Skip to main content
Log in

Convergence to line and surface energies in nematic liquid crystal colloids with external magnetic field

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We use the Landau-de Gennes energy to describe a particle immersed into nematic liquid crystals with a constant applied magnetic field. We derive a limit energy in a regime where both line and point defects are present, showing quantitatively that the close-to-minimal energy is asymptotically concentrated on lines and surfaces nearby or on the particle. We also discuss regularity of minimizers and optimality conditions for the limit energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Alama, S., Bronsard, L., Lamy, X.: Minimizers of the Landau-de Gennes energy around a spherical colloid particle. Arch. Ration. Mech. Anal. 222(1), 427–450 (2016)

    Article  MathSciNet  Google Scholar 

  2. Alama, S., Bronsard, L., Lamy, X.: Spherical particle in nematic liquid crystal under an external field: The Saturn ring regime. J. Nonlinear Sci. 28(4), 1443–1465 (2018)

    Article  MathSciNet  Google Scholar 

  3. Alberti, G., Baldo, S., Orlandi, G.: Variational convergence for functionals of Ginzburg–Landau type. Indiana Univ. Math. J. 54(5), 1411–1472 (2005)

    Article  MathSciNet  Google Scholar 

  4. Almgren, F.: Plateau’s Problem: An Invitation to Varifold Geometry. American Mathematical Society (2001)

  5. Alouges, F., Chambolle, A., Stantejsky, D.: The saturn ring effect in nematic liquid crystals with external field: effective energy and hysteresis. Arch. Ration. Mech. Anal. 241, 1403–1457 (2021)

    Article  MathSciNet  Google Scholar 

  6. Ambrosio, L., Fusco, N., Pallara, D.: Functions of Bounded Variation and Free Discontinuity Problems. The Clarendon Press, Oxford University Press, New York (2000)

    Book  Google Scholar 

  7. Aplinc, J., Pusovnik, A., Ravnik, M.: Designed self-assembly of metamaterial split-ring colloidal particles in nematic liquid crystals. Soft Matter 15(28), 5585–5595 (2019)

    Article  Google Scholar 

  8. Ball, J.M.: The calculus of variations and materials science. Q. Appl. Math. 56(4), 719–740 (1998)

    Article  MathSciNet  Google Scholar 

  9. Ball, J.M.: Liquid crystals and their defects. In Mathematical thermodynamics of complex fluids, volume 2200 of Lecture Notes in Math., pages 1–46. Springer, Cham (2017)

  10. Ball, J.M., Zarnescu, A.: Orientability and energy minimization in liquid crystal models. Arch. Ration. Mech. Anal. 202(2), 493–535 (2011)

    Article  MathSciNet  Google Scholar 

  11. Bernoulli, J.: Problema novum ad cujus solutionem mathematici invitantur. Acta Eruditorum 18, 269 (1696)

    Google Scholar 

  12. Bethuel, F., Brezis, H., Hélein, F.: Asymptotics for the minimization of a Ginzburg–Landau functional. Calc. Var. Partial. Differ. Equ. 1(2), 123–148 (1993)

    Article  MathSciNet  Google Scholar 

  13. Bethuel, F., Brezis, H., Hélein, F.: Ginzburg–Landau Vortices. Birkhäuser, Boston (1994)

    Book  Google Scholar 

  14. Born, M., Wolf, E.: Principles of Optics. Cambridge University Press, Cambridge (2019)

    Book  Google Scholar 

  15. Braides, A.: \(\Gamma \)-Convergence for Beginners. Oxford University Press, Oxford (2002)

    Book  Google Scholar 

  16. Brezis, H., Nirenberg, L.: Degree theory and BMO part I: compact manifolds without boundaries. Sel. Math. New Ser. 1(2), 197–263 (1995)

    Article  Google Scholar 

  17. Canevari, G.: Biaxiality in the asymptotic analysis of a 2D Landau–de Gennes model for liquid crystals. ESAIM: Control Optim. Calc. Var. 21(1), 101–137 (2015)

    MathSciNet  Google Scholar 

  18. Canevari, G.: Defects in the Landau-de Gennes model for liquid crystals. PhD thesis, Université Pierre et Marie Curie - Paris VI (2015)

  19. Canevari, G.: Line defects in the small elastic constant limit of a three-dimensional Landau-de Gennes model. Arch. Ration. Mech. Anal. 223(2), 591–676 (2017)

    Article  MathSciNet  Google Scholar 

  20. Canevari, G., Orlandi, G.: Topological singular set of vector-valued maps, I: applications to manifold-constrained Sobolev and BV spaces. Calculus of Variations and Partial Differential Equations, 58(72) (2019)

  21. Canevari, G., Orlandi, G.: Topological singular set of vector-valued maps, II: \(\Gamma \)-convergence for Ginzburg–Landau type functionals. Archive for Rational Mechanics and Analysis, 241(2), 1065–1135 (2021)

  22. Chiron, D.: Etude mathématique de modèles issus de la physique de la matière condensée. PhD thesis, Université Pierre et Marie Curie - Paris VI (2004)

  23. Courant, R.: Dirichlet’s Principle, Conformal Mapping, and Minimal Surfaces: Reprint. Springer Verlag, New York (1977)

    Book  Google Scholar 

  24. Dambrine, M., Puig, B.: Oriented distance point of view on random sets. ESAIM: Control Optim. Calc. Var. 26, 84 (2020)

    MathSciNet  Google Scholar 

  25. David, G.: \(C^{1+\alpha }\)-regularity for two-dimensional almost-minimal sets in \(\mathbb{R}^{n}\). J. Geom. Anal. (2010)

  26. David, G.: A local description of 2-dimensional almost minimal sets bounded by a curve. Annales de la Faculté des sciences de Toulouse: Mathématiques 31(1), 1–382 (2022)

    MathSciNet  Google Scholar 

  27. David Hoffman, F.W., Karcher, Hermann: The genus one helicoid and the minimal surfaces that led to its discovery. Global Analysis and Modern Mathematics, pages 119–170 (1993)

  28. de Gennes, P.G., Prost, J.: The Physics of Liquid Crystals. International Series of Monographs on Physics (1993)

  29. Douglas, J.: Solution of the problem of plateau. Trans. Am. Math. Soc. 33(1), 263–321 (1931)

    Article  MathSciNet  Google Scholar 

  30. Federer, H.: Geometric Measure Theory. Springer, Berlin (1996)

    Book  Google Scholar 

  31. Federer, H., Fleming, W.H.: Normal and integral currents. Ann. Math. 72(3), 458 (1960)

    Article  MathSciNet  Google Scholar 

  32. Fleming, W.H.: Flat chains over a finite coefficient group. Trans. Am. Math. Soc. 121(1), 160–160 (1966)

    Article  MathSciNet  Google Scholar 

  33. Fournais, S., Helffer, B.: Spectral Methods in Surface Superconductivity, vol. 77. Birkhäuser Boston Inc, Boston (2010)

    Book  Google Scholar 

  34. Freguglia, P., Giaquinta, M.: The Early Period of the Calculus of Variations. Springer-Verlag GmbH, Berlin (2016)

    Book  Google Scholar 

  35. Garbovskiy, Y.A., Glushchenko, A.V.: Liquid crystalline colloids of nanoparticles. In Solid State Physics, pages 1–74. Elsevier (2010)

  36. Gartland, E.C.: Scalings and limits of Landau-deGennes models for liquid crystals: a comment on some recent analytical papers. Math. Model. Anal. 23(3), 414–432 (2018)

    Article  MathSciNet  Google Scholar 

  37. Goldstine, H.H.: A History of the Calculus of Variations from the 17th through the 19th Century. Springer, New York (1980)

    Book  Google Scholar 

  38. Gray, A.: The volume of a small geodesic ball of a Riemannian manifold. Mich. Math. J. 20(4) (1974)

  39. Hilbert, D.: Die Grundlagen der Physik. Math. Ann. 92(1–2), 1–32 (1924)

    Article  MathSciNet  Google Scholar 

  40. Hirsch, M.W.: Differential Topology. Springer, New York (1976)

    Book  Google Scholar 

  41. Ignat, R., Jerrard, R.L.: Renormalized energy between vortices in some Ginzburg–Landau models on 2-dimensional Riemannian manifolds. Arch. Ration. Mech. Anal. 239(3), 1577–1666 (2021)

    Article  MathSciNet  Google Scholar 

  42. Ignat, R., Moser, R.: Interaction energy of domain walls in a nonlocal Ginzburg–Landau type model from micromagnetics. Arch. Ration. Mech. Anal. 221(1), 419–485 (2016)

    Article  MathSciNet  Google Scholar 

  43. Ignat, R., Nguyen, L., Slastikov, V., Zarnescu, A.: Stability of point defects of degree \(\pm \frac{1}{2}\) in a two-dimensional nematic liquid crystal model. Calc. Vari. Partial Differ. Equ. 55(5) (2016)

  44. Jerrard, R.L.: Lower bounds for generalized Ginzburg–Landau functionals. SIAM J. Math. Anal. 30(4), 721–746 (1999)

    Article  MathSciNet  Google Scholar 

  45. Jost, J.: Two-Dimensional Geometric Variational Problems. Wiley, Chichester New York (1991)

    Google Scholar 

  46. Karcher, H.: Construction of minimal surfaces. Surveys in Geometry, pp. 1–96 (1989)

  47. Kim, K.I., Liu, Z.: Global minimizer for the Ginzburg–Landau functional of an inhomogeneous superconductor. J. Math. Phys. 43(2), 803–817 (2002)

    Article  MathSciNet  Google Scholar 

  48. Kurzke, M., Melcher, C., Moser, R., Spirn, D.: Ginzburg-Landau vortices driven by the Landau-Lifshitz-Gilbert equation. Arch. Ration. Mech. Anal. 199(3), 843–888 (2010)

    Article  MathSciNet  Google Scholar 

  49. Lagrange, J.L.: Essai d’une nouvelle méthode pour détérminer les maxima et les minima des formules intégrales indéfinies. Miscellanea Taurinensia, pages 335–362, 1760-1761

  50. Lin, F.H.: Solutions of Ginzburg-Landau equations and critical points of the renormalized energy. Annales de l’Institut Henri Poincaré C, Analyse non linéaire 12(5), 599–622 (1995)

    Article  MathSciNet  Google Scholar 

  51. Liu, C., Walkington, N.J.: Approximation of liquid crystal flows. SIAM J. Numer. Anal. 37(3), 725–741 (2000)

    Article  MathSciNet  Google Scholar 

  52. López, R.: Constant Mean Curvature Surfaces with Boundary. Springer, Berlin (2013)

    Book  Google Scholar 

  53. Loudet, J., Mondain-Monval, O., Poulin, P.: Line defect dynamics around a colloidal particle. Eur. Phys. J. E 7(3), 205–208 (2002)

    Article  Google Scholar 

  54. Loudet, J.C., Poulin, P.: Application of an electric field to colloidal particles suspended in a liquid-crystal solvent. Phys. Rev. Lett. 87(16) (2001)

  55. Machon, T.: The topology of knots and links in nematics. Liq. Crystals Today 28(3), 58–67 (2019)

    Article  Google Scholar 

  56. Maggi, F.: Sets of Finite Perimeter and Geometric Variational Problems. Cambridge University Press, Cambridge (2009)

    Google Scholar 

  57. Majumdar, A.: Equilibrium order parameters of nematic liquid crystals in the Landau-de Gennes theory. Eur. J. Appl. Math. 21(2), 181–203 (2010)

    Article  MathSciNet  Google Scholar 

  58. Masiello, A.: Applications of calculus of variations to general relativity. In Recent Developments in General Relativity, pages 173–195. Springer Milan (2000)

  59. Matveev, R., Portegies, J.W.: Intrinsic flat and Gromov–Hausdorff convergence of manifolds with Ricci curvature bounded below. J. Geom. Anal. 27(3), 1855–1873 (2016)

    Article  MathSciNet  Google Scholar 

  60. Mironescu, P.: On the stability of radial solutions of the Ginzburg–Landau equation. J. Funct. Anal. 130(2), 334–344 (1995)

    Article  MathSciNet  Google Scholar 

  61. Modica, L.: Gradient theory for phase transitions and the minimal interface criterion. Arch. Ration. Mech. Anal. 98, 123–142 (1987)

    Article  MathSciNet  Google Scholar 

  62. Modica, L.: The gradient theory of phase transitions and the minimal interface criterion. Arch. Ration. Mech. Anal. 98(2), 123–142 (1987)

    Article  MathSciNet  Google Scholar 

  63. Modica, L., Mortola, S.: Un esempio di \(\Gamma \)-convergenza. Bollettino della Unione Matematica Italiana B 5(14), 285–299 (1977)

    MathSciNet  Google Scholar 

  64. Mondain-Monval, O., Dedieu, J., Gulik-Krzywicki, T., Poulin, P.: Weak surface energy in nematic dispersions: saturn ring defects and quadrupolar interactions. Eur. Phys. J. B 12(2), 167–170 (1999)

    Article  Google Scholar 

  65. Morgan, F.: \({(\textbf{M},\epsilon ,\delta )}\)-minimal curve regularity. Proc. Am. Math. Soc. 120(3), 677–677 (1994)

    MathSciNet  Google Scholar 

  66. Morgan, F.: Surfaces minimizing area plus length of singular curves. Proc. Am. Math. Soc. 122(4), 1153–1153 (1994)

    Article  MathSciNet  Google Scholar 

  67. Morgan, F.: Geometric Measure Theory : A Beginner’s Guide. Elsevier Ltd, Amsterdam (2016)

    Book  Google Scholar 

  68. Muševič, I.: Nematic liquid-crystal colloids. Materials 11(1), 24 (2018)

    Article  Google Scholar 

  69. Nitsche, J.C.C.: Lectures on Minimal Surfaces. Cambridge University Press, Cambridge (2011)

    Google Scholar 

  70. Philippis, G.D., Maggi, F.: Regularity of free boundaries in anisotropic capillarity problems and the validity of Young’s law. Arch. Ration. Mech. Anal. 216(2), 473–568 (2014)

    Article  MathSciNet  Google Scholar 

  71. Priestley, E.B., Wojtowicz, P.J., Sheng, P. (eds.): Introduction to Liquid Crystals. Plenum Press (1974)

  72. Radó, T.: On the Problem of Plateau. Springer, Berlin (1933)

    Book  Google Scholar 

  73. Sahu, D.K., Anjali, T.G., Basavaraj, M.G., Aplinc, J., Čopar, S., Dhara, S.: Orientation, elastic interaction and magnetic response of asymmetric colloids in a nematic liquid crystal. Sci. Rep. 9(1) (2019)

  74. Sandier, E.: Lower bounds for the energy of unit vector fields and applications. J. Funct. Anal. 152(2), 379–403 (1998)

    Article  MathSciNet  Google Scholar 

  75. Sandier, E., Serfaty, S.: Gamma-convergence of gradient flows with applications to Ginzburg–Landau. Commun. Pure Appl. Math. 57(12), 1627–1672 (2004)

    Article  MathSciNet  Google Scholar 

  76. Serfaty, S.: Vorticity for the Ginzburg-Landau model of superconductors in a magnetic field. Nonlinear Dynamics and Renormalization Group (2001)

  77. Simon, L.: Lectures on geometric measure theory. Centre for Mathematical Analysis, Australian National University, Canberra (1983)

  78. Smalyukh, I.I.: Liquid crystals enable chemoresponsive reconfigurable colloidal self-assembly. Proc. Natl. Acad. Sci. 107(9), 3945–3946 (2010)

    Article  Google Scholar 

  79. Solodkov, N.V., uk Shim, J., Jones, J.C.: Self-assembly of fractal liquid crystal colloids. Nat. Commun. 10(1) (2019)

  80. Stantejsky, D.: A finite element approach for minimizing line and surface energies arising in the study of singularities in liquid crystals. In preparation (2024)

  81. Struwe, M.: Plateau’s Problem and the Calculus of Variations. Princeton University Press, Princeton (2014)

    Google Scholar 

  82. Sudhakaran, D.V., Pujala, R.K., Dhara, S.: Orientation dependent interaction and self-assembly of cubic magnetic colloids in a nematic liquid crystal. Adv. Opt. Mater. 8(7), 1901585 (2020)

    Article  Google Scholar 

  83. Taylor, J.E.: The structure of singularities in soap-bubble-like and soap-film-like minimal surfaces. Ann. Math. 103(3), 489 (1976)

    Article  MathSciNet  Google Scholar 

  84. Taylor, J.E.: Boundary regularity for solutions to various capillarity and free boundary problems. Commun. Partial Differ. Equ. 2(4), 323–357 (1977)

    Article  MathSciNet  Google Scholar 

  85. Thom, R.: Un lemme sur les applications différentiables. Boletín de la Sociedad Matemática Mexicana. Segunda Serie 1, 59–71 (1956)

    Google Scholar 

  86. White, B.: The deformation theorem for flat chains. Acta Math. 183(2), 255–271 (1999)

    Article  MathSciNet  Google Scholar 

  87. White, B.: Rectifiability of flat chains. Ann. Math. 150(1), 165 (1999)

    Article  MathSciNet  Google Scholar 

  88. Xie, Y., Li, Y., Wei, G., Liu, Q., Mundoor, H., Chen, Z., Smalyukh, I.I.: Liquid crystal self-assembly of upconversion nanorods enriched by depletion forces for mesostructured material preparation. Nanoscale 10(9), 4218–4227 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Antoine Lemenant and Guy David for the useful discussions and comments on the regularity for almost minimizers of length and surface. The authors also thank Vincent Millot, Lia Bronsard and the anonymous referee for comments and suggestions, which helped us to fix some issues and greatly improve the manuscript.

Funding

This study was funded by École Polytechnique and CNRS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominik Stantejsky.

Ethics declarations

Conflict of interest

The authors declare that they have no Conflict of interest.

Additional information

Communicated by L. Szekelyhidi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The complex \(\mathcal {T}\)

The complex \(\mathcal {T}\)

In this section, we collect and prove all results in connection to the structure of \(\mathcal {T}\) as defined in Sect. 4.3. Recall that

$$\begin{aligned} \mathcal {T}:=\{ Q\in \text {Sym} _{0}\, : \,s>0\, , 0\le r<1\, , n_3 = 0 \}\, . \end{aligned}$$

Our first result is a characterization of \(\mathcal {T}\) that provides us with a more accessible parametrization.

Proposition A.1

Every matrix \(Q\in \mathcal {T}\) can be written as

$$\begin{aligned} Q = \lambda (\textbf{n}\otimes \textbf{n}- R_\textbf{n}^\top M R_\textbf{n})\, , \end{aligned}$$

where \(\lambda >0\), \(\textbf{n}=(n_1,n_2,0)\in \mathbb {S}^2\), \(R_\textbf{n}\) is the rotation around \(\textbf{n}\wedge \textbf{e}_3\), such that \(R_\textbf{n}\textbf{n}= \textbf{e}_3\) and

with \(M'\in \mathbb {R}^{2\times 2}\) symmetric, \(\text {tr}(M')=1\) and \(\langle M'v,v\rangle >-1\) for all \(v\in \mathbb {S}^1\). The matrix Q is oblate uniaxial if and only if \(M'=\frac{1}{2}\text {Id}\).

Proof

A matrix Q of the above form \(Q = \lambda (\textbf{n}\otimes \textbf{n}- R_\textbf{n}^\top M R_\textbf{n})\) has \(\textbf{n}\) as an eigenvector to the eigenvalue \(\lambda \) and \(\textbf{n}_3=0\) by definition. Furthermore, since \(\min _{v\in \mathbb {S}^1}\langle M'v,v\rangle >-1\) the eigenvalue \(\lambda \) is strictly bigger than the other eigenvalues, thus \(r<1\) and \(Q\in \mathcal {T}\). Conversely, we can write every \(Q\in \text {Sym} _{0}\) as

$$\begin{aligned} Q \ = \ \lambda _1 \textbf{n}\otimes \textbf{n}+ \lambda _2 \textbf{m}\otimes \textbf{m}+ \lambda _3\textbf{p}\otimes \textbf{p}\, , \end{aligned}$$

with \(\lambda _1\ge \lambda _2\ge \lambda _3\) and \(\textbf{n},\textbf{m},\textbf{p}\in \mathbb {S}^2\) pairwise orthogonal eigenvectors of Q to \(\lambda _1,\lambda _2,\lambda _3\). By definition of \(\mathcal {T}\), \(n_3=0\) as required for our parametrization and clearly we can identify \(\lambda =\lambda _1\). Setting \(M = -R_\textbf{n}(\frac{\lambda _2}{\lambda _1}\textbf{m}\otimes \textbf{m}+ \frac{\lambda _3}{\lambda _1}\textbf{p}\otimes \textbf{p})R_\textbf{n}^\top \), it is obvious that M is of the above form and that \(Q\in \mathcal {T}\) can be written as claimed.

If \(M'=\frac{1}{2}\text {Id}\) then

$$\begin{aligned} Q \ = \ \lambda (\textbf{n}\otimes \textbf{n}- R_\textbf{n}^\top M R_\textbf{n}) \ = \ \frac{3}{2}\lambda \left( \textbf{n}\otimes \textbf{n}- \frac{1}{3}\text {Id}\right) \, , \end{aligned}$$

i.e. Q is oblate uniaxial. The reverse implication follows similarly, since the matrices \(R_\textbf{n}^\top ,R_\textbf{n}\) are invertible. \(\square \)

Remark A.2

Given a vector \(u\in \mathbb {R}^3\) as axis of rotation and an angle \(\theta \), then this rotation is described by the matrix R with

$$\begin{aligned} R = \begin{pmatrix} \cos \theta + u_1^2(1-\cos \theta ) &{} u_1 u_2 (1-\cos \theta ) - u_3\sin \theta &{} u_1 u_3 (1-\cos \theta ) + u_2\sin \theta \\ u_1 u_2 (1-\cos \theta ) + u_3\sin \theta &{} \cos \theta + u_2^2(1-\cos \theta ) &{} u_2 u_3 (1-\cos \theta ) - u_1\sin \theta \\ u_1 u_3 (1-\cos \theta ) - u_2\sin \theta &{} u_2 u_3 (1-\cos \theta ) + u_1\sin \theta &{} \cos \theta + u_3^2(1-\cos \theta ) \end{pmatrix}\,. \end{aligned}$$

Corollary A.3

\(\mathcal {T}\) is a four dimensional smooth complex and \(\partial \mathcal {T}= \mathcal {C}\).

Proof

From the characterization in Proposition A.1, it is clear that one can use the map \(Q\mapsto (\lambda ,\textbf{n},m_{11},m_{12})\) to make \(\mathcal {T}\) a four dimensional manifold with a conical singularity in \(Q=0\). In particular, \(\mathcal {T}\) is a smooth complex.

Proposition A.1 furthermore implies that the boundary of \(\mathcal {T}\) consists of matrices of the form \(\lambda =0\) (from which follows directly \(Q=0\)) or \(M'\) has the eigenvalue \(-1\) (which corresponds to \(r=1\)). In particular, the matrices with \(r=0\) are not included in \(\partial \mathcal {T}\) as one may think from the definition in (12). This implies the inclusion \(\partial \mathcal {T}\subset \mathcal {C}\). For the inverse inclusion, take \(Q\in \mathcal {C}\) with orthogonal eigenvectors \(\textbf{m},\textbf{p}\in \mathbb {S}^2\) associated to the largest eigenvalue \(\lambda _1=\lambda _2\). So in fact we have a two dimensional subspace of eigenvectors to this eigenvalue spanned by \(\textbf{m}\) and \(\textbf{p}\). Since the hyperplane defined through \(\{n_3=0\}\) is of codimension one, there exists a unit vector \(\textbf{n}\in \{n_3=0\}\cap \text {span}\{\textbf{m},\textbf{p}\}\) which we were looking for. The unit eigenvector orthogonal to \(\textbf{n}\) in the plane \(\text {span}\{\textbf{m},\textbf{p}\}\) requires \(M'\) to have the eigenvalue \(-1\) or in other words \(\min _{v\in \mathbb {S}^1}\langle M'v,v\rangle =-1\), so that \(Q\in \partial \mathcal {T}\). \(\square \)

Lemma A.4

Let \(Q\in \mathcal {T}\cap \mathcal {N}\). Then, the normal vector \(N_Q\) on \(\mathcal {T}\) at Q is given by

$$\begin{aligned} N_Q = \frac{3}{2}\lambda \begin{pmatrix} 0 &{} 0 &{} n_1 \\ 0 &{} 0 &{} n_2 \\ n_1 &{} n_2 &{} 0 \end{pmatrix}\, , \end{aligned}$$

where \(\textbf{n}=(n_1,n_2,0)\in \mathbb {S}^2\) is the eigenvector associated to the largest eigenvalue \(\lambda _1\).

Proof

We are going to prove a slightly more general result by first considering \(Q\in \mathcal {T}\) and calculating the tangent vectors to \(\mathcal {T}\) in Q. We use the representation from Proposition A.1 and vary \(\lambda ,\textbf{n},m_{11},m_{12}\) one after another.

  • First, we can easily take the derivative with respect to \(\lambda \) and obtain \(\textbf{T}_1 = (\textbf{n}\otimes \textbf{n}- R_\textbf{n}^\top M R_\textbf{n})\).

  • Second, we vary the parameter \(\textbf{n}\). So, let’s consider \(\textbf{n}=(n_1,n_2,0)\in \mathbb {S}^2\). Without loss of generality we assume that \(n_2\ne 0\) and write \(\textbf{n}(t) = (n_1+t,n_2-\frac{n_1}{n_2}t)\). Then \(|\textbf{n}(t)|^2=1+O(t^2)\) and

    $$\begin{aligned} \textbf{n}(t)\otimes \textbf{n}(t) \ {}&= \ \textbf{n}\otimes \textbf{n}+ t D_{\textbf{n}\otimes \textbf{n}} + O(t^2)\, , \qquad D_{\textbf{n}\otimes \textbf{n}} = \begin{pmatrix} 2n_1 &{} n_2-\frac{n_1^2}{n_2} &{} 0 \\ n_2-\frac{n_1^2}{n_2} &{} -2n_1 &{} 0 \\ 0 &{} 0 &{} 0 \end{pmatrix}\, . \end{aligned}$$

    The derivative of the second term \(R_{\textbf{n}(t)}^\top M R_{\textbf{n}(t)}\) can be calculated using Remark A.2 with the axis \(\textbf{n}^\perp (t):=\textbf{n}(t)\wedge \textbf{e}_3\). Since \(\textbf{n}(t)\perp \textbf{e}_3\) we can write

    $$\begin{aligned} R_{\textbf{n}(t)} \ {}&= \ R_{\textbf{n}} + t D_{R_\textbf{n}} + O(t^2)\, , \qquad D_{R_\textbf{n}} = \frac{1}{n_2} \begin{pmatrix} -2n_1 n_2 &{} -n_2^2+n_1^2 &{} -n_2 \\ -n_2^2+n_1^2 &{} 2n_1 n_2 &{} n_1 \\ n_2 &{} -n_1 &{} 0 \end{pmatrix}\, . \end{aligned}$$

    The second tangent vector \(\textbf{T}_2\) is thus given by \(\textbf{T}_2 = \lambda (D_{\textbf{n}\otimes \textbf{n}} - D_{R_\textbf{n}}^\top M R_\textbf{n}- R_\textbf{n}^\top M D_{R_\textbf{n}})\).

  • Third, we can take the derivative with respect to \(m_{11}\). This is straightforward and we obtain

    $$\begin{aligned} \textbf{T}_3 = \lambda R_\textbf{n}^\top \begin{pmatrix} 1 &{} 0 &{} \\ 0 &{} -1 &{} \\ &{} &{} 0 \end{pmatrix} R_\textbf{n}\, . \end{aligned}$$
  • Last, varying \(m_{12}\) we easily calculate

    $$\begin{aligned} \textbf{T}_4 = \lambda R_\textbf{n}^\top \begin{pmatrix} 0 &{} 1 &{} \\ 1 &{} 0 &{} \\ &{} &{} 0 \end{pmatrix} R_\textbf{n}\, . \end{aligned}$$

Before proceeding, we want to calculate a fifth vector by varying \(\textbf{n}_3\). As it will turn out later, this is indeed the normal vector.

  • Writing once again \(\textbf{n}=(n_1,n_2,0)\) and defining \(\textbf{n}(t):=(n_1\sqrt{1-t^2},n_2\sqrt{1-t^2},t)\) we can express

    $$\begin{aligned} \textbf{n}(t)\otimes \textbf{n}(t) \ {}&= \ \textbf{n}\otimes \textbf{n}+ t (\textbf{n}\otimes \textbf{e}_3 + \textbf{e}_3\otimes \textbf{n}) + O(t^2)\, . \end{aligned}$$

    As for the second tangent vector, we use Remark A.2 and the rotation around \(\textbf{n}^\perp (t) = \textbf{n}(t)\wedge \textbf{e}_3\). Unlike previously, \(\textbf{n}(t)\) is no longer orthogonal to \(\textbf{e}_3\) for \(t\ne 0\), namely \(\theta =\arccos (\langle \textbf{n}(t),\textbf{e}_3\rangle )=t\). Substituting this our expression of the rotation matrix we get

    $$\begin{aligned} R_{\textbf{n}(t)} \ = \ R_{\textbf{n}} + t D_{3} + O(t^2)\, ,\qquad D_{3} = \begin{pmatrix} 1-n_2^2 &{} n_1 n_2 &{} 0 \\ n_1 n_2 &{} 1- n_1^2 &{} 0 \\ 0 &{} 0 &{} 1 \end{pmatrix}\, . \end{aligned}$$

    Adding the two partial results, we get

    $$\begin{aligned} N :=\lambda (\textbf{n}\otimes \textbf{e}_3 + \textbf{e}_3\otimes \textbf{n}- D_{3}^\top M R_\textbf{n}- R_\textbf{n}^\top M D_{3})\, . \end{aligned}$$

It remains to show that \(\{\textbf{T}_1,\textbf{T}_2,\textbf{T}_3,\textbf{T}_4, N\}\) are pairwise orthogonal if Q is oblate uniaxial. Indeed, then it follows that N is a normal vector, since it is orthogonal to \(T_Q\mathcal {T}\).

It is easy to see that since the trace is invariant by change of basis and since \(R_\textbf{n}^\top =R_\textbf{n}^{-1}\)

$$\begin{aligned} \langle \textbf{T}_3,\textbf{T}_4\rangle \ {}&= \ \lambda ^2\text {tr}\left( \begin{pmatrix} 1 &{} 0 \\ 0 &{} -1 \end{pmatrix}\begin{pmatrix} 0 &{} 1 \\ 1 &{} 0 \end{pmatrix} \right) \ = \ \lambda ^2 \text {tr}\left( \begin{pmatrix} 0 &{} 1 \\ -1 &{} 0 \end{pmatrix} \right) \ = \ 0\, . \end{aligned}$$

Noting that \(\textbf{n}\otimes \textbf{n}R_\textbf{n}^\top M R_\textbf{n}=0\) for \(M\in \text {Sym} _{0}\) with \(m_{ij}=0\) if \(i=3\) or \(j=3\), we get

$$\begin{aligned} \langle \textbf{T}_1,\textbf{T}_3\rangle \ {}&= \ \lambda \text {tr}\left( (\textbf{n}\otimes \textbf{n}- R_\textbf{n}^\top M R_\textbf{n})\left( R_\textbf{n}^\top \begin{pmatrix} 1 &{} 0 &{} \\ 0 &{} -1 &{} \\ &{} &{} 0 \end{pmatrix} R_\textbf{n}\right) \right) \\ \ {}&= \ \lambda \text {tr}\left( M\begin{pmatrix} 1 &{} 0 &{} \\ 0 &{} -1 &{} \\ &{} &{} 0 \end{pmatrix}\right) \ = \ \lambda \text {tr}\left( \begin{pmatrix} m_{11} &{} -m_{12} &{} \\ m_{12} &{} -m_{22} &{} \\ &{} &{} 0 \end{pmatrix}\right) \ = \ \lambda (2 m_{11}-1) \, . \end{aligned}$$

With the same argument we also find

$$\begin{aligned} \langle \textbf{T}_1,\textbf{T}_4\rangle \ {}&= \ \lambda \text {tr}\left( (\textbf{n}\otimes \textbf{n}- R_\textbf{n}^\top M R_\textbf{n})\left( R_\textbf{n}^\top \begin{pmatrix} 0 &{} 1 &{} \\ 1 &{} 0 &{} \\ &{} &{} 0 \end{pmatrix} R_\textbf{n}\right) \right) \\ \ {}&= \ \lambda \text {tr}\left( M \begin{pmatrix} 0 &{} 1 &{} \\ 1 &{} 0 &{} \\ &{} &{} 0 \end{pmatrix}\right) \ = \ \lambda \text {tr}\left( \begin{pmatrix} m_{12} &{} m_{11} &{} \\ m_{22} &{} m_{12} &{} \\ &{} &{} 0 \end{pmatrix}\right) \ = \ 2\lambda m_{12} \, . \end{aligned}$$

Furthermore, we claim that

$$\begin{aligned} \langle \textbf{T}_1,\textbf{T}_2\rangle \ {}&= \ \lambda \, \text {tr}\Bigg ((\textbf{n}\otimes \textbf{n}- R_\textbf{n}^\top M R_\textbf{n})(D_{\textbf{n}\otimes \textbf{n}} - D_{R_\textbf{n}}^\top M R_\textbf{n}- R_\textbf{n}^\top M D_{R_\textbf{n}})\Bigg ) \ = \ 0\, . \end{aligned}$$

Indeed, one can check that

$$\begin{aligned} \text {tr}(\textbf{n}\otimes \textbf{n}D_{\textbf{n}\otimes \textbf{n}}) \ {}&= \ 0 \ = \ \text {tr}(\textbf{n}\otimes \textbf{n}D_{R_\textbf{n}}^\top M R_\textbf{n}) \, , \\ \text {tr}(\textbf{n}\otimes \textbf{n}R_\textbf{n}^\top M D_{R_\textbf{n}}) \ {}&= \ 0 \ = \ \text {tr}(R_\textbf{n}^\top M R_\textbf{n}D_{\textbf{n}\otimes \textbf{n}}) \, , \\ \text {tr}(R_\textbf{n}^\top M R_\textbf{n}D_{R_\textbf{n}}^\top M R_\textbf{n}) \ {}&= \ 0 \ = \ \text {tr}(R_\textbf{n}^\top M R_\textbf{n}R_\textbf{n}^\top M D_{R_\textbf{n}}) \, . \end{aligned}$$

This implies that

$$\begin{aligned} \langle N,\textbf{T}_3\rangle \ {}&= \ \lambda ^2 \text {tr}\left( (\textbf{n}\otimes \textbf{e}_3 + \textbf{e}_3\otimes \textbf{n}- D_{3}^\top M R_\textbf{n}- R_\textbf{n}^\top M D_{3})\left( R_\textbf{n}^\top \begin{pmatrix} 1 &{} 0 &{} \\ 0 &{} -1 &{} \\ &{} &{} 0 \end{pmatrix} R_\textbf{n}\right) \right) \ = \ 0\, , \end{aligned}$$

since again the traces of all cross terms vanish. Similarly,

$$\begin{aligned} \langle N,\textbf{T}_4\rangle \ {}&= \ 0 \, . \end{aligned}$$

Next, we have the equality

$$\begin{aligned} \langle \textbf{T}_2,\textbf{T}_3\rangle \ {}&= \ -4 \lambda ^2 \frac{m_{12}}{n_2} \, . \end{aligned}$$

This follows since \(\text {tr}(D_{\textbf{n}\otimes \textbf{n}} \textbf{T}_3) = 0\) and \(\text {tr}(D_{3} M R_\textbf{n}\textbf{T}_3) = \frac{2m_{12}}{n_2}\). The latter fact is evident if one calculates \(M \begin{pmatrix} 1 &{} 0 &{} \\ 0 &{} -1 &{} \\ &{} &{} 0 \end{pmatrix} \ = \ \begin{pmatrix} m_{11} &{} -m_{12} &{} \\ m_{12} &{} -m_{22} &{} \\ &{} &{} 0 \end{pmatrix}\) and \(R_\textbf{n}D_3^\top = \begin{pmatrix} 0 &{} -1/n_2 &{} 1 \\ 1/n_2 &{} 0 &{} -n_1/n_2 \\ -1 &{} n_1/n_2 &{} 0 \end{pmatrix}\). This also permits us to derive

$$\begin{aligned} \langle \textbf{T}_2,\textbf{T}_4\rangle \ {}&= \ 2\lambda ^2\frac{2m_{11}-1}{n_2} \, . \end{aligned}$$

Again, we simply calculate the traces of all cross terms. For example

$$\begin{aligned} \text {tr}(\textbf{n}\otimes \textbf{e}_3 D_{\textbf{n}\otimes \textbf{n}}) \ {}&= \ 0 \, , \\ \text {tr}(\textbf{n}\otimes \textbf{e}_3 R_{\textbf{n}}^\top M D_{R_{\textbf{n}}}) \ {}&= \ 0 \, , \\ \text {tr}(\textbf{n}\otimes \textbf{e}_3 D_{R_\textbf{n}}^\top MR_\textbf{n}) \ {}&= \ \frac{m_{12}}{n_2}(n_1^2-n_2^2)-n_1(2m_{11}-1) \, , \\ \text {tr}(D_{R_\textbf{n}}^\top M R_\textbf{n}D_{\textbf{n}\otimes \textbf{n}}) \ {}&= \ 2\frac{m_{11}n_1}{n_2} + \frac{1}{n_2^2}(n_1^2(2m_{11}-1)+m_{11}) \, , \\ \text {tr}(D_{R_\textbf{n}}^\top M R_\textbf{n}R_{\textbf{n}}^\top M D_{R_{\textbf{n}}}) \ {}&= \ -2\frac{n_1 m_{12}}{n_2} + \frac{1}{n_2^2}\left( 3(m_{11}^2 + m_{12}^2) - (1 + n_1^2)(2m_{11}-1) \right) \, , \\ \text {tr}(D_{R_\textbf{n}}^\top M R_\textbf{n}D_{R_\textbf{n}}^\top MR_\textbf{n}) \ {}&= \ 2\frac{m_{11}m_{22}+m_{12}^2}{n_2^2}\, , \end{aligned}$$

We end up with

$$\begin{aligned} \langle N,\textbf{T}_2\rangle \ {}&= \ \frac{6\lambda ^2 m_{12} (n_1^2 - n_2^2)}{n_2} - 6\lambda ^2 n_1(2 m_{11} -1) \, . \end{aligned}$$

Another straightforward calculation shows that

$$\begin{aligned} \langle N,\textbf{T}_1\rangle \ {}&= \ \lambda 2 n_1 m_{12}(n_1^5 m_{12} - 2 n_{1}^4 n_{2} m_{11} - 2 n_{1}^3 m_{12} - 2n_1^2 n_2^3 m_{11} + 3 n_1^2 n_2 m_{11} \\&-2n_1^2 n_2- n_1 n_2^4m_{12} + n_1 m_{12} + n_2^3 m_{11} - n_2 m_{11} - 2 n_2^3 + 2n_2 ) \, . \end{aligned}$$

After these calculations, it is apparent that for prolate uniaxial \(Q\in \text {Sym} _{0}\) (and in particular \(Q\in \mathcal {N}\)), i.e. \(M'=\frac{1}{2}\text {Id}\) all inner products vanish. In order to form a basis, we must prove that the vectors themselves never vanish. We find

$$\begin{aligned} \Vert \textbf{T}_1\Vert ^2 \ {}&= \ 2(m_{11}^2 - m_{11} + m_{12} + 1) \, , \\ \Vert \textbf{T}_2\Vert ^2 \ {}&= \ \frac{2}{n_2^2}(6n_1^2(1-2m_{11}) - 6m_{12}n_1 n_2 + 5m_{11}^2 - 2m_{11} + 5m_{12} + 2) \, , \\ \Vert \textbf{T}_3\Vert ^2 \ {}&= \ 2\lambda ^2 \, , \\ \Vert \textbf{T}_4\Vert ^2 \ {}&= \ 2\lambda ^2 \, , \\ \Vert N \Vert ^2 \ {}&= \ \lambda ^2(12m_{11}n_1^2 -6n_1^2 + 12 m_{12}n_1n_2 + 2m_{11}^2 - 8m_{11} + 2m_{12}^2 + 8) \, , \end{aligned}$$

and thus for \(M'=\frac{1}{2}\text {Id}\) it holds that \(\Vert \textbf{T}_1\Vert ^2 = \frac{6}{4}\), \(\Vert \textbf{T}_2\Vert ^2=\frac{9}{2}\lambda ^2 n_2^{-2}\) and \(\Vert N\Vert ^2 = \frac{9}{2}\lambda ^2\).

This concludes the proof that \(\{\textbf{T}_1,\textbf{T}_2,\textbf{T}_3,\textbf{T}_4\}\) form indeed a basis of \(T_Q\mathcal {T}\), and since N is orthogonal to \(T_Q\mathcal {T}\), the result follows. \(\square \)

Proposition A.5

There exists \(C,\alpha _0>0\) such that for all \(\alpha \in (0,\alpha _0)\) and \(Q\in \mathcal {N}\) it holds

$$\begin{aligned} \mathcal {H}^4(B_\alpha (Q)\cap \mathcal {T}) \ \le \ C \alpha ^4\,. \end{aligned}$$

Proof

As seen before, \(\mathcal {T}\) has the structure of a smooth manifold around \(\mathcal {N}\). By invariance of \(\mathcal {N}\) under rotations, it is enough to show that the claim holds around one \(Q\in \mathcal {N}\). The Ricci curvature \(\kappa \) of \(\mathcal {N}\) is bounded so that we can choose \(\alpha _0>0\) small enough such that \(B_\alpha (Q)\cap \mathcal {T}\) is contained in the geodesic ball in \(\mathcal {T}\) of size \(2\alpha \) around Q for all \(\alpha \in (0,\alpha _0)\). Furthermore, if needed, we can choose \(\alpha _0>0\) even smaller such that \(1-\frac{\kappa }{36\alpha _0^2}\le 2\). Theorem 3.1 in [38] then implies that

$$\begin{aligned} \mathcal {H}^4(B_\alpha (Q)\cap \mathcal {T}) \ {}&\le \ \text {vol}_\mathcal {T}(B_{2\alpha }(Q)) \ \le \ 16\pi ^2\alpha ^4\, . \end{aligned}$$

\(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alouges, F., Chambolle, A. & Stantejsky, D. Convergence to line and surface energies in nematic liquid crystal colloids with external magnetic field. Calc. Var. 63, 129 (2024). https://doi.org/10.1007/s00526-024-02717-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-024-02717-5

Mathematics Subject Classification

Navigation