Skip to main content
Log in

On the Breakdown of Regular Solutions with Finite Energy for 3D Degenerate Compressible Navier–Stokes Equations

  • Published:
Journal of Mathematical Fluid Mechanics Aims and scope Submit manuscript

Abstract

In this paper, the three-dimensional (3D) isentropic compressible Navier–Stokes equations with degenerate viscosities (ICND) is considered in both the whole space and the periodic domain. First, for the corresponding Cauchy problem, when shear and bulk viscosity coefficients are both given as a constant multiple of the density’s power (\(\rho ^\delta \) with \(0<\delta <1\)), based on some elaborate analysis of this system’s intrinsic singular structures, we show that the \(L^\infty \) norm of the deformation tensor D(u) and the \(L^6\) norm of \(\nabla \rho ^{\delta -1}\) control the possible breakdown of regular solutions with far field vacuum. This conclusion means that if a solution with far field vacuum of the ICND system is initially regular and loses its regularity at some later time, then the formation of singularity must be caused by losing the bound of D(u) or \(\nabla \rho ^{\delta -1}\) as the critical time approaches. Second, when \(0<\delta \le 1\), under the additional assumption that the shear and second viscosities (respectively \(\mu (\rho )\) and \(\lambda (\rho )\)) satisfy the BD relation \(\lambda (\rho )=2(\mu '(\rho )\rho -\mu (\rho ))\), if we consider the corresponding problem in some periodic domain and the initial density is away from the vacuum, it can be proved that the possible breakdown of classical solutions can be controlled only by the \(L^\infty \) norm of D(u). It is worth pointing out that, except the conclusions mentioned above, another purpose of the current paper is to show how to understand the intrinsic singular structures of the fluid system considered now, and then how to develop the corresponding nonlinear energy estimates in the specially designed energy space with singular weights for the unique regular solution with finite energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Beale, T., Kato, T., Majda, A.: Remarks on the breakdown of smooth solutions for the 3-D Euler equation. Commun. Math. Phys. 94, 61–66 (1984)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Boldrini, J.L., Rojas-Medar, M.A., Fernández-Cara, E.: Semi-Galerkin approximation and regular solutions to the equations of the nonhomogeneous asymmetric fluids. J. Math. Pures Appl. 82, 1499–1525 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bresch, D., Desjardins, B.: Existence of global weak solutions for a 2D viscous shallow water equations and convergence to the quasi-geostrophic model. Commun. Math. Phys. 238, 211–223 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Bresch, D., Desjardins, B.: On the existence of global weak solutions to the Navier–Stokes equations for viscous compressible and heat conducting fluids. J. Math. Pures Appl. 87, 57–90 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bresch, D., Desjardins, B., Lin, C.: On some compressible fluid models: Korteweg, Lubrication, and Shallow water systems. Commun. Part. Differ. Equ. 28, 843–868 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bresch, D., Desjardins, B., Métivier, G.: Recent mathematical results and open problems about shallow water equations. In: Analysis and Simulation of Fluid Dynamics. Adv. Math. Fluid Mech., pp. 15-31. Birkhäuser, Basel (2007)

  7. Bresch, D., Noble, P.: Mathematical derivation of viscous shallow-water equations with zero surface tension. Indiana Univ. Math. J. 60, 1137–1169 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bresch, D., Vasseur, A., Yu, C.: Global existence of entropy-weak solutions to the compressible Navier–Stokes equations with non-linear density dependent viscosities (2019). arXiv:1905.02701

  9. Chapman, S., Cowling, T.: The Mathematical Theory of Non-Uniform Gases: An Account of the Kinetic Theory of Viscosity, Thermal Conduction and Diffusion in Gases. Cambridge University Press, Cambridge (1990)

    MATH  Google Scholar 

  10. Cho, Y., Choe, H.J., Kim, H.: Unique solvability of the initial boundary value problems for compressible viscous fluids. J. Math. Pure Appl. 83, 243–275 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ciarlet, P.G.: On Korn’s inequality. Chin. Ann. Math. Ser. (B) 31, 607–618 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Constantin, P., Drivas, T., Nguyen, H., Pasqualotto, F.: Compressible fluids and active potentials. Ann. Inst. Henri Poincaré Anal. Nonlinéaire 37, 145–180 (2020)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Ding, M., Zhu, S.: Vanishing viscosity limit of the Navier–Stokes equations to the Euler equations for compressible fluid flow with far field vacuum. J. Math. Pures Appl. 107, 288–314 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  14. Galdi, G.P.: An Introduction to the Mathematical Theory of the Navier–Stokes Equations. Springer, New York (1994)

    Book  MATH  Google Scholar 

  15. Geng, Y., Li, Y., Zhu, S.: Vanishing viscosity limit of the Navier–Stokes equations to the Euler equations for compressible fluid flow with vacuum. Arch. Ration. Mech. Anal. 234, 727–775 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gent, P.: The energetically consistent shallow water equations. J. Atmos. Sci. 50, 1323–1325 (1993)

    Article  ADS  Google Scholar 

  17. Gerbeau, J., Perthame, B.: Derivation of viscous Saint-Venant system for laminar shallow water; numerical validation. Discrete Contin. Dyn. Syst. (B) 1, 89–102 (2001)

    MathSciNet  MATH  Google Scholar 

  18. Germain, P., Lefloch, P.: Finite energy method for compressible fluids: The Navier–Stokes–Korteweg model. Commun. Pures Appl. Math. LXIX, 3–61 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  19. Guo, Z., Li, H., Xin, Z.: Lagrange structure and dynamics for solutions to the spherically symmetric compressible Navier–Stokes equations. Commun. Math. Phys. 309, 371–412 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Haspot, B.: Global \(bmo^{-1}({\mathbb{R}}^N)\) radially symmetric solution for compressible Navier–Stokes equations with initial density in \(L^\infty ({\mathbb{R}}^N)\), arXiv:1901.03143v1 (2019)

  21. Huang, X., Li, J., Xin, Z.: Blow-up criterion for the compressible flows with vacuum states. Commun. Math. Phys. 301, 23–35 (2010)

    Article  ADS  Google Scholar 

  22. Jiu, Q., Wang, Y., Xin, Z.: Global well-posedness of 2D compressible Navier–Stokes equations with large data and vacuum. J. Math. Fluid Mech. 16, 483–521 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Jüngel, A.: Global weak solutions to compressible Navier–Stokes equations for quantum fluids. SIAM. J. Math. Anal. 42, 1025–1045 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kawashima, S.: Systems of A Hyperbolic-Parabolic Composite Type, with Applications to The Equations of Magnetohydrodynamics, Ph.D. thesis, Kyoto University, https://doi.org/10.14989/doctor.k3193 (1983)

  25. Kloeden, P.E.: Global existence of classical solutions in the dissipative shallow water equations. SIAM. J. Math. Anal. 16, 301–315 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  26. Ladyzenskaja, O.A., Ural’ceva, N.N.: Linear and Quasilinear Equations of Parabolic Type. American Mathematical Society, Providence, RI (1968)

    Book  Google Scholar 

  27. Li, H., Li, J., Xin, Z.: Vanishing of vacuum states and blow-up phenomena of the compressible Navier–Stokes equations. Commun. Math. Phys. 281, 401–444 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Li, J., Xin, Z.: Global existence of weak solutions to the barotropic compressible Navier–Stokes flows with degenerate viscosities, preprint (2016) arXiv:1504.06826

  29. Li, T., Qin, T.: Physics and Partial Differential Equations. SIAM, Philadelphia. Higher Education Press, Beijing (2014)

    Google Scholar 

  30. Li, Y., Pan, R., Zhu, S.: On classical solutions to 2D Shallow water equations with degenerate viscosities. J. Math. Fluid Mech. 19, 151–190 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Li, Y., Pan, R., Zhu, S.: On classical solutions for viscous polytropic fluids with degenerate viscosities and vacuum. Arch. Ration. Mech. Anal. 234, 1281–1334 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  32. Lions, P.L.: Mathematical Topics in Fluid Mechanics: Compressible Models, vol. 2. Oxford University Press, New York (1998)

    MATH  Google Scholar 

  33. Liu, T., Xin, Z., Yang, T.: Vacuum states for compressible flow. Discrete Contin. Dyn. Syst. 4, 1–32 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  34. Majda, A.: Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables, Applied Mathematical Science 53. Spinger Berlin Heidelberg, New York (1986)

    Google Scholar 

  35. Marche, F.: Derivation of a new two-dimensional viscous shallow water model with varying topography, bottom friction and capillary effects. Eur. J. Mech. B/Fluids 26, 49–63 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Mellet, A., Vasseur, A.: On the barotropic compressible Navier–Stokes equations. Commun. Part. Differ. Equ. 32, 431–452 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  37. Nash, J.: Le probleme de Cauchy pour les équations différentielles dún fluide général. Bull. Soc. Math. France 90, 487–491 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  38. Ponce, G.: Remarks on a paper: remarks on the breakdown of smooth solutions for the \(3\)-D Euler equations. Commun. Math. Phys. 98, 349–353 (1985)

    Article  ADS  MATH  Google Scholar 

  39. Simon, J.: Compact sets in \(L^P(0, T;B)\). Ann. Mat. Pura. Appl. 146, 65–96 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  40. Stein, E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton Univ. Press, Princeton (1970)

    MATH  Google Scholar 

  41. Sundbye, L.: Global existence for the Cauchy problem for the viscous shallow water equations. Rocky Mt. J. Math. 28, 1135–1152 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  42. Vasseur, A., Yu, C.: Global weak solutions to compressible quantum Navier–Stokes equations with damping. SIAM J. Math. Anal. 48, 1489–1511 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  43. Vasseur, A., Yu, C.: Existence of global weak solutions for 3D degenerate compressible Navier–Stokes equations. Invent. Math. 206, 935–974 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. Xin, Z., Zhu, S.: Global well-posedness of regular solutions to the three-dimensional isentropic compressible Navier–Stokes equations with degenerate viscosities and vacuum, arXiv: 1806.02383 (2019, submitted)

  45. Xin, Z., Zhu, S.: Well-posedness of three-dimensional isentropic compressible Navier–Stokes equations with degenerate viscosities and far field vacuum. J. Math. Pures Appl. (2021, to appear). arXiv:1811.04744v2

  46. Yang, T., Zhao, H.: A vacuum problem for the one-dimensional compressible Navier–Stokes equations with density-dependent viscosity. J. Differ. Equ. 184, 163–184 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. Yang, T., Zhu, C.: Compressible Navier–Stokes equations with degenerate viscosity coefficient and vacuum. Commun. Math. Phys. 230, 329–363 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. Zhu, S.: On classical solutions of the compressible Magnetohydrodynamic equations with vacuum. SIAM J. Appl. Math. 425, 928–953 (2015)

    MATH  Google Scholar 

  49. Zhu, S.: Well-Posedness and Singularity Formation of Isentropic Compressible Navier–Stokes Equations, Ph.D. Thesis, Shanghai Jiao Tong University (2015)

Download references

Acknowledgements

This research was supported in part by China National Natural Science Foundation under Grant 11831011, Australian Research Council Grant DP170100630, the Royal Society–Newton International Fellowships NF170015, Newton International Fellowships Alumni AL/201021 and the Monash University-Robert Bartnik Visiting Fellowships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengguo Zhu.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest. This article can be accessed on http://export.arxiv.org/pdf/1808.09605. The authors also declare that this manuscript has not been previously published, and will not be submitted elsewhere before your decision.

Additional information

Communicated by L.Székelyhidi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Some Basic Lemmas

Appendix: Some Basic Lemmas

In this section, we list some basic lemmas to be used later. The first one is the well-known Gagliardo–Nirenberg inequality.

Lemma 5.8

[26] For \(p\in [2,6]\), \(q\in (1,\infty )\), and \(r\in (3,\infty )\), there exists some generic constant \(C> 0\) that may depend on q and r such that for

$$\begin{aligned} f\in H^1(\mathbb {R}^3),\quad \text {and} \quad g\in L^q(\mathbb {R}^3)\cap D^{1,r}(\mathbb {R}^3), \end{aligned}$$

it holds that

$$\begin{aligned} \begin{aligned}&|f|^p_p \le C |f|^{(6-p)/2}_2 |\nabla f|^{(3p-6)/2}_2,\quad |g|_\infty \le C |g|^{q(r-3)/(3r+q(r-3))}_q |\nabla g|^{3r/(3r+q(r-3))}_r. \end{aligned} \end{aligned}$$
(5.33)

Some special cases of this inequality are

$$\begin{aligned} \begin{aligned} |u|_6\le C|u|_{D^1},\quad |u|_{\infty }\le C|u|^{\frac{1}{2}}_6|\nabla u|^{\frac{1}{2}}_{6}, \quad |u|_{\infty }\le C\Vert u\Vert _{W^{1,r}}. \end{aligned} \end{aligned}$$
(5.34)

The second lemma gives some compactness results obtained via the Aubin-Lions Lemma.

Lemma 5.9

[39] Let \(X_0\subset X\subset X_1\) be three Banach spaces. Suppose that \(X_0\) is compactly embedded in X and X is continuously embedded in \(X_1\). Then the following statements hold.

  1. i)

    If J is bounded in \(L^p([0,T];X_0)\) for \(1\le p < +\infty \), and \(\frac{\partial J}{\partial t}\) is bounded in \(L^1([0,T];X_1)\), then J is relatively compact in \(L^p([0,T];X)\);

  2. ii)

    If J is bounded in \(L^\infty ([0,T];X_0)\) and \(\frac{\partial J}{\partial t}\) is bounded in \(L^p([0,T];X_1)\) for \(p>1\), then J is relatively compact in C([0, T]; X).

The third one can be found in Majda [34].

Lemma 5.10

[34] Let r, a and b be constants such that

$$\begin{aligned} \frac{1}{r}=\frac{1}{a}+\frac{1}{b},\quad \text {and} \quad 1\le a,\ b, \ r\le \infty . \end{aligned}$$

\( \forall s\ge 1\), if \(f, g \in W^{s,a} \cap W^{s,b}(\mathbb {R}^3)\), then it holds that

$$\begin{aligned}&|\nabla ^s(fg)-f \nabla ^s g|_r\le C_s\big (|\nabla f|_a |\nabla ^{s-1}g|_b+|\nabla ^s f|_b|g|_a\big ), \end{aligned}$$
(5.35)
$$\begin{aligned}&|\nabla ^s(fg)-f \nabla ^s g|_r\le C_s\big (|\nabla f|_a |\nabla ^{s-1}g|_b+|\nabla ^s f|_a|g|_b\big ), \end{aligned}$$
(5.36)

where \(C_s> 0\) is a constant depending only on s, and \(\nabla ^s f\) (\(s\ge 1\)) is the set of all \(\partial ^\zeta _x f\) with \(|\zeta |=s\). Here \(\zeta =(\zeta _1,\zeta _2,\zeta _3)\in \mathbb {R}^3\) is a multi-index.

The following lemma is important in the derivation of the a priori estimates in Sect. 3, which can be found in Remark 1 of [2].

Lemma 5.11

[2] If \(f(t,x)\in L^2([0,T]; L^2)\), then there exists a sequence \(s_k\) such that

$$\begin{aligned} s_k\rightarrow 0, \quad \text {and}\quad s_k |f(s_k,x)|^2_2\rightarrow 0, \quad \text {as} \quad k\rightarrow +\infty . \end{aligned}$$

Next we give one Sobolev inequalities on the interpolation estimate in the following lemma.

Lemma 5.12

[34] Let \(u\in H^s\), then for any \(s'\in [0,s]\), there exists a constant \(C_s\) only depending on s such that

$$\begin{aligned} \Vert u\Vert _{s'} \le C_s \Vert u\Vert ^{1-\frac{s'}{s}}_0 \Vert u\Vert ^{\frac{s'}{s}}_s. \end{aligned}$$

In order to improve a weak convergence to the strong convergence, we give the following lemma.

Lemma 5.13

[34] If the function sequence \(\{w_n\}^\infty _{n=1}\) converges weakly to w in a Hilbert space X, then it converges strongly to w in X if and only if

$$\begin{aligned} \Vert w\Vert _X \ge \lim \text {sup}_{n \rightarrow \infty } \Vert w_n\Vert _X. \end{aligned}$$

The next lemma is used to give the estimate on \(\nabla u_t\) in the periodic problem away from the vacuum.

Lemma 5.14

[11] Let \(\Omega \subset \mathbb {R}^n\) \((n\ge 2)\) be an open, connected domain. Then there is a constant \(C>0\), known as the Korn constant of \(\Omega \), such that, for all vector fields \(v=(v^1,\ldots , v^n)\in H^1(\Omega )\),

$$\begin{aligned} \Vert v\Vert ^2_{H^1(\Omega )}\le C\int _{\Omega } \big (|v|^2+|D(v)|^2\big ) \mathrm{d}x. \end{aligned}$$

Finally, we give the well-known Fatou’s lemma.

Lemma 5.15

Given a measure space \((V,\mathcal {F},\nu )\) and a set \(X\in \mathcal {F}\), let \(\{f_n\}\) be a sequence of \((\mathcal {F}, \mathcal {B}_{\mathbb {R}_{\ge 0}} )\)-measurable non-negative functions \(f_n: X\rightarrow [0,\infty ]\). Define the function \(f: X\rightarrow [0,\infty ]\) by setting

$$\begin{aligned} f(x)= \liminf _{n\rightarrow \infty } f_n(x), \end{aligned}$$

for every \(x\in X\). Then f is \((\mathcal {F}, \mathcal {B}_{\mathbb {R}_{\ge 0}})\)-measurable, and

$$\begin{aligned} \int _X f(x) \mathrm{d}\nu \le \liminf _{n\rightarrow \infty } \int _X f_n(x) \mathrm{d}\nu . \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, S. On the Breakdown of Regular Solutions with Finite Energy for 3D Degenerate Compressible Navier–Stokes Equations. J. Math. Fluid Mech. 23, 52 (2021). https://doi.org/10.1007/s00021-021-00573-3

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00021-021-00573-3

Keywords

Mathematics Subject Classification

Navigation