Skip to main content
Log in

Sharp decay estimates and asymptotic behaviour for 3D magneto-micropolar fluids

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

We characterize the \(L^2\) decay rate of solutions to the 3D magneto-micropolar system in terms of the decay character of the initial datum. Due to a linear damping term, the microrotational field has a faster decay rate. We also address the asymptotic behaviour of solutions by comparing them to solutions to the linear part. As a result of the linear damping, the difference between the microrotational field and its linear part also decays faster. As part of the proofs of these results, we prove estimates for the derivatives of solutions which might be of independent interest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahmadi, G., Shahinpoor, M.: Universal stability of magneto-micropolar fluid motions. Int. J. Eng. Sci. 12, 657–663 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bjorland, C., Schonbek, M.E.: Poincaré’s inequality and diffusive evolution equations. Adv. Differ. Equ. 14(3–4), 241–260 (2009)

    MATH  Google Scholar 

  3. Boldrini, J.L., Durán, M., Rojas-Medar, M.A.: Existence and uniqueness of strong solution for the incompressible micropolar fluid equations in domains of \(\mathbb{R}^3\). Ann. Univ. Ferrara Sez. VII Sci. Mat. 56(1), 37–51 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Brandolese, L.: Characterization of solutions to dissipative systems with sharp algebraic decay. SIAM J. Math. Anal. 48(3), 1616–1633 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  5. Braze Silva, P., Cruz, F.W., Freitas, L.B.S., Zingano, P.R.: On the \(L^2\) decay of weak solutions for the 3D asymmetric fluids equations. J. Differ. Equ. 267(6), 3578–3609 (2019)

    MATH  Google Scholar 

  6. Braze Silva, P., Friz, L., Rojas-Medar, M.A.: Exponential stability for magneto-micropolar fluids. Nonlinear Anal. 143, 211–223 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. Braz e Silva, P., Melo, W.G., Zingano, P.R.: Lower bounds on blow-up of solutions for magneto-micropolar fluid systems in homogeneous Sobolev spaces. Acta Appl. Math. 147, 1–17 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  8. Caffarelli, L., Kohn, R., Nirenberg, L.: Partial regularity of suitable weak solutions of the Navier–Stokes equations. Commun. Pure Appl. Math. 35(6), 771–831 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cruz, F., Novais, M.: Optimal \(L^2\) decay of the magneto-micropolar system in \(\mathbb{R}^{3}\). Z. Angew. Math. Phys. 71, 91 (2020)

    Article  MATH  Google Scholar 

  10. Cemal Eringen, A.: Theory of micropolar fluids. J. Math. Mech. 16, 1–18 (1966)

    MathSciNet  Google Scholar 

  11. Ferreira, L.C.F., Villamizar-Roa, E.J.: Micropolar fluid system in a space of distributions and large time behavior. J. Math. Anal. Appl. 332(2), 1425–1445 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Lucas C F, F., Niche, C.J., Planas, G.: Decay of solutions to dissipative modified quasi-geostrophic equations. Proc. Am. Math. Soc. 145(1), 287–301 (2017)

    MathSciNet  MATH  Google Scholar 

  13. Gala, S.: Regularity criteria for the 3D magneto-micropolar fluid equations in the Morrey–Campanato space. Nonlinear Differ. Equ. Appl. 17(2), 181–194 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gala, S., Sawano, Y., Tanaka, H.: A new Beale–Kato–Majda criteria for the 3D magneto-micropolar fluid equations in the Orlicz–Morrey space. Math. Methods Appl. Sci. 35(11), 1321–1334 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Galdi, G.P., Rionero, S.: A note on the existence and uniqueness of solutions of the micropolar fluid equations. Int. J. Eng. Sci. 15(2), 105–108 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  16. Guo, C., Zhang, Z., Wang, J.: Regularity criteria for the 3D magneto-micropolar fluid equations in Besov spaces with negative indices. Appl. Math. Comput. 218(21), 10755–10758 (2012)

    MathSciNet  MATH  Google Scholar 

  17. Guterres, R.H., Melo, W.G., Nunes, J.R., Perusato, C.F.: On the large time decay of asymmetric flows in homogeneous Sobolev spaces. J. Math. Anal. Appl. 471(1–2), 88–101 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  18. Guterres, R.H., Nunes, J.R., Perusato, C.F.: Decay rates for the magneto-micropolar system in \(L^2(\mathbb{R}^n)\). Arch. Math. (Basel) 111(4), 431–442 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kato, T.: Strong \(L ^p\)-solutions of the Navier–Stokes equation in \({ R}^{m}\), with applications to weak solutions. Math. Z. 187, 471–480 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kreiss, H.-O., Hagstrom, T., Lorenz, J., Zingano, P.: Decay in time of incompressible flows. J. Math. Fluid Mech. 5(3), 231–244 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  21. Łukaszewicz, G., Sadowski, W.: Uniform attractor for 2D magneto-micropolar fluid flow in some unbounded domains. Z. Angew. Math. Phys. 55(2), 247–257 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lemarié-Rieusset, P.-G.: Recent Developments in the Navier–Stokes Problem. Chapman & Hall/CRC Research Notes in Mathematics, vol. 431. Chapman & Hall/CRC, Boca Raton (2002)

    Book  MATH  Google Scholar 

  23. Li, M., Shang, H.: Large time decay of solutions for the 3D magneto-micropolar equations. Nonlinear Anal. Real World Appl. 44, 479–496 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  24. Ma, L.: Global existence of three-dimensional incompressible magneto-micropolar system with mixed partial dissipation, magnetic diffusion and angular viscosity. Comput. Math. Appl. 75(1), 170–186 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  25. Mallea-Zepeda, E., Ortega-Torres, E.: Control problem for a magneto-micropolar flow with mixed boundary conditions for the velocity field. J. Dyn. Control Syst. 25(4), 599–618 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  26. Melo, W.G.: The magneto-micropolar equations with periodic boundary conditions: solution properties at potential blow-up times. J. Math. Anal. Appl. 435(2), 1194–1209 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  27. Niche, C.J., Schonbek, M.E.: Decay characterization of solutions to dissipative equations. J. Lond. Math. Soc. (2) 91(2), 573–595 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  28. Orliński, P.: The existence of an exponential attractor in magneto-micropolar fluid flow via the \(\ell \)-trajectories method. Colloq. Math. 132(2), 221–238 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  29. Ortega-Torres, E.E., Rojas-Medar, M.A., Cabrales, R.C.: A uniform error estimate in time for spectral Galerkin approximations of the magneto-micropolar fluid equations. Numer. Methods Partial Differ. Equ. 28(2), 689–706 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  30. Ortega-Torres, E.E., Rojas-Medar, M.A.: Magneto-micropolar fluid motion: global existence of strong solutions. Abstr. Appl. Anal. 4(2), 109–125 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  31. Perusato, C.F., Melo, W.G., Guterres, R.H., Nunes, J.R.: Time asymptotic profiles to the magneto–micropolar system. Appl. Anal. 99, 2680–2693 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  32. Rojas-Medar, M.A.: Magneto-micropolar fluid motion: on the convergence rate of the spectral Galerkin approximations. Z. Angew. Math. Mech. 77(10), 723–732 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  33. Rojas-Medar, M.A.: Magneto-micropolar fluid motion: existence and uniqueness of strong solution. Math. Nachr. 188, 301–319 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  34. Rojas-Medar, M.A., Luiz Boldrini, J.: Magneto-micropolar fluid motion: existence of weak solutions. Rev. Mat. Complut. 11(2), 443–460 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  35. Sadowski, W.: Upper bound for the number of degrees of freedom for magneto-micropolar flows and turbulence. Int. J. Eng. Sci. 41(8), 789–800 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  36. Schonbek, M.E.: Decay of solutions to parabolic conservation laws. Commun. Partial Differ. Equ. 5(7), 449–473 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  37. Schonbek, M.E.: \(L^2\) decay for weak solutions of the Navier–Stokes equations. Arch. Rational Mech. Anal. 88(3), 209–222 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  38. Schonbek, M.E.: Large time behaviour of solutions to the Navier–Stokes equations. Commun. Partial Differ. Equ. 11(7), 733–763 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  39. Tan, Z., Wenpei, W., Zhou, J.: Global existence and decay estimate of solutions to magneto-micropolar fluid equations. J. Differ. Equ. 266(7), 4137–4169 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  40. Wang, Y.: Regularity criterion for a weak solution to the three-dimensional magneto-micropolar fluid equations. Bound. Value Probl. 2013, 58 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  41. Wang, Y.: Blow-up criteria of smooth solutions to the three-dimensional magneto-micropolar fluid equations. Bound. Value Probl. 2015, 118 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  42. Wang, Y., Gu, L.: Global regularity of 3D magneto-micropolar fluid equations. Appl. Math. Lett. 99, 105980, 9 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  43. Wang, Y., Wang, K.: Global well-posedness of 3D magneto-micropolar fluid equations with mixed partial viscosity. Nonlinear Anal. Real World Appl. 33, 348–362 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  44. Wang, Y.-Z., Hu, L., Wang, Y.-X.: A Beale-Kato-Madja criterion for magneto-micropolar fluid equations with partial viscosity. Bound. Value Probl. 2011, 128614 (2011)

    MathSciNet  MATH  Google Scholar 

  45. Wang, Y.-Z., Li, Y., Wang, Y.-X.: Blow-up criterion of smooth solutions for magneto-micropolar fluid equations with partial viscosity. Bound. Value Probl. 2011, 1–11 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  46. Wiegner, M.: Decay results for weak solutions of the Navier–Stokes equations on \({ R}^{n}\). J. London Math. Soc. (2) 35(2), 303–313 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  47. Xiang, Z., Yang, H.: On the regularity criteria for the 3D magneto-micropolar fluids in terms of one directional derivative. Bound. Value Probl. 2012, 139 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  48. Yamaguchi, N.: Existence of global strong solution to the micropolar fluid system in a bounded domain. Math. Methods Appl. Sci. 28(13), 1507–1526 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  49. Yamazaki, K.: 3-D stochastic micropolar and magneto-micropolar fluid systems with non-Lipschitz multiplicative noise. Commun. Stoch. Anal. 8(3), 413–437 (2014)

    MathSciNet  Google Scholar 

  50. Yamazaki, K.: Exponential convergence of the stochastic micropolar and magneto-micropolar fluid systems. Commun. Stoch. Anal. 10(3), 271–295 (2016)

    MathSciNet  Google Scholar 

  51. Yamazaki, K.: Large deviation principle for the micropolar, magneto-micropolar fluid systems. Discrete Contin. Dyn. Syst. Ser. B 23(2), 913–938 (2018)

    MathSciNet  MATH  Google Scholar 

  52. Yamazaki, K.: Gibbsian dynamics and ergodicity of stochastic micropolar fluid system. Appl. Math. Optim. 79(1), 1–40 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  53. Yamazaki, K.: Irreducibility of the three, and two and a half dimensional Hall-magnetohydrodynamics system. Phys. D 401, 132199 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  54. Yuan, B.: Regularity of weak solutions to magneto-micropolar fluid equations. Acta Math. Sci. Ser. B (Engl. Ed.) 30(5), 1469–1480 (2010)

    MathSciNet  MATH  Google Scholar 

  55. Yuan, B., Li, X.: Regularity of weak solutions to the 3D magneto-micropolar equations in Besov spaces. Acta Appl. Math. 163, 207–223 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  56. Yuan, J.: Existence theorem and blow-up criterion of the strong solutions to the magneto-micropolar fluid equations. Math. Methods Appl. Sci. 31(9), 1113–1130 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  57. Zhang, H., Zhao, Y.: Blow-up criterion for strong solutions to the 3D magneto-micropolar fluid equations in the multiplier space. Electron. J. Differ. Equ. 188, 1–7 (2012)

    MathSciNet  MATH  Google Scholar 

  58. Zhang, Z., Yao, Z., Wang, X.: A regularity criterion for the 3D magneto-micropolar fluid equations in Triebel–Lizorkin spaces. Nonlinear Anal. 74(6), 2220–2225 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to César J. Niche.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

C.J. Niche acknowledges support from Bolsa PQ CNPq - 308279/2018-2 and PROEX - CAPES. C.J. Niche and C.F. Perusato acknowledge support from PRONEX-FAPERJ “Equações Diferenciais Parciais Não Lineares e Aplicações”. C. F. Perusato was partially supported by CAPES–PRINT - 88881.311964/2018–01 and Propesq-UFPE - 08-2019 (Qualis A). He is also grateful for the warm hospitality during his visit at the Universidade Federal do Rio de Janeiro, where this work was started.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niche, C.J., Perusato, C.F. Sharp decay estimates and asymptotic behaviour for 3D magneto-micropolar fluids. Z. Angew. Math. Phys. 73, 48 (2022). https://doi.org/10.1007/s00033-022-01683-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-022-01683-2

Mathematics Subject Classification

Keywords

Navigation