Skip to main content
Log in

On Classical Solutions to 2D Shallow Water Equations with Degenerate Viscosities

  • Published:
Journal of Mathematical Fluid Mechanics Aims and scope Submit manuscript

Abstract

2D shallow water equations have degenerate viscosities proportional to surface height, which vanishes in many physical considerations, say, when the initial total mass, or energy are finite. Such a degeneracy is a highly challenging obstacle for development of well-posedness theory, even local-in-time theory remains open for a long time. In this paper, we will address this open problem with some new perspectives, independent of the celebrated BD-entropy (Bresch et al in Commun Math Phys 238:211–223, 2003, Commun Part Differ Eqs 28:843–868, 2003, Analysis and Simulation of Fluid Dynamics, 2007). After exploring some interesting structures of most models of 2D shallow water equations, we introduced a proper notion of solution class, called regular solutions, and identified a class of initial data with finite total mass and energy, and established the local-in-time well-posedness of this class of smooth solutions. The theory is applicable to most relatively physical shallow water models, broader than those with BD-entropy structures. We remark that our theory is on the local strong solutions, while the BD entropy is an essential tool for the global weak solutions. Later, a Beale-Kato-Majda type blow-up criterion is also established. This paper is mainly based on our early preprint (Li et al. in 2D compressible Navier–Stokes equations with degenerate viscosities and far field vacuum, preprint. arXiv:1407.8471, 2014).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beauchard K., Zuazua E.: Large time asymptotics for partially dissipative hyperbolic systems. Arch. Ration. Mech. Anal. 199, 177–227 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bresch D., Desjardins B., Zatorska E.: Two-velocity hydrodynamics in fluid mechanics: Part II. Existence of global \({\kappa }\)-entropy solutions to the compressible Navier–Stokes systems with degenerate viscosities (English, French summaries). J. Math. Pures Appl. 104, 801–836 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. Boldrini J.L., Rojas-Medar M.A., Fernández-Cara E.: Semi-Galerkin approximation and regular solutions to the equations of the nonhomogeneous asymmetric fluids. J. Math. Pure Appl. 82, 1499–1525 (2003)

    Article  MATH  Google Scholar 

  4. Bresch D., Desjardins B.: Existence of global weak solutions for a 2D viscous shallow water equations and convergence to the quasi-geostrophic model. Commun. Math. Phys. 238, 211–223 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Bresch D., Desjardins B., Lin C.: On some compressible fluid models: Korteweg, Lubrication, and Shallow water systems. Commun. Part. Differ. Eqs. 28, 843–868 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bresch, D., Desjardins, B., Métivier, G.: Recent mathematical results and open problems about shallow water equations. In: Calgaro, C., Coulombel, J-F., Goudon, T. (eds.) Analysis and Simulation of Fluid Dynamics. Advances in Mathematical Fluid Mechanics, pp. 15–31. Birkhäuser, Basel (2007)

  7. Bresch D., Desjardins B.: Some diffusive capillary models of Korteweg type. C. R. Acad. Sci. 332(11), 881–886 (2004)

    MATH  Google Scholar 

  8. Bresch D., Noble P.: Mathematical justification of a shallow water model. Methods Appl. Anal. 14(2), 87–117 (2007)

    MathSciNet  MATH  Google Scholar 

  9. Bresch D., Noble P.: Mathematical derivation of viscous shallow-water equations with zero surface tension. Ind. Univ. Math. J. 60(4), 113–1169 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chapman S., Cowling T.G.: The Mathematical Theory of Non-uniform Gases: An Account of the Kinetic Theory of Viscosity, Thermal Conduction and Diffusion in Gases. Cambridge University Press, Cambridge (1990)

    MATH  Google Scholar 

  11. Chen Q., Miao C., Zhang Z.: On the well-posedness for the viscous shallow water equations. SIAM J. Math. Anal. 40, 443–474 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cho Y., Choe H.J., Kim H.: Unique solvability of the initial boundary value problems for compressible viscous fluids. J. Math. Pure Appl. 83, 243–275 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cho Y., Kim H.: Existence results for viscous polytropic fluids with vacuum. J. Differ. Equ. 228, 377–411 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Cho Y., Kim H.: On classical solutions of the compressible Navier–Stokes equations with nonnegative initial densities. Manu. Math. 120, 91–129 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Danchin R.: Well-posedness in critical spaces for barotropic viscous fluids with truly not constant density. Commun. Partial Differ. Equ. 32, 1373–1397 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Danchin, R.: Fourier Analysis Methods for Compressible Flows. Submitted (2014)

  17. Danchin R.: Local theory in critical spaces for compressible viscous and heat-conductive gases. Commun. Partial. Differ. Equ. 26, 1183–1233 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gajewski H., Gröger K., Zacharias K.: Nichtlineare Operatorgleichungen und Operatordiffenentialgleichungen. Akademie-Verlag, Berlin (1974)

    MATH  Google Scholar 

  19. Galdi G.P.: An introduction to the Mathmatical Theorey of the Navier–Stokes equations. Springer, New York (1994)

    Google Scholar 

  20. Gent P.: The energetically consistent shallow water equations. J. Atmos. Sci. 50, 1323–1325 (1993)

    Article  ADS  Google Scholar 

  21. Gerbeau J., Perthame B.: Derivation of viscous Saint–Venant system for laminar shallow water; numerical validation. Discr. Contin. Dyn. Syst. Ser. B 1, 89–102 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  22. Haspot B.: Cauchy problem for viscous shallow water equations with a term of capillarity. Math. Models Methods. Appl. Sci. 20, 1049–1087 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Hoff D., Serre D.: The failure of continuous dependence on initial data for the Navier–Stokes equations for compressible flow. SIAM J. Appl. Math. 51, 887–898 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Huang X., Li J., Xin Z.: Global Well-posedness of classical solutions with large oscillations and vacuum to the three-dimensional isentropic compressible Navier–Stokes Equations. Commun. Pure. Appl. Math 65, 549–585 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. Huang, X., Li, J., Xin, Z.: Global well-posedness for classical solutions tothe multi-dimensional isentropic compressible Navier–Stokes system with vacuum on bounded domains. Preprint (2012)

  26. Huang, X., Li, J., Xin, Z.: Global Well-posedness of classical solutions to the Cauchy problem of two-dimensional baratropic compressible Navier–Stokes systems with vacuum and large intial data. Preprint (2012)

  27. Ladyzenskaja, O.A., Ural’ceva, N.N.: Linear and Quasilinear Equations of Parabolic Type. American Mathematical Society, Providence, RI (1968)

  28. Li H., Li J., Xin Z.: Vanishing of vacuum states and blow-up phenomena of the compressible Navier–Stokes equations. Commun. Math. Phys. 281, 401–444 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Li T., Qin T.: Physics and Partial Differential Equations. Siam: Philadelphia. Higher Education Press, Beijing (2014)

    MATH  Google Scholar 

  30. Kawashima, S.: Systems of a hyperbolic-parabolic composite type, with applications to the equations of magnetohydrodynamics. Ph.D thesis, Kyoto University (1983). doi:10.14989/doctor.k3193

  31. Li, Y., Pan, R., Zhu, S.: 2D compressible Navier–Stokes equations with degenerate viscosities and far field vacuum, preprint (2014). arXiv:1407.8471

  32. Li Y., Zhu S.: Formation of singularities in solutions to the compressible radiation hydrodynamics equations with vacuum. J. Differ. Equ. 256, 3943–3980 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Lions P.L.: Mathematical Topics in Fluid Mechanics: Compressible Models. Oxford University Press, Oxford (1998)

    MATH  Google Scholar 

  34. Liu T., Yang T.: Compressible Euler equations with vacuum. J. Differ. Equ. 140, 223–237 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Luo Z.: Local existence of classical solutions to the two-dimensional viscous compressible flows with vacuum. Commun. Math. Sci 10, 527–554 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  36. Majda A.: Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables Applied Mathematical Science. Spinger, New York (1986)

    Google Scholar 

  37. Makino T., Ukai S., Kawashima S.: Sur la solution à à support compact de equations d’Euler compressible. Jpn. J. Appl. Math. 33, 249–257 (1986)

    Article  MATH  Google Scholar 

  38. Marche F.: Derivation of a new two-dimensional viscous shallow water model with varying topography, bottom friction and capillary effects. Eur. J. Mech. B/Fluids 26, 49–63 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Matsumura A., Nishida T.: The initial value problem for the equations of motions of viscous and heat-conductive gases. J. Math. Kyoto Univ. 20, 67–104 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  40. Nash J.: Le probleme de Cauchy pour les équations différentielles dún fluide général. Bull. Soc. Math. Fr. 90, 487–491 (1962)

    Article  Google Scholar 

  41. Ponce G.: Remarks on a paper: remarks on the breakdown of smooth solutions for the 3-D Euler equaitons. Commun. Math. Phys. 98, 349–353 (1985)

    Article  ADS  MATH  Google Scholar 

  42. Rozanova O.: Blow-up of smooth highly decreasing at infinity solutions to the compressible Navier–Stokes equations. J. Differ. Equ. 245, 1762–1774 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. Simon J.: Compact sets in L P(0, T;B). Ann. Math. Pura. Appl. 146, 65–96 (1987)

    Article  MATH  Google Scholar 

  44. Sideris T.: Formation of singulirities in three-dimensional compressible fluids. Commun. Math. Phys. 101, 475–487 (1985)

    Article  ADS  MATH  Google Scholar 

  45. Stein E.M.: Singular Integrals and Differentiablility Properties of Functions. Princeton Univ. Press, Princeton, NJ (1970)

    Google Scholar 

  46. Sun Y., Wang C., Zhang F.: A Beale-Kato-Majda blow-up criterion to the compressible Navier–Stokes Equation. J. Math. Pure Appl. 95, 36–47 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  47. Sun Y., Wang C., Zhang F.: A blow-up criterion of regular solutions to the 2-D compressible Navier–Stokes equation. Sci. Chin. Math. 54, 105–116 (2011)

    Article  Google Scholar 

  48. Sundbye L.: Global existence for Dirichlet problem for the viscous shallow water equation. J. Math. Anal. Appl. 202, 236–258 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  49. Sundbye L.: Global existence for the Cauchy problem for the viscous shallow water equations. Rock. Mount. J. Math. 28, 1135–1152 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  50. Villani, C.: Hypocoercivity. Mem. Am. Math. Soc. 202(950)(2009)

  51. Wang W., Xu C.: The Cauchy problem for viscous shallow water equations. Rev. Mat. Iberoamericana 21, 1–24 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  52. Xin Z.: Blow-up of smooth solutions to the compressible Navier–Stokes equation with compact density. Commun. Pure Appl. Math. 51, 0229–0240 (1998)

    Article  Google Scholar 

  53. Xin Z., Yan W.: On blow-up of classical solutions to the compressible Navier–Stokes equations. Commun. Math. Phys. 321, 529–541 (2013)

    Article  ADS  MATH  Google Scholar 

  54. Yang T., Zhu C.J.: Compressible Navier–Stokes equations with degnerate viscosity coefficient and vacuum. Commun. Math. Phys. 230, 329–363 (2002)

    Article  ADS  MATH  Google Scholar 

  55. Yang T., Zhao H.: A vacuum problem for the one-dimensional compressible Navier–Stokes equations with density-dependent viscisity. J. Differ. Equ. 184, 163–184 (2002)

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yachun Li.

Additional information

Communicated by E. Feireisl

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Pan, R. & Zhu, S. On Classical Solutions to 2D Shallow Water Equations with Degenerate Viscosities. J. Math. Fluid Mech. 19, 151–190 (2017). https://doi.org/10.1007/s00021-016-0276-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00021-016-0276-3

Mathematics Subject Classification

Keywords

Navigation