Skip to main content
Log in

Maximum mechano-damage power release-based phase-field modeling of mass diffusion in damaging deformable solids

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

We formulate in three space dimensions a phase-field theory of mass diffusion in a damaging deformable solid matrix without making use of thermal quantities. The approach relies on three fundamental postulates: the diffusing species mass balance, the maximum mechano-damage power release principle, and an energy imbalance inequality. The solid is modelled mechanically as a Cauchy continuum. The kinematics of the continuum is given in terms of the diffusing species concentration and the solid matrix placement and damage fields. The formulation is based on the multiplicative decomposition of the total deformation gradient into an intercalation and an elastic deformation gradients. Constitutively, the model relies on three free energy functionals, i.e., chemical, damage, and strain energies. Damage is the phase field of the formulation, as non-locality is ensured by the dependence of the damage energy upon the damage gradient. Aimed at giving an insight into the properties of the model, the results of finite-element dynamic simulations are reported for a mechanically confined one-dimensional continuum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Abali, B.E., Müller, W.H., dell’Isola, F.: Theory and computation of higher gradient elasticity theories based on action principles. Arch. Appl. Mech. 87(9), 1495–1510 (2017)

    Article  Google Scholar 

  2. Abali, B.E., Müller, W.H., Eremeyev, V.A.: Strain gradient elasticity with geometric nonlinearities and its computational evaluation. Mech. Adv. Mater. Mod. Process. 1(1), 4 (2015)

    Article  Google Scholar 

  3. Abali, B.E., Klunker, A., Barchiesi, E., Placidi, L.: A novel phase-field approach to brittle damage mechanics of gradient metamaterials combining action formalism and history variable. ZAMM-J. Appl. Math. Mech. https://doi.org/10.1002/zamm.202000289 (2021)

  4. Altenbach, H., Eremeyev, V.: On the linear theory of micropolar plates. ZAMM-J. Appl. Math. Mech. 89(4), 242–256 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Churikov, A.V., Ivanishchev, A.V., Ushakov, A.V., Romanova, V.O.: Diffusion aspects of lithium intercalation as applied to the development of electrode materials for lithium-ion batteries. J. Solid State Electrochem. 18(5), 1425–1441 (2014)

    Article  Google Scholar 

  6. Ciallella, A., Pasquali, D., Gołaszewski, M., D’Annibale, F., Giorgio, I.: A rate-independent internal friction to describe the hysteretic behavior of pantographic structures under cyclic loads. Mech. Res. Commun. 116, 103761 (2021)

    Article  Google Scholar 

  7. Contrafatto, L., Cuomo, M., Gazzo, S.: A concrete homogenisation technique at meso-scale level accounting for damaging behaviour of cement paste and aggregates. Comput. Struct. 173, 1–18 (2016)

    Article  Google Scholar 

  8. Cuomo, M., Greco, L.: An implicit strong g1-conforming formulation for the analysis of the kirchhoff plate model. Continuum Mech. Thermodyn. 32(3), 621–645 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  9. dell’Isola, F., Andreaus, U., Placidi, L.: At the origins and in the vanguard of peridynamics, non-local and higher-gradient continuum mechanics: an underestimated and still topical contribution of gabrio piola. Math. Mech. Solids 20(8), 887–928 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. dell’Isola, F., Cuomo, M., Greco, L., Della Corte, A.: Bias extension test for pantographic sheets: numerical simulations based on second gradient shear energies. J. Eng. Math. https://doi.org/10.1007/s10665-016-9865-7 (2016)

  11. Dell’Isola, F., Della Corte, A., Giorgio, I.: Higher-gradient continua: the legacy of Piola, Mindlin, Sedov and Toupin and some future research perspectives. Math. Mech. Solids 22(4), 852–872 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  12. dell’Isola, F., Madeo, A., Seppecher, P.: Cauchy tetrahedron argument applied to higher contact interactions. Arch. Ration. Mech. Anal. 219(3), 1305–1341 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  13. dell’Isola, F., Seppecher, P., Della Corte, A.: The postulations á la D’Alembert and á la Cauchy for higher gradient continuum theories are equivalent: a review of existing results. In: Proc. R. Soc. A, volume 471, pp. 20150415. The Royal Society (2015)

  14. dell’Isola, F., Steigmann, D.J.: A two-dimensional gradient-elasticity theory for woven fabrics. J. Elast. 18, 113–125 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Duda, F.P., Barbosa, J.M.A., Guimarães, L.J., Souza, A.C.: Modeling of coupled deformation-diffusion-damage in elastic solids. Int. J. Model. Simul. Petrol. Ind. 1(1), 85–93 (2007)

    Google Scholar 

  16. Eremeyev, V.A., dell’Isola, F., Boutin, C., Steigmann, D.: Linear pantographic sheets: existence and uniqueness of weak solutions. J. Elast. 132, 175–196 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  17. Eremeyev, V.A.: On the material symmetry group for micromorphic media with applications to granular materials. Mech. Res. Commun. 94, 8–12 (2018)

    Article  Google Scholar 

  18. Francfort, G., Marigo, J.-J.: Revisiting brittle fracture as an energy minimization problem. J. Mech. Phys. Solids 46(8), 1319–1342 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  19. Gay-Balmaz, F., Yoshimura, H.: A Lagrangian variational formulation for nonequilibrium thermodynamics. Part i: discrete systems. J. Geom. Phys. 111, 169–193 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  20. Gay-Balmaz, F., Yoshimura, H.: From Lagrangian mechanics to nonequilibrium thermodynamics: a variational perspective. Entropy 21(1), 8 (2019)

    Article  MATH  Google Scholar 

  21. Giorgio, I., Grygoruk, R., dell’Isola, F., Steigmann, D.J.: Pattern formation in the three-dimensional deformations of fibered sheets. Mech. Res. Commun. 69, 164–171 (2015)

    Article  Google Scholar 

  22. Giorgio, I., De Angelo, M., Turco, E., Misra, A.: A Biot–Cosserat two-dimensional elastic nonlinear model for a micromorphic medium. Continuum Mech. Thermodyn. 32, 1357–1369 (2019)

    Article  MathSciNet  Google Scholar 

  23. Greco, L.: An iso-parametric g1-conforming finite element for the nonlinear analysis of kirchhoff rod. Part i: the 2d case. Continuum Mech. Thermodyn. 32, 1473–1496 (2020)

    Article  MathSciNet  Google Scholar 

  24. Greco, L., Cuomo, M.: An implicit g1-conforming bi-cubic interpolation for the analysis of smooth and folded kirchhoff-love shell assemblies. Comput. Methods Appl. Mech. Eng. 373, 113476 (2021)

    Article  MATH  Google Scholar 

  25. Greco, L., Cuomo, M., Contrafatto, L.: A quadrilateral g1-conforming finite element for the kirchhoff plate model. Comput. Methods Appl. Mech. Eng. 346, 913–951 (2019)

    Article  MATH  Google Scholar 

  26. Greco, L., Cuomo, M., Contrafatto, L.: Two new triangular g1-conforming finite elements with cubic edge rotation for the analysis of kirchhoff plates. Comput. Methods Appl. Mech. Eng. 356, 354–386 (2019)

    Article  MATH  Google Scholar 

  27. Greco, L., Scrofani, A., Cuomo, M.: A non-linear symmetric g1-conforming bézier finite element formulation for the analysis of kirchhoff beam assemblies. Comput. Methods Appl. Mech. Eng. 387, 114176 (2021)

    Article  MATH  Google Scholar 

  28. Greco, L., Giorgio, I., Battista, A.: In plane shear and bending for first gradient inextensible pantographic sheets: numerical study of deformed shapes and global constraint reactions. Math. Mech. Solids 22(10), 1950–1975 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  29. Gurtin, M.E., Fried, E., Anand, L.: The Mechanics and Thermodynamics of Continua. Cambridge University Press, Cambridge (2010)

    Book  Google Scholar 

  30. Gurtin, M.E., Voorhees, P.W.: The continuum mechanics of coherent two-phase elastic solids with mass transport. Proc. R. Soc. Lond. A 440(1909), 323–343 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  31. Javanbakht, M., Sadegh Ghaedi, M.: Nanovoid induced martensitic growth under uniaxial stress: effect of misfit strain, temperature and nanovoid size on pt threshold stress and nanostructure in nial. Comput. Mater. Sci. 184, 109928 (2020)

    Article  Google Scholar 

  32. Javanbakht, M., Rahbar, H., Ashourian, M.: Explicit nonlinear finite element approach to the lagrangian-based coupled phase field and elasticity equations for nanoscale thermal-and stress-induced martensitic transformations. Continuum Mech. Thermodyn. https://doi.org/10.1007/s00161-020-00912-1 (2020)

  33. Kristensen, P.K., Niordson, C.F., Martínez-Pañeda, E.: A phase field model for elastic–gradient–plastic solids undergoing hydrogen embrittlement. J. Mech. Phys. Solids 143, 104093 (2020)

    Article  MathSciNet  Google Scholar 

  34. Lemaitre, J., Desmorat, R.: Engineering Damage Mechanics: Ductile, Creep, Fatigue and Brittle Failures. Springer, Berlin (2005)

    Google Scholar 

  35. Lemaitre, J., Desmorat, R., Sauzay, M.: Anisotropic damage law of evolution. Eur. J. Mech.-A/Solids 19(2), 187–208 (2000)

    Article  MATH  Google Scholar 

  36. Miehe, C., Hofacker, M., Welschinger, F.: A phase field model for rate-independent crack propagation: robust algorithmic implementation based on operator splits. Comput. Methods Appl. Mech. Eng. 199(45), 2765–2778 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  37. Parthasarathy, R., Misra, A., Park, J., Ye, Q., Spencer, P.: Diffusion coefficients of water and leachables in methacrylate-based crosslinked polymers using absorption experiments. J. Mater. Sci. Mater. Med. 23(5), 1157–1172 (2012)

    Article  Google Scholar 

  38. Pham, K., Amor, H., Marigo, J.-J., Maurini, C.: Gradient damage models and their use to approximate brittle fracture. Int. J. Damage Mech. 20(4), 618–652 (2011)

    Article  Google Scholar 

  39. Pietraszkiewicz, W., Eremeyev, V.: On natural strain measures of the non-linear micropolar continuum. Int. J. Solids Struct. 46(3), 774–787 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  40. Placidi, L.: A variational approach for a nonlinear 1-dimensional second gradient continuum damage model. Continuum Mech. Thermodyn. 27(4–5), 623 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  41. Placidi, L.: A variational approach for a nonlinear one-dimensional damage-elasto-plastic second-gradient continuum model. Continuum Mech. Thermodyn. 28(1–2), 119–137 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  42. Placidi, L., Barchiesi, E.: Energy approach to brittle fracture in strain-gradient modelling. Proc. R. Soc. A Math. Phys. Eng. Sci. 474(2210), 20170878 (2018)

    MathSciNet  MATH  Google Scholar 

  43. Placidi, L., Barchiesi, E., Misra, A.: A strain gradient variational approach to damage: a comparison with damage gradient models and numerical results. Math. Mech. Complex Syst. 6(2), 77–100 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  44. Placidi, L., Barchiesi, E., Misra, A., Andreaus, U.: Variational Methods in Continuum Damage and Fracture Mechanics. Encylopedia of Continuum Mechanics. Springer, Berlin (2020)

    Google Scholar 

  45. Placidi, L., Barchiesi, E., Misra, A., Timofeev, D.: Micromechanics-based elasto-plastic-damage energy formulation for strain gradient solids with granular microstructure. Continuum Mech. Thermodyn. 33, 2213–2241 (2021)

    Article  MathSciNet  Google Scholar 

  46. Placidi, L., Misra, A., Barchiesi, E.: Two-dimensional strain gradient damage modeling: a variational approach. Z. Angew. Math. Phys. 69(3), 56 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  47. Putar, F., Sorić, J., Lesičar, T., Tonković, Z.: Damage modeling employing strain gradient continuum theory. Int. J. Solids Struct. 120, 171–185 (2017)

    Article  Google Scholar 

  48. Rinaldi, A., Placidi, L.: A microscale second gradient approximation of the damage parameter of quasi-brittle heterogeneous lattices. ZAMM-J. Appl. Math. Mech. 94(10), 862–877 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  49. Scerrato, D., Giorgio, I., Rizzi, N.: Three-dimensional instabilities of pantographic sheets with parabolic lattices: numerical investigations. Z. Angew. Math. Phys. 67(3), 1–19 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  50. Singh, V., Misra, A., Marangos, O., Park, J., Ye, Q., Kieweg, S.L., Spencer, P.: Viscoelastic and fatigue properties of model methacrylate-based dentin adhesives. J. Biomed. Mater. Res. B Appl. Biomater. 95(2), 283–290 (2010)

    Article  Google Scholar 

  51. Sofronis, P.: The influence of mobility of dissolved hydrogen on the elastic response of a metal. J. Mech. Phys. Solids 43(9), 1385–1407 (1995)

    Article  Google Scholar 

  52. Steigmann, D.J., dell’Isola, F.: Mechanical response of fabric sheets to three-dimensional bending, twisting, and stretching. Acta. Mech. Sin. 31(3), 373–382 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  53. Takami, N., Satoh, A., Hara, M., Ohsaki, T.: Structural and kinetic characterization of lithium intercalation into carbon anodes for secondary lithium batteries. J. Electrochem. Soc. 142(2), 371 (1995)

    Article  Google Scholar 

  54. Tatone, A., Recrosi, F., Repetto, R., Guidoboni, G.: From species diffusion to poroelasticity and the modeling of lamina cribrosa. J. Mech. Phys. Solids 124, 849–870 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  55. Thomas, J.P., Chopin, C.E.: Modeling of coupled deformation–diffusion in non-porous solids. Int. J. Eng. Sci. 37(1), 1–24 (1999)

    Article  Google Scholar 

  56. Timofeev, D., Barchiesi, E., Misra, A., Placidi, L.: Hemivariational continuum approach for granular solids with damage-induced anisotropy evolution. Math. Mech. Solids 26(5), 738–70 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  57. Yang, H., Ganzosch, G., Giorgio, I., Emek Abali, B.: Material characterization and computations of a polymeric metamaterial with a pantographic substructure. Z. Angew. Math. Phys. 69(4), 1–16 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  58. Zhandun, V., Zamkova, N., Korzhavyi, P., Sandalov, I.: Inducing magnetism in non-magnetic \(\alpha \)-fesi 2 by distortions and/or intercalations. Phys. Chem. Chem. Phys. 21(25), 13835–13846 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emilio Barchiesi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

The balance of voids, which allows to relate the fields \(\rho _{0}^{R}\) and \(\rho _{0}^{C}\), reads as

$$\begin{aligned} \int \limits _{\mathscr {S}_{0}}\rho _{0}^{R}\ \mathrm {d}V=\int \limits _{\mathscr {S}}\rho _{0}^{C}\ \mathrm {d}v\ , \end{aligned}$$
(82)

where \(\mathscr {S}_{0}\subseteq \mathscr {B}_{0}\) is an arbitrary sub-body of \(\mathscr {B}_{0}\) and \(\mathscr {S}=\chi (\mathscr {S}_{0})\subseteq \mathscr {B}\) is the current shape of \(\mathscr {S}_{0}\).

Using the change of variable \(x=\chi (X)\) allows to write

$$\begin{aligned} \int \limits _{\mathscr {S}}\rho _{0}^{C}\ \mathrm {d}v=\int \limits _{\mathscr {S}_{0}}\rho _{0}^{C}\det \mathsf {F}\ \mathrm {d}V\ , \end{aligned}$$
(83)

which, along with Eq. (82) and following localization, implies the following point-wise equality

$$\begin{aligned} \rho _{0}^{R}=\rho ^{C}\det \mathsf {F}\ . \end{aligned}$$
(84)

Remark that an analogous result holds for the molar densities of the diffusing species, namely

$$\begin{aligned} \rho _{\mathrm {s}}^{R}=\rho _{\mathrm {s}}^{C}\det \mathsf {F}\ . \end{aligned}$$
(85)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barchiesi, E., Hamila, N. Maximum mechano-damage power release-based phase-field modeling of mass diffusion in damaging deformable solids. Z. Angew. Math. Phys. 73, 35 (2022). https://doi.org/10.1007/s00033-021-01668-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-021-01668-7

Keywords

Mathematics Subject Classification

Navigation