Skip to main content
Log in

On Classical Solutions for Viscous Polytropic Fluids with Degenerate Viscosities and Vacuum

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

In this paper, we consider the three-dimensional isentropic Navier–Stokes equations for compressible fluids allowing initial vacuum when viscosities depend on density in a superlinear power law. We introduce the notion of regular solutions and prove the local-in-time well-posedness of solutions with arbitrarily large initial data and a vacuum in this class, which is a long-standing open problem due to the very high degeneracy caused by a vacuum. Moreover, for certain classes of initial data with a local vacuum, we show that the regular solution that we obtained will break down in finite time, no matter how small and smooth the initial data are.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Boldrini, J., Rojas-Medar, M., Fernández-Cara, E.: Semi-Galerkin approximation and regular solutions to the equations of the nonhomogeneous asymmetric fluids. J. Math. Pure Appl. 82, 1499–1525, 2003

    Article  Google Scholar 

  2. Bresch, D., Desjardins, B.: Some diffusive capillary models of Korteweg type. C. R. Acad. Sci. 332, 881–886, 2004

    MATH  Google Scholar 

  3. Bresch, D., Desjardins, B.: Existence of global weak solutions for a 2D viscous shallow water equations and convergence to the quasi-geostrophic model. Commun. Math. Phys. 238, 211–223, 2003

    Article  ADS  MathSciNet  Google Scholar 

  4. Bresch, D., Desjardins, B.: On the existence of global weak solutions to the Navier–Stokes equations for viscous compressible and heat conducting fluids. J. Math. Pures Appl. 87, 57–90, 2007

    Article  MathSciNet  Google Scholar 

  5. Bresch, D., Desjardins, B., Lin, C.: On some compressible fluid models: Korteweg, Lubrication, and Shallow water systems. Commun. Partial Differ. Equ. 28, 843–868, 2003

    Article  MathSciNet  Google Scholar 

  6. Bresch D., Desjardins B., Métivier, G.: Recent mathematical results and open problems about shallow water equations. In: Calgaro, C., Coulombel, J.F., Goudon, T. (eds.) Analysis and Simulation of Fluid Dynamics. Advances in Mathematical Fluid Mechanics. Birkhäuser, Basel, 2006

  7. Chapman, S., Cowling, T.: The Mathematical Theory of Non-uniform Gases: An Account of the Kinetic Theory of Viscosity, Thermal Conduction and Diffusion in Gases. Cambridge University Press, Cambridge 1990

    MATH  Google Scholar 

  8. Cho, Y., Choe, H., Kim, H.: Unique solvability of the initial boundary value problems for compressible viscous fluids. J. Math. Pures Appl. 83, 243–275, 2004

    Article  MathSciNet  Google Scholar 

  9. Cho, Y., Jin, B.: Blow-up of viscous heat-conducting compressible flows. J. Math. Anal. Appl. 320, 819–826, 2006

    Article  MathSciNet  Google Scholar 

  10. Cho, Y., Kim, H.: Existence results for viscous polytropic fluids with vacuum. J. Differ. Equ. 228, 377–411, 2006

    Article  ADS  MathSciNet  Google Scholar 

  11. Cho, Y., Kim, H.: On classical solutions of the compressible Navier–Stokes equations with nonnegative initial densities. Manuscr. Math. 120, 91–129, 2006

    Article  MathSciNet  Google Scholar 

  12. Danchin, R.: Well-posedness in critical spaces for barotropic viscous fluids with truly not constant density. Commun. Partial Differ. Equ. 32, 1373–1397, 2007

    Article  MathSciNet  Google Scholar 

  13. Duan, B., Zheng, Y., Luo, Z.: Local existence of classical solutions to Shallow water equations with cauchy data containing vacuum. SIAM J. Math. Anal. 44, 541–567, 2012

    Article  MathSciNet  Google Scholar 

  14. Feireisl, E., Novotný, A., Petzeltová, H.: On the existence of globally defined weak solutions to the Navier-Stokes equations. J. Math. Fluid Mech. 3(4), 358–392, 2001

    Article  ADS  MathSciNet  Google Scholar 

  15. Feireisl, E.: On the motion of a viscous, compressible, and heat conducting fluid. Indiana Univ. Math. J. 53(6), 1705–1738, 2004

    Article  MathSciNet  Google Scholar 

  16. Feireisl, E.: Dynamics of Viscous Compressible Fluids. Oxford University Press, Oxford 2004

    MATH  Google Scholar 

  17. Galdi, G.: An Introduction to the Mathmatical Theory of the Navier–Stokes Equations. Springer, New York 1994

    Google Scholar 

  18. Gao, D., Liu, T.: Advanced Fluid Mechanics. Huazhong University of Science and Technology, Wuhan 2004. (in Chinese)

    Google Scholar 

  19. Grassin, M., Serre, D.: Existence de solutions globales et réguliéres aux équations d’Euler pour un gaz parfait isentropique. C. R. Acad. Sci. Paris Série. I Math. 325, 721–726, 1997

    Article  ADS  MathSciNet  Google Scholar 

  20. Haspot, B.: Cauchy problem for viscous shallow water equations with a term of capillarity. Math. Models Methods Appl. Sci. 20, 1049–1087, 2010

    Article  MathSciNet  Google Scholar 

  21. Hoff, D.: Global solutions of the Navier–Stokes equations for multi-dimensional compressible flow with discontinous data. J. Differ. Equ. 120, 215–254, 1995

    Article  ADS  Google Scholar 

  22. Huang, X., Li, J., Xin, Z.: Global well-posedness of classical solutions with large oscillations and vacuum to the three-dimensional isentropic compressible Navier–Stokes equations. Commun. Pure Appl. Math. 65, 549–585, 2012

    Article  MathSciNet  Google Scholar 

  23. Jiu, Q., Wang, Y., Xin, Z.: Global well-Posedness of 2D compressible Navier–Stokes equations with large data and vacuum. J. Math. Fluid Mech. 16, 483–521, 2014

    Article  ADS  MathSciNet  Google Scholar 

  24. Ladyzenskaja, O., Ural’ceva, N.: Linear and Quasilinear Equations of Parabolic Type. American Mathematical Society, Providence 1968

    Book  Google Scholar 

  25. Li, H., Li, J., Xin, Z.: Vanishing of vacuum states and blow-up phenomena of the compressible Navier–Stokes equations. Commun. Math. Phys. 281, 401–444, 2008

    Article  ADS  MathSciNet  Google Scholar 

  26. Li, Tatsien, Qin, T.: Physics and Partial Differential Equations, vol. II. SIAM, Higher Education Press, Philadelphia, Beijing 2014

    MATH  Google Scholar 

  27. Lions, P. L.: Mathematical topics in fluid dynamics. In: Compressible Models, vol. 2. Oxford University Press, New York, 1998

  28. Liu, T., Xin, Z., Yang, T.: Vacuum states for compressible flow. Discrete Contin. Dyn. Syst. 4, 1–32, 1998

    MathSciNet  MATH  Google Scholar 

  29. Li, Y., Pan, R., Zhu, S.: On classical solutions to 2D Shallow water equations with degenerate viscosities. J. Math. Fluid Mech. 19, 151–190, 2017

    Article  ADS  MathSciNet  Google Scholar 

  30. Li, Y., Zhu, S.: Formation of singularities in solutions to the compressible radiation hydrodynamics equations with vacuum. J. Differ. Equ. 256, 3943–3980, 2014

    Article  ADS  MathSciNet  Google Scholar 

  31. Luo, Z.: Local existence of classical solutions to the two-dimensional viscous compressible flows with vacuum. Commun. Math. Sci. 10, 527–554, 2012

    Article  MathSciNet  Google Scholar 

  32. Majda, A.: Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables. Applied Mathematical Science, vol. 53. Springer, New York 1986

    Google Scholar 

  33. Mellet, A., Vasseur, A.: On the barotropic compressible Navier–Stokes equations. Commun. Partial Differ. Equ. 32, 431–452, 2007

    Article  MathSciNet  Google Scholar 

  34. Nash, J.: Le probleme de Cauchy pour les équations différentielles dún fluide général. Bull. Soc. Math. Fr. 90, 487–491, 1962

    Article  Google Scholar 

  35. Rozanova, O.: Blow-up of smooth highly decreasing at infinity solutions to the compressible Navier–Stokes Equations. J. Differ. Equ. 245, 1762–1774, 2008

    Article  ADS  MathSciNet  Google Scholar 

  36. Serre, D.: Solutions classiques globales des équations d’euler pour un fluide parfait compressible. Ann. Inst. Fourier 47, 139–153, 1997

    Article  MathSciNet  Google Scholar 

  37. Simon, J.: Compact sets in \(L^P(0, T;B)\). Ann. Mat. Pura. Appl. 146, 65–96, 1987

    Article  MathSciNet  Google Scholar 

  38. Sundbye, L.: Global existence for Dirichlet problem for the viscous shallow water equation. J. Math. Anal. Appl. 202, 236–258, 1996

    Article  MathSciNet  Google Scholar 

  39. Sundbye, L.: Global existence for the Cauchy problem for the viscous shallow water equations. Rocky Mt. J. Math. 28, 1135–1152, 1998

    Article  MathSciNet  Google Scholar 

  40. Wang, W., Xu, C.: The Cauchy problem for viscous shallow water equations. Rev. Mat. Iberoam. 21, 1–24, 2005

    Article  MathSciNet  Google Scholar 

  41. Xin, Z.: Blow-up of smooth solutions to the compressible Navier–Stokes equations with compact density. Commun. Pure Appl. Math. 51, 0229–0240, 1998

    Article  Google Scholar 

  42. Xin, Z., Yan, W.: On blow-up of classical solutions to the compressible Navier–Stokes equations. Commun. Math. Phys. 321, 529–541, 2013

    Article  ADS  Google Scholar 

  43. Yang, T., Zhao, H.: A vacuum problem for the one-dimensional compressible Navier–Stokes equations with density-dependent viscisity. J. Differ. Equ. 184, 163–184, 2002

    Article  ADS  Google Scholar 

  44. Yang, T., Zhu, C.: Compressible Navier–Stokes equations with degnerate viscosity coefficient and vacuum. Commun. Math. Phys. 230, 329–363, 2002

    Article  ADS  Google Scholar 

  45. Vasseur, A., Yu, C.: Existence of global weak solutions for 3D degenerate compressible Navier–Stokes equations. Invent. Math. 206, 935–974, 2016

    Article  ADS  MathSciNet  Google Scholar 

  46. Zhu, S.: Existence results for viscous polytropic fluids with degenerate viscosity coefficients and vacuum. J. Differ. Equ. 259, 84–119, 2015

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors sincerely appreciate the efforts and highly constructive suggestions of the referees; the reports helped to improve the quality of the presentation of this paper. The research of Y. Li and S. Zhu was supported in part by National Natural Science Foundation of China under Grants 11231006 and 11571232. Y. Li was also supported by National Natural Science Foundation of China under Grant 11831011. S. Zhu was also supported by China Scholarship Council and the Royal Society–Newton International Fellowships NF170015. The research of R. Pan was partially supported by The National Science Foundation under Grants DMS-1516415 and DMS-1813603, and by The National Natural Science Foundation of China under the Grant 11628103.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronghua Pan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Standard

The authors are proud to comply with the required ethical standards by Archive for Rational Mechanics and Analysis.

Additional information

Communicated by N. Masmoudi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Proof for the Remark 1.4

Appendix: Proof for the Remark 1.4

In this section, we will show that the regular solution that we obtained in Theorem 1.1 is indeed a classical one in \((0, T_*]\). The following lemma will be used in our proof:

Lemma 5.1

[1] If \(f(x,t)\in L^2([0,T]; L^2)\), then there exists a sequence \(s_k\) such that

$$\begin{aligned} s_k\rightarrow 0, \quad \text {and}\quad s_k |f(x,s_k)|^2_2\rightarrow 0, \quad \text {as} \quad k\rightarrow +\infty . \end{aligned}$$

From the definition of regular solution and the classical Sobolev embedding theorem, it is clear that

$$\begin{aligned} (\rho ,\nabla \rho , \rho _t, u, \nabla u) \in C(\mathbb {R}^3\times [0, T_*]), \end{aligned}$$

so it remains to prove that

$$\begin{aligned} (u_t, \text {div}\mathbb {T})(x,t) \in C(\mathbb {R}^3\times (0, T_*]). \end{aligned}$$

From the proof of Theorem 1.1 in Section 3, we know that (through a change of variable \(\phi =\rho ^{\frac{\delta -1}{2}}\)), system (1.1) can be written as

$$\begin{aligned} {\left\{ \begin{array}{ll} \displaystyle \phi _t+u\cdot \nabla \phi +\frac{\delta -1}{2}\phi \text {div} u=0,\\ \displaystyle u_t+u\cdot \nabla u +\frac{2A\gamma }{\delta -1}\phi ^{\frac{2r-\delta -1}{\delta -1}}\nabla \phi +\phi ^2 Lu=\nabla \phi ^2 \cdot Q(u). \end{array}\right. } \end{aligned}$$
(5.1)

The solution \((\phi ,u)\) satisfies the regularities in (3.6) and \(\phi \in C^1(\mathbb {R}^3\times [0, T_*])\).

Step 1 The continuity of \(u_t\). We differentiate (5.1)\(_2\) with respect to t to get

$$\begin{aligned} \begin{aligned} u_{tt}+\phi ^2 Lu_t=-(\phi ^2)_t Lu-(u\cdot \nabla u)_t -\frac{A\gamma }{\gamma -1}\nabla \Big (\phi ^{\frac{2\gamma -2}{\delta -1}}\Big )_t+(\nabla \phi ^2 \cdot Q(u))_t, \end{aligned} \end{aligned}$$
(5.2)

which, along with (3.6), implies that

$$\begin{aligned} u_{tt}\in L^2([0,T_*];L^2). \end{aligned}$$
(5.3)

Applying the operator \(\partial ^\zeta _x\)\((|\zeta |=2)\) to (5.2), multiplying the resulting equations by \(\partial ^\zeta _x u_t\) and integrating over \(\mathbb {R}^3\), we have

$$\begin{aligned} \begin{aligned}&\frac{1}{2} \frac{\mathrm{d}}{\mathrm{d}t}|\partial ^\zeta _xu_t|^2_2+\alpha |\phi \nabla \partial ^\zeta _x u_t|^2_2+(\alpha +\beta )|\phi \text {div} \partial ^\zeta _x u_t|^2_2\\&\quad =\int \Big ( -\nabla \phi ^2 \cdot \frac{\delta -1}{\delta }Q(\partial ^\zeta _x u_t)-\big (\partial ^\zeta _x(\phi ^2Lu_t)-\phi ^2 L\partial ^\zeta _x u_t\big )\Big )\cdot \partial ^\zeta _x u_t\\&\qquad +\int \Big (-\partial ^\zeta _x\big ((\phi ^2)_t Lu\big )-\partial ^\zeta _x(u\cdot \nabla u)_t -\frac{A\gamma }{\gamma -1}\partial ^\zeta _x\nabla \Big (\phi ^{\frac{2\gamma -2}{\delta -1}}\Big )_t \Big )\cdot \partial ^\zeta _x u_t \\&\qquad +\int \partial ^\zeta _x(\nabla \phi ^2 \cdot Q(u))_t\cdot \partial ^\zeta _x u_t =: \sum _{i=10}^{15}J_i. \end{aligned} \end{aligned}$$
(5.4)

Now we analyze the terms \(J_i\)\((i=10,\cdots , 15)\). By Hölder’s inequality, Lemma 2.1 and Young’s inequality, we have

$$\begin{aligned} \begin{aligned} J_{10}&=\int \Big ( -\nabla \phi ^2 \cdot \frac{\delta -1}{\delta }Q(\partial ^\zeta _x u_t)\Big )\cdot \partial ^\zeta _x u_t\\&\leqq C|\phi \nabla ^3 u_t|_2|\nabla ^2 u_t|_2|\nabla \phi |_\infty \leqq C| u_t|^2_{D^2}+\frac{\alpha }{20}|\phi \nabla ^3 u_t|^2_2,\\ J_{11}&=\int -\big (\partial ^\zeta _x(\phi ^2Lu_t)-\phi ^2 L\partial ^\zeta _x u_t\big )\cdot \partial ^\zeta _x u_t\\&\leqq C\Big (|\phi \nabla ^3 u_t|_2|\nabla ^2 u_t|_2|\nabla \phi |_\infty +|\nabla \phi |^2_\infty |u_t|^2_{D^2}+|\nabla ^2 \phi |_3|\phi \nabla ^2 u_t|_6|u_t|_{D^2}\Big )\\&\leqq C| u_t|^2_{D^2}+\frac{\alpha }{20}|\phi \nabla ^3 u_t|^2_2,\\ \end{aligned} \end{aligned}$$
(5.5)

and

$$\begin{aligned} J_{12}&=\int -\partial ^\zeta _x\big ((\phi ^2)_t Lu\big )\cdot \partial ^\zeta _x u_t \nonumber \\&\leqq C\Big (|u_t|_{D^2}(|\phi _t|_\infty |\phi \nabla ^4 u|_2+|\nabla ^2 \phi |_3|Lu|_6| \phi _t|_\infty +|\nabla \phi |_\infty |\nabla \phi _t|_6|Lu|_{3})\nonumber \\&\quad +|u_t|_{D^2}(|\phi \nabla ^3 u|_6|\nabla \phi _t|_{3}+|\nabla \phi |_\infty | \phi _t|_\infty |\nabla ^3 u|_{2})+|\phi \nabla ^2 u_t|_6|\phi _t|_{D^2}|Lu|_3\Big ) \nonumber \\&\leqq C\Big (| u_t|^2_{D^2}+|\phi \nabla ^4 u|^2_2+1\Big )+ \frac{\alpha }{20}|\phi \nabla ^3 u_t|^2_2, \nonumber \\ J_{13}&=\int -\partial ^\zeta _x(u\cdot \nabla u)_t \cdot \partial ^\zeta _x u_t \nonumber \\&\leqq C\Vert u_t\Vert _2\Vert u\Vert _3| u_t|_{D^2}+\int -\big (u\cdot \nabla \big ) \partial ^\zeta _x u_t \cdot \partial ^\zeta _x u_t \nonumber \\&\leqq C\Big (1+| u_t|^2_{D^2}+|\nabla u|_\infty |\partial ^\zeta _x u_t|^2_2\Big ) \leqq C\Big (1+| u_t|^2_{D^2}\Big ),\nonumber \\ J_{14}&=\int -\frac{A\gamma }{\gamma -1}\partial ^\zeta _x\nabla \Big (\phi ^{\frac{2\gamma -2}{\delta -1}}\Big )_t \cdot \partial ^\zeta _x u_t=\int \frac{A\gamma }{\gamma -1}\partial ^\zeta _x \Big (\phi ^{\frac{2\gamma -2}{\delta -1}}\Big )_t \text {div} \partial ^\zeta _x u_t \nonumber \\&\leqq C\Big (|\phi ^{\frac{K}{2}-2}|_\infty |\nabla ^2 \phi _t|_2|\phi \nabla ^3 u_t|_2+|\phi ^{\frac{K}{2}-3}|_\infty |\phi _t|_\infty |\nabla ^2 \phi |_2|\phi \nabla ^3 u_t|_2 \nonumber \\&\quad +|\phi ^{\frac{K}{2}-4}|_\infty |\phi _t|_\infty |\nabla \phi |_6|\nabla \phi |_3|\phi \nabla ^3 u_t|_2+|\phi ^{\frac{K}{2}-3}|_\infty |\nabla \phi _t|_2|\nabla \phi |_\infty |\phi \nabla ^3 u_t|_2\Big ) \nonumber \\&\leqq C+\frac{\alpha }{20}|\phi \nabla ^3 u_t|^2_2,\nonumber \\ J_{15}&=\int \partial ^\zeta _x(\nabla \phi ^2 \cdot Q(u))_t\cdot \partial ^\zeta _x u_t \nonumber \\&\leqq C\Big (\Vert \nabla \phi \Vert ^2_2| u_t|^2_{D^2}+\big (\Vert \nabla \phi \Vert _2|\nabla u_t|_3+\Vert u\Vert _3\Vert \phi _t\Vert _2\big )|\phi \nabla ^2 u_t|_6 \nonumber \\&\quad +\big (\Vert \nabla \phi \Vert _2|\phi \nabla ^3 u_t|_2+\Vert \nabla \phi \Vert _2|\phi \nabla ^2 u_t|_6\big )| u_t|_{D^2}\nonumber \\&\quad +\big (\Vert \nabla \phi \Vert _2\Vert \phi _t\Vert _2\Vert u\Vert _3+\Vert \phi _t\Vert _2|\phi \nabla ^3 u|_6\big )| u_t|_{D^2}\Big ) \nonumber \\&\quad +\int \partial ^\zeta _x(\nabla \phi ^2)_t \cdot Q(u)\cdot \partial ^\zeta _x u_t \nonumber \\&\leqq C\Big (| u_t|^2_{D^2}+|\phi \nabla ^4 u|^2_2\Big )+ \frac{\alpha }{20}|\phi \nabla ^3 u_t|^2_2+J_{151}, \end{aligned}$$
(5.6)

where

$$\begin{aligned} \begin{aligned} J_{151}&=\int \partial ^\zeta _x(\nabla \phi ^2)_t \cdot Q(u)\cdot \partial ^\zeta _x u_t\\&\leqq C \Vert \nabla \phi \Vert _2\Vert \phi _t\Vert _2\Vert u\Vert _3|u_t|_{D^2}+\int \phi \partial ^\zeta _x \nabla \phi _t \cdot Q(u)\cdot \partial ^\zeta _x u_t. \end{aligned} \end{aligned}$$
(5.7)

Using integration by parts, the last term in (5.7) is estimated as

$$\begin{aligned} \begin{aligned}&\int \phi \partial ^\zeta _x \nabla \phi _t \cdot Q(u)\cdot \partial ^\zeta _x u_t\\&\quad \leqq C\Big (|\nabla \phi |_\infty |\phi _t|_{D^2}|\nabla u|_\infty |u_t|_{D^2}+|\phi _t|_{D^2}|\nabla ^2u|_{3}|\phi \nabla ^2 u_t|_6\\&\qquad +|\phi \nabla ^3 u_t|_2|\nabla u|_\infty \Vert \phi _t\Vert _2\Big )\\&\quad \leqq C| u_t|^2_{D^2}+\frac{\alpha }{20}|\phi \nabla ^3 u_t|^2_2. \end{aligned} \end{aligned}$$
(5.8)

Then (5.4) reduces to

$$\begin{aligned} \begin{aligned}&\frac{1}{2} \frac{\mathrm{d}}{\mathrm{d}t}|u_t|^2_{D^2}+\frac{\alpha }{2} |\phi \nabla ^3 u_t|^2_2 \leqq C\Big (| u_t|^2_{D^2}+|\phi \nabla ^4 u|^2_2+1\Big ). \end{aligned} \end{aligned}$$
(5.9)

Multiplying both sides of (5.9) with s and integrating the resulting inequalities over \([\tau ,t]\) for any \(\tau \in (0,t)\), we have

$$\begin{aligned} \begin{aligned}&t|u_t|^2_{D^2}+\int _{\tau }^t s|\phi \nabla ^3 u_t|^2_2 \,\mathrm{d}s \leqq C\tau | u_t(\tau )|^2_{D^2}+C(1+t). \end{aligned} \end{aligned}$$
(5.10)

According to the definition of the regular solution, we know that

$$\begin{aligned} \nabla ^2 u_t \in L^2([0,T_*]; L^2). \end{aligned}$$

Using Lemma 5.1 to \(\nabla ^2 u_t \), there exists a sequence \(s_k\) such that

$$\begin{aligned} s_k\rightarrow 0, \quad \text {and}\quad s_k |\nabla ^2 u_t(\cdot , s_k)|^2_2\rightarrow 0, \quad \text {as} \quad k\rightarrow +\infty . \end{aligned}$$

Choosing \(\tau =s_k \rightarrow 0\) in (5.10), we have

$$\begin{aligned} \begin{aligned}&t|u_t|^2_{D^2}+\int _{0}^t s|\phi \nabla ^3 u_t|^2_2 \,\mathrm{d}s \leqq C(1+t), \end{aligned} \end{aligned}$$
(5.11)

then

$$\begin{aligned} t^{\frac{1}{2}}u_t \in L^\infty ([0,T_*]; H^2). \end{aligned}$$
(5.12)

The classical Sobolev embedding theorem gives

$$\begin{aligned} \begin{aligned} L^\infty ([0,T];H^1)\cap W^{1,2}([0,T];H^{-1})\hookrightarrow C([0,T];L^q) \end{aligned} \end{aligned}$$
(5.13)

for any \(q\in (3,6]\). From (5.3) and (5.12) we have

$$\begin{aligned} tu_t \in C([0,T_*];W^{1,4}), \end{aligned}$$

which implies that

$$\begin{aligned} u_t \in C(\mathbb {R}^3\times (0,T_*] ). \end{aligned}$$

Step 2 The continuity of \(\text {div}\mathbb {T}\). Denote \(\mathbb {N}=\phi ^2 Lu-\nabla \phi ^2 \cdot Q(u)\). From equations (5.1)\(_2\), regularities (3.6) and (5.12), it is easy to show that

$$\begin{aligned} t\mathbb {N} \in L^\infty ([0,T_*]; H^2). \end{aligned}$$

Due to

$$\begin{aligned} \mathbb {N}_t \in L^2([0,T_*]; L^2), \end{aligned}$$

we obtain from (5.13) that

$$\begin{aligned} t \mathbb {N}\in C([0,T_*];W^{1,4}), \end{aligned}$$

which implies that

$$\begin{aligned} \mathbb {N} \in C(\mathbb {R}^3\times (0, T_*]). \end{aligned}$$

Since \(\rho \in C(\mathbb {R}^3\times [0, T_*])\) and \(\text {div}\mathbb {T}=\rho \mathbb {N}\), we immediately obtain the desired conclusion.

In summary, we have shown that the regular solution that we obtained is indeed a classical one in \(\mathbb {R}^3\times [0, T_*]\) to the Cauchy problem (1.1)–(1.3).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Pan, R. & Zhu, S. On Classical Solutions for Viscous Polytropic Fluids with Degenerate Viscosities and Vacuum. Arch Rational Mech Anal 234, 1281–1334 (2019). https://doi.org/10.1007/s00205-019-01412-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-019-01412-6

Navigation