Skip to main content
Log in

On Korn’s inequality

  • Published:
Chinese Annals of Mathematics, Series B Aims and scope Submit manuscript

Abstract

The author first reviews the classical Korn inequality and its proof. Following recent works of S. Kesavan, P. Ciarlet, Jr., and the author, it is shown how the Korn inequality can be recovered by an entirely different proof. This new proof hinges on appropriate weak versions of the classical Poincaré and Saint-Venant lemma. In fine, both proofs essentially depend on a crucial lemma of J. L. Lions, recalled at the beginning of this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amrouche, C., Ciarlet, P. G., Gratie, L. and Kesavan, S., On the characterizations of matrix fields as linearized strain tensor fields, J. Math. Pures Appl., 86, 2006, 116–132.

    MATH  MathSciNet  Google Scholar 

  2. Amrouche, C. and Girault, V., Decomposition of vector spaces and application to the Stokes problem in arbitrary dimension, Czechoslovak Math. J., 44, 1994, 109–140.

    MATH  MathSciNet  Google Scholar 

  3. Borchers, W. and Sohr, H., On the equations rot v = g and div u = f with zero boundary, conditions, Hokkaido Math. J., 19, 1990, 67–87.

    MATH  MathSciNet  Google Scholar 

  4. Ciarlet, P. G. and Ciarlet, P., J., Another approach to linearized elasticity and a new proof of Korn’s inequality, Math. Models Methods Appl. Sci., 15, 2005, 259–271.

    Article  MATH  MathSciNet  Google Scholar 

  5. Duvaut, G. and Lions, J. L., Les Inéquations en Mécanique et en Physique, Dunod, Paris, 1972.

    MATH  Google Scholar 

  6. Flanders, H., Differential Forms with Applications to the Physical Sciences, Dover, New York, 1989 (unabridged, corrected republication of the original edition published in 1963 by Academic Press, New York).

    MATH  Google Scholar 

  7. Friedrichs, K. O., On the boundary-value problems of the theory of elasticity and Korn’s inequality, Ann. of Math., 48(2), 1947, 441–471.

    Article  MathSciNet  Google Scholar 

  8. Geymonat, G. and Gilardi, G., Contre-exemple à l’inégalité de Korn et au lemme de Lions dans des domaines irréguliers, Equations aux Dérivées Partielles et Applications. Articles Dédiés à Jacques-Louis Lions, Gauthier-Villars, Paris, 1998, 541–548.

    Google Scholar 

  9. Geymonat, G. and Suquet, P., Functional spaces for Norton-Hoff materials, Math. Models Methods Appl. Sci., 8, 1986, 206–222.

    MATH  MathSciNet  Google Scholar 

  10. Girault, V. and Raviart, P. A., Finite Element Methods for Navier-Stokes Equations, Springer-Verlag, Heidelberg, 1986.

    MATH  Google Scholar 

  11. Gobert, J., Une inégalité fondamentale de la théorie de l’élasticité, Bull. Soc. Roy. Sci. Liège, 31, 1962, 182–191.

    MATH  MathSciNet  Google Scholar 

  12. Horgan, C. O., Korn’s inequalities and their applications in continuum mechanics, SIAM Review, 37, 1995, 491–511.

    Article  MATH  MathSciNet  Google Scholar 

  13. Kesavan, S., On Poincaré’s and J. L. Lions’ lemmas, C. R. Math. Acad. Sci. Paris, Série I, 340, 2005, 27–30.

    MATH  MathSciNet  Google Scholar 

  14. Korn, A., Die Eigenschwingungen eines elastischen Körpers mit ruhender Oberfläche, Sitzungsberichte der Mathematisch-physikalischen Klasse der Königlich bayerischen Akademie der Wissenschaften zu München, 36, 1906, 351–402.

    Google Scholar 

  15. Korn, A., Solution générale du problème d’équilibre dans la théorie de l’élasticité, dans le cas où les efforts sont donnés à la surface, Ann. Fac. Sci. Toulouse Sci. Math. Sci. Phys., 10, 1908, 165–269.

    MathSciNet  Google Scholar 

  16. Korn, A., Über einige Ungleichungen, welche in der Theorie der elastischen und elektrischen Schwingungen eine Rolle spielen, Bulletin International de l’Académie des Sciences de Cracovie, 9, 1909, 705–724.

    Google Scholar 

  17. Lions, J. L., Equations Différentielles Opérationnelles et Problèmes aux Limites, Springer-Verlag, Berlin, 1961.

    MATH  Google Scholar 

  18. Lions, J. L., Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires, Dunod, Paris, 1969.

    MATH  Google Scholar 

  19. Lions, J. L., Perturbations Singulières dans les Problèmes aux Limites et en Contrôle Optimal, Lecture Notes in Mathematics, 323, Springer-Verlag, Berlin, 1973.

    MATH  Google Scholar 

  20. Magenes, E. and Stampacchia, G., I problemi al contorno per le equazioni differenziali di tipo ellitico, Ann. Scuola Norm. Sup. Pisa, 12, 1958, 247–358.

    MATH  MathSciNet  Google Scholar 

  21. Mardare, S., On Poincaré and De Rham’s theorems, Rev. Roumaine Math. Pures Appl., 53, 2008, 523–541.

    MATH  MathSciNet  Google Scholar 

  22. Nečas, J., Equations aux Dérivées Partielles, Presses de l’Université de Montréal, Montréal, 1965.

    Google Scholar 

  23. Tartar, L., Topics in Nonlinear Analysis, Publications Mathématiques d’Orsay, No. 78.13, Université de Paris-Sud, Orsay, 1978.

    Google Scholar 

  24. Yosida, K., Functional Analysis, Classics in Mathematics, Springer-Verlag, Berlin, 1995 (reprinting of the 6th ed., published in 1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe G. Ciarlet.

Additional information

Dedicated to Professor Roger Temam on the Occasion of his 70th Birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ciarlet, P.G. On Korn’s inequality. Chin. Ann. Math. Ser. B 31, 607–618 (2010). https://doi.org/10.1007/s11401-010-0606-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11401-010-0606-3

Keywords

2000 MR Subject Classification

Navigation