Skip to main content
Log in

Electron-phonon hydrodynamical model for semiconductors

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

A hydrodynamical model for the electron-phonon system in semiconductor is developed by closing the moment system arising from the coupled Boltzmann equations for electrons and phonons with the maximum entropy principle. Limiting models are obtained under appropriate scaling, and comparisons with the existing models of charge transport in semiconductors including the thermal effects of the crystal lattice are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adler M.S.: Accurate calculations of the forward drop and power dissipation in thyristors. IEEE Trans. Electron. Devices ED-25, 16–22 (1979)

    Google Scholar 

  2. Albertoni, S., Cugiani, M.: Sul problema del cambiamento di variabili nella teoria delle distribuzioni. Il Nuovo Cimento, 8(11), 1 Novembre (1951)

    Google Scholar 

  3. Anile A.M., Romano V.: Non parabolic band transport in semiconductors: closure of the moment equations. Continuum Mech. Thermodyn. 11, 307–325 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  4. Anile A.M., Romano V., Russo G.: Extended hydrodynamical model of carrier transport in semiconductors. SIAM J. Appl. Math. 61, 74 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  5. Anile, A.M., Mascali, G., Romano, V.: Recent developments in hydrodynamical modeling of semiconductors (2003) 1:54. In: Mathematical Problems in Semiconductor Physics. Lecture Notes in Mathematics 1832, Springer (2003)

  6. Chryssafis A., Love W.: A computer-aided analysis of one dimensional thermal transient in n-p-n power transistors. Solid-State-Electron. 22, 249–256 (1978)

    Article  Google Scholar 

  7. Dreyer W.: Maximisation of the entropy in non-equilibrium. J. Phys. A: Math. Gen. 20, 6505 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  8. Dreyer W., Struchtrup H.: Heat pulse experiment revisited. Continuum Mech. Thermodyn. 5, 3–50 (1993)

    Article  MathSciNet  Google Scholar 

  9. Galler M., Schurrer F.: A deterministic solution method for the coupled system of transport equations for the electrons and phonons in polar semiconductors. J. Phys. A: Math Gen. 37, 1479–1497 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  10. Gaur S.P., Navon D.H.: Two-dimensional carrier flow in a transistor structure under nonisothermal conditions. IEEE Trans. Electron. Devices ED-23, 50–57 (1976)

    Article  Google Scholar 

  11. Gurevich V.L.: Transport in phonon systems. North-Holland, Amsterdam (1986)

    Google Scholar 

  12. Holland, M.G.: Analysis of lattice thermal conductivity. Phys. Rev. 132(6), (1963)

  13. Janes, E.T.: Information theory and statistical mechanics. Physical Review 106(4), (1957)

  14. Jacoboni C., Reggiani L.: The Monte Carlo method for the solution of charge transport in semiconductors with applications to covalent materials. Rev. Mod. Phys. 55, 645 (1983)

    Article  Google Scholar 

  15. Jou D., Casas-Vazquez J., Lebon G.: Extended Irreversible Thermodynamics. Springer, Berlin (1993)

    MATH  Google Scholar 

  16. La Rosa S., Romano V.: MEP Hydrodynamical Model for Holes in Silicon Semiconductors: the case of the warped bands. J. Phys. A: Math. Theor. 41, 215103 (2008)

    Article  MathSciNet  Google Scholar 

  17. Levermore C.D.: Moment closure hierarchies for kinetic theories. J. Stat. Phys. 83, 1021 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  18. Mascali G., Romano V.: Hydrodynamical model of charge transport in GaAs based on the maximum entropy principle. Continuum Mech. Thermodyn. 14, 405 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  19. Mascali G., Sellier J.M., Romano V.: MEP parabolic hydrodynamical model for holes in silicon semiconductors. Il Nuovo Cimento 120B, 197–215 (2005)

    Google Scholar 

  20. Mascali G., Romano V.: Si and GaAs mobility derived from a hydrodynamical model for semiconductors based on the maximum entropy principle. Physica A 352, 459–476 (2005)

    Article  Google Scholar 

  21. Müller I., Ruggeri T.: Rational Extended Thermodynamics. Springer, Berlin (1998)

    MATH  Google Scholar 

  22. Peierls R.: Zur Kinetischen Theorie der Wärmeleitung in Kristallen. Ann. Phys. 3, 1055 (1929)

    Article  Google Scholar 

  23. Romano V.: Non parabolic band transport in semiconductors: closure of the production terms in the moment equations. Continuum Mech. Thermodyn. 12, 31–51 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  24. Romano V.: Non parabolic band hydrodynamical model of silicon semiconductors and simulation of electron devices. Math. Methods Appl. Sci. 24, 439 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  25. Shannon, C.E.: Bell system tech. J. 27: 379, 623, also reprinted. In: Shannon, C.E., Weaver, W. (eds) The Mathematical Theory of Communication. University of Illinois Press, Urbana (1949)

  26. Selberherr S.: Analysis and simulation of semiconductor devices. Springer, Wien (1984)

    Google Scholar 

  27. Sharma D.K., Ramanthan K.V.: Modeling thermal effetcs on MOS I-V characteristics. IEEE Electron. Device Lett. EDL-4, 362–364 (1983)

    Article  Google Scholar 

  28. Wachuka G.: Rigorous thermodynamic treatment of heat generation and conduction in semiconductor device modeling. IEEE Trans. Comput. Aided Design 9, 1141–1149 (1990)

    Article  Google Scholar 

  29. Wu N.: The Maximum Entropy Method. Springer, Berlin (1997)

    MATH  Google Scholar 

  30. Ziman J.M.: Electrons and Phonons. Clarendon, Oxford (2001)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Romano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Romano, V., Zwierz, M. Electron-phonon hydrodynamical model for semiconductors. Z. Angew. Math. Phys. 61, 1111–1131 (2010). https://doi.org/10.1007/s00033-010-0089-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00033-010-0089-9

Mathematics Subject Classification (2000)

Keywords

Navigation