement in this regard is the whole-genome sequencing of both human and mouse; and both share synteny of chromosomes. This chapter reviews the existing and new unique features of the anatomy and physiology of mouse and their suitability to different experimental designs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AQCS:

Animal Quarantine and Certification Services

FSH:

Follicle-stimulating hormone

GG:

Grueneberg ganglion

HVAC:

Heating, ventilation, and air conditioning

ICC:

Interstitial cells of Cajal

LA:

Left auricle

LH:

Luteinising hormone

LV:

Left ventricle

MOE:

Main olfactory epithelium

MUP:

Mouse urinary protein

NALT:

Nasal-associated lymphoid tissue

pRGCs:

Photosensitive retinal ganglion cells

RA:

Right auricle

RV:

Right ventricle

SG:

Salivary gland

SOO:

Septal olfactory organ

VNO:

Vomeronasal organ

References

  1. Guenet J, Bonhomme F (2004) Origin of the laboratory mouse and related subspecies. In: Hedrich H (ed) The laboratory mouse. Elsevier Academic Press, San Diego, pp 3–13

    Chapter  Google Scholar 

  2. Waterston RH, Lindblad-Toh K et al (2002) Mouse genome sequencing consortium, initial sequencing and comparative analysis of the mouse genome. Nature 420(6915):520–562. https://doi.org/10.1038/nature01262

    Article  CAS  PubMed  Google Scholar 

  3. Grieder FB, Strandberg JD (2003) The contribution of laboratory animals to medical progress-past, present, and future. In: Hau J, Van Hoosier GL (eds) Handbook of laboratory animal science, 2nd edn. CRC Press, BocaRaton, FL, pp 1–11

    Google Scholar 

  4. Lorenz JN (2002) A practical guide to evaluating cardiovascular, renal, and pulmonary function in mice. Am J Physiol Regul Integr Comp Physiol 282(6):R1565–R1582. https://doi.org/10.1152/ajpregu.00759.2001

    Article  CAS  PubMed  Google Scholar 

  5. Krinke GJ (2004) Normative histology of organs. In: Hedrich H (ed) The laboratory mouse. Elsevier Academic Press, San Diego, pp 133–166

    Chapter  Google Scholar 

  6. Shinohara H (1999) The mouse vertebrae: changes in the morphology of mouse vertebrae exhibit specific patterns over limited numbers of vertebral levels. Okajimas Folia Anat Jpn 76(1):17–31. https://doi.org/10.2535/ofaj1936.76.1_17

    Article  CAS  PubMed  Google Scholar 

  7. Shinohara H (1999) The musculature of the mouse tail is characterized by metameric arrangements of bicipital muscles. Okajimas Folia Anat Jpn 76(4):157–169. https://doi.org/10.2535/ofaj1936.76.4_157

    Article  CAS  PubMed  Google Scholar 

  8. Kuijpers MH, van de Kooij AJ, Slootweg PJ (1996) Review article. The rat incisor in toxicologic pathology. Toxicol Pathol 24(3):346–360. https://doi.org/10.1177/019262339602400311

    Article  CAS  PubMed  Google Scholar 

  9. Goldberg M, Kellermann O, Dimitrova-Nakov S, Harichane Y, Baudry A (2014) Comparative studies between mice molars and incisors are required to draw an overview of enamel structural complexity. Front Physiol 5:359. https://doi.org/10.3389/fphys.2014.00359

    Article  PubMed  PubMed Central  Google Scholar 

  10. Colby LA, Nowland MH, Kennedy LH (2020) Clinical laboratory animal medicine: an introduction, 5th edn. Wiley Blackwell, pp 74–123

    Google Scholar 

  11. Berdanier CD (2004) Gastrointestinal system and metabolism. In: Hedrich H (ed) The laboratory mouse. Elsevier Academic Press, San Diego, pp 245–260

    Chapter  Google Scholar 

  12. Johnson LR (2003) Essential medical physiology, 3rd edn. Academic Press, San Diego

    Google Scholar 

  13. Krinke GJ (2004) Normative histology of organs. In: Hedrich H (ed) The laboratory mouse. Elsevier Academic Press, San Diego, pp 113–166

    Google Scholar 

  14. Dolenšek J, Rupnik MS, Stožer A (2015) Structural similarities and differences between the human and the mouse pancreas. Islets 7(1):e1024405. https://doi.org/10.1080/19382014.2015.1024405

    Article  PubMed  PubMed Central  Google Scholar 

  15. Hollander CF, van Bezooijen CFA, Solleveld HA (1987) Anatomy, function and aging in the mouse liver. In: Chambers PL, Henschler D, Oesch F (eds) Mouse liver tumors. Archives of toxicology (supplement), vol 10. Springer, Berlin, Heidelberg

    Google Scholar 

  16. Hoyt RF, Hawkins JV, St Clair MB, Kennett MJ (2007) Mouse physiology. In: Fox JG, Barthold SW, Davisson MT, Newcomer CE, Quimby FW, Smith A (eds) The mouse in biomedical research, normative biology, husbandry, and models, vol 3, 2nd edn. Academic Press, San Diego, CA, pp 23–90

    Google Scholar 

  17. Tanimizu N, Ichinohe N, Ishii M et al (2016) Liver progenitors isolated from adult healthy mouse liver efficiently differentiate to functional hepatocytes in vitro and repopulate liver tissue. Stem Cells 34(12):2889–2901. https://doi.org/10.1002/stem.2457

    Article  CAS  PubMed  Google Scholar 

  18. Dietschy JM, Turley SD (2002) Control of cholesterol turnover in the mouse. J Biol Chem 277(6):3801–3804. https://doi.org/10.1074/jbc.R100057200

    Article  CAS  PubMed  Google Scholar 

  19. Brittan M, Wright NA (2002) Gastrointestinal stem cells. J Pathol 197(4):492–509. https://doi.org/10.1002/path.1155

    Article  PubMed  Google Scholar 

  20. Lueschow SR, McElroy SJ (2020) The paneth cell: the curator and defender of the immature small intestine. Front Immunol 11:587. https://doi.org/10.3389/fimmu.2020.00587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Blair PJ, Rhee PL, Sanders KM, Ward SM (2014) The significance of interstitial cells in neurogastroenterology. J Neurogastroenterol Motil 20(3):294–317. https://doi.org/10.5056/jnm14060

    Article  PubMed  PubMed Central  Google Scholar 

  22. Pérez-Gómez A, Stein B, Leinders-Zufall T, Chamero P (2014) Signaling mechanisms and behavioral function of the mouse basal vomeronasal neuroepithelium. Front Neuroanat 8:135. https://doi.org/10.3389/fnana.2014.00135

    Article  PubMed  PubMed Central  Google Scholar 

  23. Navarro M, Ruberte J, Carretero A (2017) Respiratory apparatus. In: Morphological mouse phenotyping. anatomy, histology and imaging. Academic Press, pp 147–178

    Google Scholar 

  24. JacobyRO FJG, Davisson (2002) Biology and diseases of mice. In: Fox JG, Anderson LC, Lorw FM, Quimby FW (eds) Laboratory animal medicine. Elsevier Academic Press, San Diego, pp 35–120

    Chapter  Google Scholar 

  25. Patra AL (1986) Comparative anatomy of mammalian respiratory tracts: the nasopharyngeal region and the tracheobronchial region. J Toxicol Environ Health 17(2–3):163–174. https://doi.org/10.1080/15287398609530813

    Article  CAS  PubMed  Google Scholar 

  26. Pan H, Deutsch GH, Wert SE et al (2019) Comprehensive anatomic ontologies for lung development: a comparison of alveolar formation and maturation within mouse and human lung. J Biomed Semant 10:18. https://doi.org/10.1186/s13326-019-0209-1

    Article  Google Scholar 

  27. McElroy MC, Kasper M (2004) The use of alveolar epithelial type I cell-selective markers to investigate lung injury and repair. Eur Respir J 24(4):664–673. https://doi.org/10.1183/09031936.04.00096003

    Article  CAS  PubMed  Google Scholar 

  28. Fehrenbach H (2001) Alveolar epithelial type II cell: defender of the alveolus revisited. Respir Res 2(1):33–46. https://doi.org/10.1186/rr36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Crouch E, Wright JR (2001) Surfactant proteins a and d and pulmonary host defense. Annu Rev Physiol 63:521–554. https://doi.org/10.1146/annurev.physiol.63.1.521

    Article  CAS  PubMed  Google Scholar 

  30. Rao S, Verkman AS (2000) Analysis of organ physiology in transgenic mice. Am J Physiol Cell Physiol 279(1):C1–C18. https://doi.org/10.1152/ajpcell.2000.279.1.C1

    Article  CAS  PubMed  Google Scholar 

  31. Irvin CG, Bates JH (2003) Measuring the lung function in the mouse: the challenge of size. Respir Res 4:1. https://doi.org/10.1186/rr199

    Article  Google Scholar 

  32. Oakes JM, Scadeng M, Breen EC, Marsden AL, Darquenne C (2012) Rat airway morphometry measured from in situ MRI-based geometric models. J Appl Physiol (1985) 112(11):1921–1931. https://doi.org/10.1152/japplphysiol.00018.2012

    Article  Google Scholar 

  33. Wessels A, Sedmera D (2003) Developmental anatomy of the heart: a tale of mice and man. Physiol Genomics 15(3):165–176. https://doi.org/10.1152/physiolgenomics.00033.2003

    Article  PubMed  Google Scholar 

  34. Tobias O (2001) Function and structure of the mouse sinus node: nothing you can see that isn’t shown, cardiovascular research. 52(1):1–4. https://doi.org/10.1016/S0008-6363(01)00417-5

  35. Miquerol L, Meysen S, Mangoni M et al (2004) Architectural and functional asymmetry of the his-Purkinje system of the murine heart. Cardiovasc Res 63(1):77–86. https://doi.org/10.1016/j.cardiores.2004.03.007

    Article  CAS  PubMed  Google Scholar 

  36. Michael LH, Taffet GE, Frangogiannis NG, Entman ML, Hartley CJ (2004) The cardiovascular system. In: Hedrich H (ed) The laboratory mouse. Elsevier Academic Press, San Diego, pp 207–224

    Chapter  Google Scholar 

  37. Kramer K, van Acker SA, Voss HP, Grimbergen JA, van der Vijgh WJ, BastA (1993) Use of telemetry to record electrocardiogram and heart rate in freely moving mice. J Pharmacol Toxicol Methods 30(4):209–215. https://doi.org/10.1016/1056-8719(93)90019-b

    Article  CAS  PubMed  Google Scholar 

  38. Car BD, Eng VM (2001) Special considerations in the evaluation of the hematology and hemostasis of mutant mice. Vet Pathol 38(1):20–30. https://doi.org/10.1354/vp.38-1-20

    Article  CAS  PubMed  Google Scholar 

  39. O'Connell KE, Mikkola AM, Stepanek AM et al (2015) Practical murine hematopathology: a comparative review and implications for research. Comp Med 65(2):96–113

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Everds N (2004) Hematology of the mouse. In: Hedrich H (ed) The laboratory mouse. Elsevier Academic Press, San Diego, pp 271–286

    Chapter  Google Scholar 

  41. MPD Mouse Phenome database for mice by (J) strain, sex and age, with protocol detail https://phenome.jax.org/search/details/ssmeasures?searchterm=complete+blood+count+&o ntavail=0

  42. Schnermann J, Traynor T, Yang T et al (1998) Tubuloglomerular feedback: new concepts and developments. Kidney Int Suppl 67:S40–S45. https://doi.org/10.1046/j.1523-1755.1998.06708.x

    Article  CAS  PubMed  Google Scholar 

  43. Jung JY, Madsen KM, Han KH et al (2003) Expression of urea transporters in potassium-depleted mouse kidney. Am J Physiol Renal Physiol 285(6):F1210–F1224. https://doi.org/10.1152/ajprenal.00111.2003

    Article  CAS  PubMed  Google Scholar 

  44. Hurst JL (2009) Female recognition and assessment of males through scent. Behav Brain Res 200(2):295–303. https://doi.org/10.1016/j.bbr.2008.12.020

    Article  CAS  PubMed  Google Scholar 

  45. Loung RH (2017) The laboratory mouse. In: Kurtz DM, Travlos GS (eds) The clinical chemistry of laboratory animals, 3rd edn. CRC Press, pp 1–32

    Google Scholar 

  46. Knoblaugh SE, True L, Tretiakova M, Hukkanen RR (2018) Male reproductive system. In: Treuting PM, Dintzis SM, Montine KS (eds) Comparative anatomy and histology, a mouse, rat, and human atlas, 2nd edn. Academic Press, pp 335–363

    Google Scholar 

  47. Cook MJ (1983) Anatomy. In: Foster HL, Small JD, Fox JG (eds) The mouse in biomedical research, normative biology, husbandry, and models, vol 3. Academic Press, pp 102–120

    Google Scholar 

  48. Sengul G, Watson C (2012) Spinal cord. In: Watson C, Paxinos G, Puelles L (eds) The mouse nervous system. Academic Press, pp 424–458

    Google Scholar 

  49. Kobayashi T (1963) Brain-to-body ratios and time of maturation of the mouse brain. Am J Phys 204:343–346. https://doi.org/10.1152/ajplegacy.1963.204.2.343

    Article  CAS  Google Scholar 

  50. Shnerson A, Willott JF (1979) Development of inferior colliculus response properties in C57BL/6J mouse pups. Exp Brain Res 37(2):373–385. https://doi.org/10.1007/BF00237720

    Article  CAS  PubMed  Google Scholar 

  51. Shupe JM, Kristan DM, Austad SN, Stenkamp DL (2006) The eye of the laboratory mouse remains anatomically adapted for natural conditions. Brain Behav Evol 67(1):39–52. https://doi.org/10.1159/000088857

    Article  PubMed  Google Scholar 

  52. Baker M (2013) Neuroscience: through the eyes of a mouse. Nature 502(7470):156–158. https://doi.org/10.1038/502156a

    Article  CAS  PubMed  Google Scholar 

  53. Huberman AD, Niell CM (2011) What can mice tell us about how vision works? Trends Neurosci 34(9):464–473. https://doi.org/10.1016/j.tins.2011.07.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Peirson SN, Brown LA, Pothecary CA, Benson LA, Fisk AS (2018) Light and the laboratory mouse. J Neurosci Methods 300:26–36. https://doi.org/10.1016/j.jneumeth.2017.04.007

    Article  PubMed  PubMed Central  Google Scholar 

  55. Warwick RA, Kaushansky N, Sarid N, Golan A, Rivlin-Etzion M (2018) Inhomogeneous encoding of the visual field in the mouse retina. Curr Biol 28(5):655–665.e3. https://doi.org/10.1016/j.cub.2018.01.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hattar S, Liao HW, Takao M, Berson DM, Yau KW (2002) Melanopsin-containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity. Science 295(5557):1065–1070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. De Vera Mudry MC, Kronenberg S, Komatsu S, Aguirre GD (2013) Blinded by the light: retinal phototoxicity in the context of safety studies. Toxicol Pathol 41(6):813–825. https://doi.org/10.1177/0192623312469308

    Article  CAS  PubMed  Google Scholar 

  58. Ramos MF, Baker J, Atzpodien EA et al (2018) Nonproliferative and proliferative lesions of the Ratand mouse special sense organs (ocular [eye and glands], olfactory and otic). J Toxicol Pathol 31(3 Suppl):97S–214S. https://doi.org/10.1293/tox.31.97S

    Article  PubMed  PubMed Central  Google Scholar 

  59. Zou J, Wang W, Pan YW, Lu S, Xia Z (2015) Methods to measure olfactory behavior in mice. Curr Protoc Toxicol 63:11.18.1–11.18.21. https://doi.org/10.1002/0471140856.tx1118s63

    Article  Google Scholar 

  60. Schwob JE (2002) Neural regeneration and the peripheral olfactory system. Anat Rec 269(1):33–49. https://doi.org/10.1002/ar.10047

    Article  PubMed  Google Scholar 

  61. Touhara K, Vosshall LB (2009) Sensing odorants and pheromones with chemosensory receptors. Annu Rev Physiol 71:307–332. https://doi.org/10.1146/annurev.physiol.010908.163209

    Article  CAS  PubMed  Google Scholar 

  62. Riera CE, Tsaousidou E, Halloran J et al (2017) The sense of smell impacts metabolic health and obesity. Cell Metab 26(1):198–211.e5. https://doi.org/10.1016/j.cmet.2017.06.015

    Article  CAS  PubMed  Google Scholar 

  63. Glinka ME, Samuels BA, Diodato A, Teillon J, Feng Mei D, Shykind BM, Hen R, Fleischmann A (2012) Olfactory deficits cause anxiety-like behaviors in mice. J Neurosci 32(19):6718–6725. https://doi.org/10.1523/JNEUROSCI.4287-11.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kelliher KR, Wersinger SR (2009) Olfactory regulation of the sexual behavior and reproductive physiology of the laboratory mouse: effects and neural mechanisms. ILAR J 50(1):28–42. https://doi.org/10.1093/ilar.50.1.28

    Article  CAS  PubMed  Google Scholar 

  65. Kass MD, Czarnecki LA, Moberly AH, McGann JP (2017) Differences in peripheral sensory input to the olfactory bulb between male and female mice. Sci Rep 7:45851. https://doi.org/10.1038/srep45851

    Article  PubMed  PubMed Central  Google Scholar 

  66. Reynolds RP, Kinard WL, Degraff JJ, Leverage N, Norton JN (2010) Noise in a laboratory animal facility from the human and mouse perspectives. J Am Assoc Lab Anim Sci: JAALAS 49(5):592–597

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Turner JG, Parrish JL, Hughes LF, Toth LA, Caspary DM (2005) Hearing in laboratory animals: strain differences and nonauditory effects of noise. Comp Med 55(1):12–23

    CAS  PubMed  Google Scholar 

  68. Sundberg JP (2004) Skin and adnexa of the laboratory mouse. In: Hedrich H (ed) The laboratory mouse. Elsevier Academic Press, San Diego, pp 195–206

    Chapter  Google Scholar 

  69. Adibi M (2019) Whisker-mediated touch system in rodents: from neuron to behavior. Front Syst Neurosci 13:40. https://doi.org/10.3389/fnsys.2019.00040

    Article  PubMed  PubMed Central  Google Scholar 

  70. Petersen CC (2007) The functional organization of the barrel cortex. Neuron 56(2):339–355. https://doi.org/10.1016/j.neuron.2007.09.017

    Article  CAS  PubMed  Google Scholar 

  71. Walcher J, Ojeda-Alonso J, Haseleu J, Oosthuizen MK, Rowe AH, Bennett NC, Lewin GR (2018) Specialized mechanoreceptor systems in rodent glabrous skin. J Physiol 596(20):4995–5016. https://doi.org/10.1113/JP276608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarita Jena .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jena, S., Chawla, S. (2021). The Anatomy and Physiology of Laboratory Mouse. In: Nagarajan, P., Gudde, R., Srinivasan, R. (eds) Essentials of Laboratory Animal Science: Principles and Practices. Springer, Singapore. https://doi.org/10.1007/978-981-16-0987-9_8

Download citation

Publish with us

Policies and ethics