Skip to main content

Advertisement

Log in

Design, synthesis, and biological evaluation of polyphenols with 4,6-diphenylpyrimidin-2-amine derivatives for inhibition of Aurora kinase A

  • Research article
  • Published:
DARU Journal of Pharmaceutical Sciences Aims and scope Submit manuscript

Abstract

Background

Several 4,6-diarylpyrimidin-2-amine derivatives show anticancer properties. However, their mode of action is not fully characterized. To develop potent anticancer chemotherapeutic agents, we designed and synthesized 25 4,6-diphenylpyrimidin-2-amine derivatives containing a guanidine moiety.

Methods

Clonogenic long-term survival assays were performed to screen anticancer compounds. To derive the structural conditions showing good cytotoxicities against cancer cells, quantitative structure-activity relationships (QSAR) were calculated. Biological activities were determined by flow cytometry for cell cycle analysis and by immunoblot analysis for the detection of Aurora kinase A (AURKA) activity. Because 2-(2-Amino-6-(2,4-dimethoxyphenyl)pyrimidin-4-yl) phenol (derivative 12) selectively inhibited AURKA activity from the kinome assay, in silico docking experiments were performed to elucidate the molecular binding mode between derivative 12 and AURKA.

Results

The pharmacophores were derived based on the QSAR calculations. Derivative 12 inhibited AURKA activity and reduced phosphorylation of AURKA at Thr283 in HCT116 human colon cancer cells. Derivative 12 caused the accumulation of the G2/M phase of the cell cycle and triggered the cleavages of caspase-3, caspase −7, and poly(ADP-ribose) polymerase. The binding energies of 30 apo-AURKA – derivative 12 complexes obtained from in silico docking ranged from −16.72 to −11.63 kcal/mol.

Conclusions

Derivative 12 is an AURKA inhibitor, which reduces clonogenicity, arrests the cell cycle at the G2/M phase, and induces caspase-mediated apoptotic cell death in HCT116 human colon cancer cells. In silico docking demonstrated that derivative 12 binds to AURKA well. The structure-activity relationship calculations showed hydrophobic substituents and 1-naphthalenyl group at the R2 position increased the activity. The existence of an H-bond acceptor at C-2 of the R1 position increased the activity, too.

Derivative 12 inhibits Aurora kinase A activity and causes the G2/M phase arrest of the cell cycle

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AURKA :

Aurora kinase A

AURKB :

Aurora kinase B

AURKC :

Aurora kinase C

CLSA :

Clonogenic long-term survival assay

CoMFA :

Comparative molecular field analysis

CoMSIA :

Comparative molecular similarity indices analysis

GI 50 :

Half-maximal growth inhibitory concentrations

HR/MS :

High-resolution mass spectrometry

PARP :

Poly(ADP-ribose) polymerase

QSAR :

Quantitative structure-activity relationships

References

  1. Żołnowska B, Sławiński J, Szafrański K, Angeli A, Supuran CT, Kawiak A, et al. Novel 2-(2-arylmethylthio-4-chloro-5-methylbenzenesulfonyl)-1-(1,3,5-triazin-2-ylamino)guanidine derivatives: inhibition of human carbonic anhydrase cytosolic isozymes I and II and the transmembrane tumor-associated isozymes IX and XII, anticancer activity, and molecular modeling studies. Eur J Med Chem. 2018;143:1931–41.

    Article  CAS  PubMed  Google Scholar 

  2. Nakkala JR, Mata R, Gupta AK, Sadras SR. Biological activities of green silver nanoparticles synthesized with Acorous Calamus rhizome extract. Eur J Med Chem. 2014;85:784–94.

    Article  CAS  PubMed  Google Scholar 

  3. Brzozowski Z, Saczewski F, Sławiński J. Synthesis of novel 3-amino-2-(4-chloro-2-mercaptobenzenesulfonyl)-guanidine derivatives as potential antitumor agents. Eur J Med Chem. 2007;42(9):1218–25.

    Article  CAS  PubMed  Google Scholar 

  4. Balasankar T, Nagarajan S. Synthesis and antibacterial activities of some 2-amino-4,6- diarylpyrimidines. Heterocycl Commun. 2004;10:451–6.

    Article  CAS  Google Scholar 

  5. Alam O, Mullick P, Verma SP, Gilani SJ, Khan SA, Siddiqui N, et al. Synthesis, anticonvulsant and toxicity screening of newer pyrimidine semicarbazone derivatives. Eur J Med Chem. 2010;45(6):2467–72.

    Article  CAS  PubMed  Google Scholar 

  6. Rathwa SK, Bhoi MN, Borad MA, Patel KD, Rajani DP, Rajani SD, et al. Microwave assisted ZrSiO2 mediated one-pot synthesis of spiro[chromene- 4,3′-indoline] derivatives. Curr Microw Chem. 2016;3(3):187–93.

    Article  CAS  Google Scholar 

  7. Rong L, Ji H, Xia S, Yin S, Shi Y, Tu S. An efficient synthesis of 4-naphthylpyrimidin-2-amine derivatives under solvent-free conditions. J Heterocyclic Chem. 2012;49:696–9.

    Article  CAS  Google Scholar 

  8. Kumar B, Sharma P, Gupta VP, Khullar M, Singh S, Dogra N, et al. Synthesis and biological evaluation of pyrimidine bridged combretastatin derivatives as potential anticancer agents and mechanistic studies. Bioorg Chem. 2018;78:130–40.

    Article  CAS  PubMed  Google Scholar 

  9. Satia JA, Tseng M, Galanko JA, Martin C, Sandler RS. Dietary patterns and colon cancer risk in whites and African Americans in the North Carolina colon cancer study. Nutr Cancer. 2009;61(2):179–93.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Franken NA, Rodermond HM, Stap J, Haveman J, van Bree C. Clonogenic assay of cells in vitro. Nat Protoc. 2006;1(5):2315–9.

    Article  CAS  PubMed  Google Scholar 

  11. Kim BS, Shin SY, Ahn S, Koh D, Lee YH, Lim Y. Biological evaluation of 2-pyrazolinyl-1-carbothioamide derivatives against HCT116 human colon cancer cell lines and elucidation on QSAR and molecular binding modes. Bioorg Med Chem. 2017;25(20):5423–32.

    Article  CAS  PubMed  Google Scholar 

  12. Sharma SK, Kumar P, Narasimhan B, Ramasamy K, Mani V, Mishra RK, et al. Synthesis, antimicrobial, anticancer evaluation and QSAR studies of 6-methyl-4-[1-(2-substituted-phenylamino-acetyl)-1H-indol-3-yl]-2-oxo/thioxo-1,2,3,4-tetrahydropyrimidine-5-carboxylic acid ethyl esters. Eur J Med Chem. 2012;48:16–25.

    Article  CAS  PubMed  Google Scholar 

  13. Shin SY, Yoon H, Hwang D, Ahn S, Kim DW, Koh D, et al. Benzochalcones bearing pyrazoline moieties show anti-colorectal cancer activities and selective inhibitory effects on aurora kinases. Bioorg Med Chem. 2013;21(22):7018–24.

    Article  CAS  PubMed  Google Scholar 

  14. Lee Y, Kim BS, Ahn S, Koh D, Lee YH, Shin SY, et al. Anticancer and structure-activity relationship evaluation of 3-(naphthalen-2-yl)-N,5-diphenyl-pyrazoline-1-carbothioamide analogs of chalcone. Bioorg Chem. 2016;68:166–76.

    Article  CAS  PubMed  Google Scholar 

  15. Shin SY, Ahn S, Yoon H, Jung H, Jung Y, Koh D, et al. Colorectal anticancer activities of polymethoxylated 3-naphthyl-5-phenylpyrazoline-carbothioamides. Bioorg Med Chem Lett. 2016;26(17):4301–9.

    Article  CAS  PubMed  Google Scholar 

  16. Jung Y, Shin SY, Yong Y, Jung H, Ahn S, Lee YH, et al. Plant-derived flavones as inhibitors of aurora B kinase and their quantitative structure-activity relationships. Chem Biol Drug Des. 2015;85(5):574–85.

    Article  CAS  PubMed  Google Scholar 

  17. Koh D, Lee JH. 4-(3,5-Di­meth­oxy­phen­yl)-6-(2-meth­oxy­phen­yl)pyrimidin-2-amine. IUCrData. 2018;3:x180796.

    Article  Google Scholar 

  18. Jung H, Shin SY, Jung Y, Tran TA, Lee HO, Jung KY, et al. Quantitative relationships between the cytotoxicity of flavonoids on the human breast cancer stem-like cells MCF7-SC and their structural properties. Chem Biol Drug Des. 2015;86(4):496–508.

    Article  CAS  PubMed  Google Scholar 

  19. Martin MP, Zhu JY, Lawrence HR, Pireddu R, Luo Y, Alam R, et al. A novel mechanism by which small molecule inhibitors induce the DFG flip in Aurora a. ACS Chem Biol. 2012;7(4):698–706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Fancelli D, Moll J, Varasi M, Bravo R, Artico R, Berta D, et al. 1,4,5,6-tetrahydropyrrolo[3,4-c]pyrazoles: identification of a potent Aurora kinase inhibitor with a favorable antitumor kinase inhibition profile. J Med Chem. 2006;49(24):7247–51.

    Article  CAS  PubMed  Google Scholar 

  21. Shin SY, Lee Y, Kim BS, Lee J, Ahn S, Koh D, et al. Inhibitory effect of synthetic flavone derivatives on pan-aurora kinases: induction of g2/m cell-cycle arrest and apoptosis in hct116 human colon cancer cells. Int J Mol Sci. 2018;19(12):4086.

    Article  PubMed Central  Google Scholar 

  22. Jawale DV, Pratap UR, Bhosale MR, Mane RA. One-pot three-component synthesis of 2-amino pyrimidines in aqueous peg-400 at ambient temperature. J Heterocyclic Chem. 2016;53:1626–30.

    Article  CAS  Google Scholar 

  23. Marumoto T, Honda S, Hara T, Nitta M, Hirota T, Kohmura E, et al. Aurora-a kinase maintains the fidelity of early and late mitotic events in HeLa cells. J Biol Chem. 2003;278(51):51786–95.

    Article  CAS  PubMed  Google Scholar 

  24. Dar AA, Goff LW, Majid S, Berlin J, El-Rifai W. Aurora kinase inhibitors--rising stars in cancer therapeutics? Mol Cancer Ther. 2010;9(2):268–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Danial NN, Korsmeyer SJ. Cell death: critical control points. Cell. 2004;116(2):205–19.

    Article  CAS  PubMed  Google Scholar 

  26. Jung KY, Park J, Han YS, Lee YH, Shin SY, Lim Y. Synthesis and biological evaluation of hesperetin derivatives as agents inducing apoptosis. Bioorg Med Chem. 2017;25(1):397–407.

    Article  CAS  PubMed  Google Scholar 

  27. Shin SY, Jung H, Ahn S, Hwang D, Yoon H, Hyun J, et al. Polyphenols bearing cinnamaldehyde scaffold showing cell growth inhibitory effects on the cisplatin-resistant A2780/Cis ovarian cancer cells. Bioorg Med Chem. 2014;22(6):1809–20.

    Article  CAS  PubMed  Google Scholar 

  28. Brown JR, Koretke KK, Birkeland ML, Sanseau P, Patrick DR. Evolutionary relationships of Aurora kinases: implications for model organism studies and the development of anti-cancer drugs. BMC Evol Biol. 2004;4:39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Luo Y, Deng YQ, Wang J, Long ZJ, Tu ZC, Peng W, et al. Design, synthesis and bioevaluation of N-trisubstituted pyrimidine derivatives as potent aurora a kinase inhibitors. Eur J Med Chem. 2014;78:65–71.

    Article  CAS  PubMed  Google Scholar 

  30. Tari LW, Hoffman ID, Bensen DC, Hunter MJ, Nix J, Nelson KJ, et al. Structural basis for the inhibition of Aurora a kinase by a novel class of high affinity disubstituted pyrimidine inhibitors. Bioorg Med Chem Lett. 2007;17(3):688–91.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Konkuk University Research Support Program (YHL).

Author information

Authors and Affiliations

Authors

Contributions

YHL: designed the experiments and wrote the manuscript. JP, YLee, JL, SYS: conducted the experiments. SA: synthesized chemicals. DK and YLim: supervised the study, analyzed the data, and edited the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Dongsoo Koh or Yoongho Lim.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 4625 kb)

ESM 2

(PDF 19878 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, Y.H., Park, J., Ahn, S. et al. Design, synthesis, and biological evaluation of polyphenols with 4,6-diphenylpyrimidin-2-amine derivatives for inhibition of Aurora kinase A. DARU J Pharm Sci 27, 265–281 (2019). https://doi.org/10.1007/s40199-019-00272-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40199-019-00272-5

Keywords

Navigation