Skip to main content
Log in

Control Problem for a Magneto-Micropolar Flow with Mixed Boundary Conditions for the Velocity Field

  • Published:
Journal of Dynamical and Control Systems Aims and scope Submit manuscript

Abstract

We prove the existence and uniqueness of weak solutions of the stationary magneto-micropolar equations with mixed boundary conditions for velocity, including Navier slip condition. We study an optimal boundary control problem associated to weak solutions of these equations. By using the Lagrange multipliers method, we obtain first-order necessary conditions from which we derive an optimality system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahmadi G, Shahinpoor M. Universal stability of magneto-micropolar fluid motion. Int J Engng Sci 1974;12:657–63.

    Article  MathSciNet  MATH  Google Scholar 

  2. Ahmadi G. Universal stability of thermo-magneto-micropolar fluid motion. Int J Engng Sci 1976;15:853–9.

    Article  MathSciNet  MATH  Google Scholar 

  3. Alekseev GV. Solvability of control problems for stationary equations of magnetohydrodynamics of a viscous fluids. Siberian Math J 2004;45(2):197–213.

    Article  MathSciNet  Google Scholar 

  4. Alekseev GV, Brizitskii RV. Control problems for stationary equations of the magnetohydrodynamics of a viscous heat-conducting fluids with mixed boundary conditions. Comput Math Math Phys 2005;45(12):2049–65.

    MathSciNet  Google Scholar 

  5. Alekseev GV. Solvability of an inhomogeneous boundary value problem for the stationary magnetohydrodynamic equations for a viscous incompressible fluid. Diff Equ 2016;52(6):739–48.

    Article  MathSciNet  MATH  Google Scholar 

  6. Alekseev GV, Brizitskii RV. Solvability of the boundary value problem for stationary magnetohydrodynamic equations under mixed boundary conditions for the magnetic field. Appl Math Lett 2014;32:13–18.

    Article  MathSciNet  MATH  Google Scholar 

  7. Boldrini JL, Rojas-Medar MA. Magneto-micropolar fluid motion: existence of weak solution. Rev Mat Univ Complutense de Madrid 1998;11:443–60.

    MathSciNet  MATH  Google Scholar 

  8. Brézis H. Functional analysis. Sobolev spaces and partial differential equations. New York: Springer; 2011.

    MATH  Google Scholar 

  9. Dautray R, Lions JL. 2000. Mathematical analysis and numerical methods for science and technology 2. Springer.

  10. De los Reyes JC, Kunisch K. A semi-smooth Newton method for control constrained boundary optimal control of the Navier–Stokes equations. Nonlinear Anal 2005;62:1289–316.

    Article  MathSciNet  MATH  Google Scholar 

  11. De los Reyes JC, Tröltzsch F. Optimal control of the stationary Navier-Stokes equations with mixed control-state constraints. SIAM J Control Optim 2007;46:604–29.

    Article  MathSciNet  MATH  Google Scholar 

  12. Galdi G. 2011. An introduction to the mathematical theory of the Navier-Stokes equations, 2nd edn. Springer.

  13. Galdi G, Rionero S. A note on the existence and uniqueness of solutions of the micropolar fluid equations. Int J Enging Sci 1977;15:105–8.

    Article  MathSciNet  MATH  Google Scholar 

  14. Gunzburger M, Hou L, Svobodny T. Boundary velocity control of incompressible flow with an application to viscous drag reduction. SIAM J Control Optim 1992;30:167–81.

    Article  MathSciNet  MATH  Google Scholar 

  15. Gunzburger M, Hou L, Svobodny T. Analysis and finite element approximations of optimal control problems for the stationary Navier-Stokes equations with Dirichlet controls. Math Model Numer Anal 1991;25:711–48.

    Article  MathSciNet  MATH  Google Scholar 

  16. Gunzburger M, Hou L, Svobodny T. The velocity tracking problem for Navier-Stokes flows with boundary control. SIAM J Control Optim 2000;39:594–634.

    Article  MathSciNet  Google Scholar 

  17. Gunzburger M, Meir AJ, Peterson JS. On the existence, uniqueness, and finite element approximation of solutions of the equations of stationary, incompressible magnetohydrodynamics. Math Comp 1991;56:523–63.

    Article  MathSciNet  MATH  Google Scholar 

  18. Hou LS, Meir AJ. Boundary optimal control of MHD flows. Apl Math Optim 1995;32:143–162.

    Article  MathSciNet  MATH  Google Scholar 

  19. Jägger W, Mikelić A. On the roughness-induced effective boundary conditions for an incompressible viscous flow. J Diff Equ 2001;170:96–122.

    Article  MathSciNet  MATH  Google Scholar 

  20. John C, Wachsmuth D. Optimal Dirichlet boundary control of stationary Navier-Stokes equations with state constraint. Num Funct Anal Optim 2009;30:1309–1338.

    Article  MathSciNet  MATH  Google Scholar 

  21. Lukaszewicz G. Micropolar fluids: theory and applications. Boston: Birkhäuser; 1999.

    Book  MATH  Google Scholar 

  22. Lukaszewicz G. On stationary flows of asymmetric fluids. Volume XII. Rend Accad Naz Sci Detta dei XL 1988;106:35–44.

    MathSciNet  MATH  Google Scholar 

  23. Mallea-Zepeda E, Ortega-Torres E, Villamizar-Roa E. A Boundary control problem for micropolar fluids. J Optim Theory Appl 2016;169(2):349–369.

    Article  MathSciNet  MATH  Google Scholar 

  24. Mallea-Zepeda E, Ortega-Torres E, Villamizar-Roa E. 2017. An optimal control problem for the steady nonhomogeneous asymmetric fluids. Appl Math. Optim (In press). https://doi.org/10.1007/s00245-017-9466-5.

  25. Maxwell JC. On stressed in rariffed gases arising from inequalities of temperature. Phil Trans Royal Soc. 1879; 704–12.

  26. Navier CL. Sur le lois de l’équilibrie et du mouvement des corps élastiques. Mem Acad R Sci Inst. France (1827):369.

  27. Ortega-Torres E, Rojas-Medar MA. Magneto-micropolar fluid motion: global existence of strong solutions. Abstr Appl Anal 1999;4(2):109–25.

    Article  MathSciNet  MATH  Google Scholar 

  28. Rojas-Medar MA. Magneto-micropolar fluid motion: existence and uniqueness of strong solutions. Math Nuchr 1997;188:301–19.

    Article  MathSciNet  MATH  Google Scholar 

  29. Solonnikov VA, Scadilov VE. A certain boundary value problem for the stationary system of Navier—Stokes equations. Trudy Mat Inst Steklov 1973;125:196–210.

    MathSciNet  MATH  Google Scholar 

  30. Stavre R. A distributed control problem for micropolar fluids. In honour of Academician Nicolae Dan Cristescu on his 70th birthday. Rev Roumaine Math Pures Appl 2001;45(2):353–58.

    Google Scholar 

  31. Stavre R. The control of the pressure for a micropolar fluid. Dedicated to Eugen Soós. Z Angew Math Phys 2002;53(6):912–22.

    Article  MathSciNet  MATH  Google Scholar 

  32. Stavre R. Optimization and numerical approximation for micropolar fluids. Numer Funct Anal Optim 2003;24(3-4):223–241.

    Article  MathSciNet  MATH  Google Scholar 

  33. Temam R. 2001. Navier-stokes equations: theory and numerical analysis. AMS Chelsea Publishing.

  34. Zowe J, Kurcyusz S. Regularity and Stability for the Mathematical Programming Problem in Banach Spaces. Appl Math Optim 1979;5:49–62.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

E. Mallea-Zepeda was supported by Proyecto UTA-Mayor, 4740-18, Universidad de Tarapacá (Chile).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Exequiel Mallea-Zepeda.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mallea-Zepeda, E., Ortega-Torres, E. Control Problem for a Magneto-Micropolar Flow with Mixed Boundary Conditions for the Velocity Field. J Dyn Control Syst 25, 599–618 (2019). https://doi.org/10.1007/s10883-018-9427-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10883-018-9427-6

Keywords

Mathematics Subject Classification (2010)

Navigation