Skip to main content
Log in

Design, synthesis and antiproliferative activity of ACY-1215 analogs as potent selective histone deacetylases 6 inhibitors

  • Original Research Article
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

Histone deacetylase 6 (HDAC6) plays an important role in cancer treatment, and the development of selective HDAC6 inhibitors (sHDAC6is) attracts more and more attention in recent years. In this research, a series of ACY-1215 analogs based on diphenylpyrimidine scaffold were designed and synthesized. Among these, the most potent compound 7-((4, 6-diphenylpyrimidin-2-yl)amino)-N-hydroxyheptanamide (11a) inhibited HDAC6 with IC50 of 3.8 nM and showed 26~fold selectivity over HDAC1, better than those of ACY-1215. In cellular assay, these diphenylpyrimidines exhibited promising antiproliferative activities against different tumor cell lines. Altogether, this work highlighted the therapeutic potential of diphenylpyrimidine-inspired sHDAC6 inhibitors and provides a valuable lead compound for the discovery of novel antitumor agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Scheme 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Minucci S, Pelicci PG. Histone deacetylase inhibitors and the promise of epigenetic (and more) treatments for cancer. Nat Rev Cancer. 2006;6:38–51. https://doi.org/10.1038/nrc1779

    Article  CAS  PubMed  Google Scholar 

  2. Liang T, Xie Z, Dang B, Wang J, Zhang T, Luan X, et al. Discovery of indole-piperazine derivatives as selective histone deacetylase 6 inhibitors with neurite outgrowth-promoting activities and neuroprotective activities. Bioorg Med Chem Lett. 2023;81:129148. https://doi.org/10.1016/j.bmcl.2023.129148

    Article  CAS  Google Scholar 

  3. Falkenberg KJ, Johnstone RW. Histone deacetylases and their inhibitors in cancer, neurological diseases and immune disorders. Nat Rev Drug Discov. 2014;13:673–91. https://doi.org/10.1038/nrd4360

    Article  CAS  PubMed  Google Scholar 

  4. Bolden JE, Peart MJ, Johnstone RW. Anticancer activities of histone deacetylase inhibitors. Nat Rev Drug Discov. 2006;5:769–84. https://doi.org/10.1038/nrd2133

    Article  CAS  PubMed  Google Scholar 

  5. Gregoretti IV, Lee YM, Goodson HV. Molecular evolution of the histone deacetylase family: functional implications of phylogenetic analysis. J Mol Biol. 2004;338:17–31. https://doi.org/10.1016/j.jmb.2004.02.006

    Article  CAS  PubMed  Google Scholar 

  6. Kalin JH, Bergman JA. Development and therapeutic implications of selective histone deacetylase 6 inhibitors. J Med Chem. 2013;56:6297–313. https://doi.org/10.1021/jm4001659

    Article  CAS  PubMed  Google Scholar 

  7. LoPresti P. HDAC6 in diseases of cognition and of neurons. Cells. 2020;10. https://doi.org/10.3390/cells10010012

  8. Govindarajan N, Rao P, Burkhardt S, Sananbenesi F, Schluter OM, Bradke F, et al. Reducing HDAC6 ameliorates cognitive deficits in a mouse model for Alzheimer’s disease. EMBO Mol Med. 2013;5:52–63. https://doi.org/10.1002/emmm.201201923

    Article  CAS  PubMed  Google Scholar 

  9. Witt O, Deubzer HE, Milde T, Oehme I. HDAC family: What are the cancer relevant targets. Cancer Lett. 2009;277:8–21. https://doi.org/10.1016/j.canlet.2008.08.016

    Article  CAS  PubMed  Google Scholar 

  10. Yang PH, Zhang L, Zhang YJ, Zhang J, Xu WF. HDAC6: physiological function and its selective inhibitors for cancer treatment. Drug Discov Ther. 2013;7:233–42. https://doi.org/10.5582/ddt.2013.v7.6.233

    Article  CAS  PubMed  Google Scholar 

  11. Zhao Y, Liang T, Hou X, Fang H. Recent Development of Novel HDAC6 Isoform-selective Inhibitors. Curr Med Chem. 2021;28:4133–51. https://doi.org/10.2174/0929867327666201111142653

    Article  CAS  PubMed  Google Scholar 

  12. Chen X, Chen X, Steimbach RR, Wu T, Li H, Dan W, et al. Novel 2, 5-diketopiperazine derivatives as potent selective histone deacetylase 6 inhibitors: Rational design, synthesis and antiproliferative activity. Eur J Med Chem. 2020;187:111950. https://doi.org/10.1016/j.ejmech.2019.111950

    Article  CAS  PubMed  Google Scholar 

  13. Chen X, Zhao S, Li H, Wang X, Geng A, Cui H, et al. Design, synthesis and biological evaluation of novel isoindolinone derivatives as potent histone deacetylase inhibitors. Eur J Med Chem. 2019;168:110–22. https://doi.org/10.1016/j.ejmech.2019.02.032

    Article  CAS  PubMed  Google Scholar 

  14. Chen X, Gong G, Chen X, Song R, Duan M, Qiao R, et al. Design, synthesis and biological evaluation of novel benzoylimidazole derivatives as raf and histone deacetylases dual inhibitors. Chem Pharm Bull. 2019;67:1116–22. https://doi.org/10.1248/cpb.c19-00425

    Article  CAS  Google Scholar 

  15. Gong G, Qi J, Lv Y, Dong S, Cao C, Li D, et al. Discovery of 1,3-disubstituted 2,5-diketopiperazine derivatives as potent class I HDACs inhibitors. Chem Pharm Bull. 2020;68:466–72. https://doi.org/10.1248/cpb.c20-00056

    Article  CAS  Google Scholar 

  16. Xing L, Gong G, Chen X, Chen X. Discovery of indole-piperazine hybrid structures as potent selective class I histone deacetylases inhibitors. Chem Pharm Bull. 2023;71:206–12. https://doi.org/10.1248/cpb.c22-00635

    Article  CAS  Google Scholar 

  17. Wong JC, Hong R, Schreiber SL. Structural biasing elements for in-cell histone deacetylase paralog selectivity. J Am Chem Soc. 2003;125:5586–7. https://doi.org/10.1021/ja0341440

    Article  CAS  PubMed  Google Scholar 

  18. Haggarty SJ, Koeller KM, Wong JC, Grozinger CM, Schreiber SL. Domain-selective small-molecule inhibitor of histone deacetylase 6 (HDAC6)-mediated tubulin deacetylation. Proc Natl Acad Sci USA. 2003;100:4389–94. https://doi.org/10.1073/pnas.0430973100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Santo L, Hideshima T, Kung AL, Tseng JC, Tamang D, Yang M, et al. Preclinical activity, pharmacodynamic, and pharmacokinetic properties of a selective HDAC6 inhibitor, ACY-1215, in combination with bortezomib in multiple myeloma. Blood. 2012;119:2579–89. https://doi.org/10.1182/blood-2011-10-387365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Huang P, Almeciga-Pinto I, Jarpe M, van Duzer JH, Mazitschek R, Yang M, et al. Selective HDAC inhibition by ACY-241 enhances the activity of paclitaxel in solid tumor models. Oncotarget. 2017;8:2694–707. https://doi.org/10.18632/oncotarget.13738

    Article  PubMed  Google Scholar 

  21. Pathak V, Maurya HK, Sharma S, Srivastava KK, Gupta A. Synthesis and biological evaluation of substituted 4,6-diarylpyrimidines and 3,5-diphenyl-4,5-dihydro-1H-pyrazoles as anti-tubercular agents. Bioorg Med Chem Lett. 2014;24:2892–6. https://doi.org/10.1016/j.bmcl.2014.04.094

    Article  CAS  PubMed  Google Scholar 

  22. Kanagarajan V, Thanusu J, Gopalakrishnan M. Synthesis and in vitro microbiological evaluation of an array of biolabile 2-morpholino-N-(4,6-diarylpyrimidin-2-yl)acetamides. Eur J Med Chem. 2010;45:1583–9. https://doi.org/10.1016/j.ejmech.2009.12.068

    Article  CAS  PubMed  Google Scholar 

  23. Lee YH, Park J, Ahn S, Lee Y, Lee J, Shin SY, et al. Design, synthesis, and biological evaluation of polyphenols with 4,6-diphenylpyrimidin-2-amine derivatives for inhibition of Aurora kinase A. Daru. 2019;27:265–81. https://doi.org/10.1007/s40199-019-00272-5

    Article  CAS  PubMed  Google Scholar 

  24. Val C, Rodriguez-Garcia C, Prieto-Diaz R, Crespo A, Azuaje J, Carbajales C, et al. Optimization of 2-Amino-4,6-diarylpyrimidine-5-carbonitriles as Potent and Selective A(1) Antagonists. J Med Chem. 2022;65:2091–106. https://doi.org/10.1021/acs.jmedchem.1c01636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (81903464) and the Natural Science Basic Research Plan in Shaanxi Province of China (2020JQ-284).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Chen.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, H., Wang, J., Gong, G. et al. Design, synthesis and antiproliferative activity of ACY-1215 analogs as potent selective histone deacetylases 6 inhibitors. Med Chem Res 32, 2432–2441 (2023). https://doi.org/10.1007/s00044-023-03150-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-023-03150-7

Keywords

Navigation