Skip to main content
Log in

Boundary Layer Analysis for Navier-Slip Rayleigh–Bénard Convection: The Non-existence of an Ultimate State

  • Published:
Journal of Mathematical Fluid Mechanics Aims and scope Submit manuscript

Abstract

We discuss the asymptotic behavior, at small viscosity and/or diffusivity, of the Rayleigh–Bénard convection problem governed by the Boussinesq equations. The velocity vector field and the temperature are supplemented respectively with the Navier friction boundary conditions and the fixed flux boundary condition in a 3D periodic channel domain. By explicitly constructing the boundary layer correctors, which approximate the difference between the viscous/diffusive solutions and the corresponding limit solution, we validate the asymptotic expansions, and prove the vanishing viscosity and diffusivity limit with the optimal rate of convergence. Correctors in this setting include higher order diffusive effects than considered previously and accurately account for the interplay between the viscous and thermal layers. The boundary layer correctors satisfy a linear evolution equation indicating that for these boundary conditions, there is no turbulence in the boundary layer. The impact of this fact on the existence of an ‘ultimate state’ of turbulent convection is discussed, particularly in light of recent upper bounds on the heat transport that indicate such a state may exist in this setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahlers, G., Grossmann, S., Lohse, D.: Heat transfer and large scale dynamics in turbulent Rayleigh–Bénard convection. Rev. Mod. Phys. 81, 503–537 (2009)

    Article  ADS  Google Scholar 

  2. Veiga, H.B., Crispo, F.: Sharp inviscid limit results under Navier type boundary conditions. An \(L^p\) theory. J. Math. Fluid Mech. 12(3), 397–411 (2010)

    Article  MathSciNet  Google Scholar 

  3. Beirão da Veiga, H., Crispo, F.: A missed persistence property for the Euler equations, and its effect on inviscid limits. Nonlinearity 25(6), 1661–1669 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  4. Bénard, H.: Les Tourbillons cellulaires dans une nappe liquide. Revue génórale des Sciences pures et appliquées 11, 1261–1271 (1900)

    Google Scholar 

  5. Brezis, H.: Functional Analysis. Sobolev Spaces and Partial Differential Equations. Universitext. Springer, New York (2011)

    MATH  Google Scholar 

  6. Cannon, J.R., Di Benedetto, E.: The initial value problem for the Boussinesq equations with data in \(L^{p}\). In: Approximation methods for Navier–Stokes problems (Proceedings of Symposia, University of Paderborn, Paderborn, 1979), vol. 771, Lecture Notes in Mathematics, pp. 129–144. Springer, Berlin (1980)

  7. Doering, C.R., Constantin, P.: Variational bounds on energy dissipation in incompressible flows. III. Convection. Phys. Rev. E 53(6), 5957–5981 (1996)

    Article  ADS  Google Scholar 

  8. Fantuzzi, G.: Bounds for Rayleigh–Bénard convection between free-slip boundaries with an imposed heat flux. J. Fluid Mech. 837, R5 (2018)

    Article  ADS  Google Scholar 

  9. Gie, G.-M.: Asymptotic expansion of the Stokes solutions at small viscosity: the case of non-compatible initial data. Commun. Math. Sci. 12(2), 383–400 (2014)

    Article  MathSciNet  Google Scholar 

  10. Gie, G.-M., Jung, C.-Y.: Vorticity layers of the 2D Navier–Stokes equations with a slip type boundary condition. Asymptot. Anal. 84(1–2), 17–33 (2013)

    MathSciNet  MATH  Google Scholar 

  11. Gie, G.-M., Kelliher, J.P.: Boundary layer analysis of the Navier–Stokes equations with generalized Navier boundary conditions. J. Differ. Equ. 253(6), 1862–1892 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  12. Grossmann, S., Lohse, D.: Scaling in thermal convection: a unifying theory. J. Fluid Mech. 407, 27–56 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  13. Grossmann, S., Lohse, D.: Thermal convection for large Prandtl number. Phys. Rev. Lett. 86, 3316–3319 (2001)

    Article  ADS  Google Scholar 

  14. Grossmann, S., Lohse, D.: Prandtl and Rayleigh number dependence of the Reynolds number in turbulent thermal convection. Phys. Rev. E 66, 016305 (2002)

    Article  ADS  Google Scholar 

  15. Grossmann, S., Lohse, D.: Fluctuations in turbulent Rayleigh–Bénard convection: the role of plumes. Phys. Fluids 16(12), 4462–4472 (2004)

    Article  ADS  Google Scholar 

  16. Grossmann, S., Lohse, D.: Multiple scaling in the ultimate regime of thermal convection. Phys. Fluids 23, 045108 (2011)

    Article  ADS  Google Scholar 

  17. He, X., Funfschilling, D., Nobach, H., Bodenschatz, E., Ahlers, G.: Transition to the ultimate state of turbulent Rayleigh–Bénard convection. Phys. Rev. Lett. 108(2), 024502 (2012)

    Article  ADS  Google Scholar 

  18. He, X., Funfschilling, D., Nobach, H., Bodenschatz, E., Ahlers, G.: Comment on “Effect of boundary layers asymmetry on heat transfer efficiency in turbulent Rayleigh–Bénard convection at very high Rayleigh numbers”. Phys. Rev. Lett. 110(199401) (2013)

  19. He, X., Bodenschatz, E., Ahlers, G.: Azimuthal diffusion of the large-scale-circulation plane, and absence of significant non-boussinesq effects, in turbulent convection near the ultimate-state transition. J. Fluid Mech. 791, R3 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  20. He, X., van Gils, D.P.M., Bodenschatz, E., Ahlers, G., et al.: Logarithmic spatial variations and universal f\(^{-1}\) power spectra of temperature fluctuations in turbulent Rayleigh–Bénard convection. Phys. Rev. Lett. 112(17), 174501 (2014)

    Article  ADS  Google Scholar 

  21. Hou, T.Y., Li, C.: Global well-posedness of the viscous Boussinesq equations. Discrete Contin. Dyn. Syst. 12(1), 1–12 (2005)

    MathSciNet  MATH  Google Scholar 

  22. Weiwei, H., Kukavica, I., Ziane, M.: On the regularity for the Boussinesq equations in a bounded domain. J. Math. Phys. 54(8), 081507 (2013). 10

    Article  ADS  MathSciNet  Google Scholar 

  23. Iftimie, D., Sueur, F.: Viscous boundary layers for the Navier–Stokes equations with the Navier slip conditions. Arch. Ration. Mech. Anal. 199(1), 145–175 (2011)

    Article  MathSciNet  Google Scholar 

  24. Iftimie, D., Planas, G.: Inviscid limits for the Navier–Stokes equations with Navier friction boundary conditions. Nonlinearity 19(4), 899–918 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  25. Johnston, H., Doering, C.R.: Comparison of turbulent thermal convection between conditions of constant temperature and constant flux. Phys. Rev. Lett. 102(064501), 1–p4 (2009)

    Google Scholar 

  26. Kato, T.: Remarks on zero viscosity limit for nonstationary Navier–Stokes flows with boundary. In: Seminar on Nonlinear Partial Differential Equations (Berkeley, California, 1983), vol. 2 of Mathematical Sciences Research Institute Publications, pp. 85–98. Springer, New York (1984)

  27. Kelliher, J.P.: Navier–Stokes equations with Navier boundary conditions for a bounded domain in the plane. SIAM J. Math. Anal. 38(1), 210–232 (2006)

    Article  MathSciNet  Google Scholar 

  28. Kraichnan, R.H.: Turbulent thermal convection at arbitrary Prandtl number. Phys. Fluids 5, 1374–1389 (1962)

    Article  ADS  MathSciNet  Google Scholar 

  29. Lai, M.-J., Pan, R., Zhao, K.: Initial boundary value problem for two-dimensional viscous Boussinesq equations. Arch. Ration. Mech. Anal. 199(3), 739–760 (2011)

    Article  MathSciNet  Google Scholar 

  30. Lions, J.-L.: Perturbations Singulières dans les Problèmes aux Limites et en Contrôle Optimal. Lecture Notes in Mathematics, vol. 323. Springer, Berlin (1973)

  31. Masmoudi, N., Rousset, F.: Uniform regularity for the Navier–Stokes equation with Navier boundary condition. Arch. Ration. Mech. Anal. 203(2), 529–575 (2012)

    Article  MathSciNet  Google Scholar 

  32. Otero, J., Wittenberg, R.W., Worthing, R.A., Doering, C.R.: Bounds on Rayleigh–Bénard convection with an imposed heat flux. J. Fluid Mech. 473, 191–199 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  33. Petschel, K., Stellmach, S., Wilczek, M., Lülff, J., Hansen, U.: Dissipation layers in Rayleigh–Bénard convection: a unifying view. Phys. Rev. Lett. 110(11), 114502 (2013)

    Article  ADS  Google Scholar 

  34. Rayleigh, L.: On convection currents in a horizontal layer of fluid, when the higher temperature is on the under side. Philos. Mag. J. Sci. 32(192), 529–546 (1916)

    Article  Google Scholar 

  35. Seis, C.: Laminar boundary layers in convective heat transport. Commun. Math. Phys. 324(3), 995–1031 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  36. Skrbek, L., Urban, P.: Has the ultimate state of turbulent thermal convection been observed? J. Fluid Mech. 785, 270–282 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  37. Spiegel, E.A.: Convection in stars. 1. Basic Boussinesq convection. Ann. Rev. Astron. Astrophys. 9, 323–352 (1971)

    Article  ADS  Google Scholar 

  38. Stevens, R.J.A.M., van der Poel, E.P., Grossmann, S., Lohse, D.: The unifying theory of scaling in thermal convection: the updated prefactors. J. Fluid Mech. 730, 295–308 (2013)

    Article  ADS  Google Scholar 

  39. Urban, P., Hanzelka, P., Kralik, T., Musilova, V., Srnka, A., Skrbek, L.: Effect of boundary layers asymmetry on heat transfer efficiency in turbulent Rayleigh Bénard convection at very high Rayleigh numbers. Phys. Rev. Lett. 109, 154301 (2012)

    Article  ADS  Google Scholar 

  40. Urban, P., Hanzelka, P., Kralik, T., Musilova, V., Srnka, A., Skrbek, L.: Urban et al reply. Phys. Rev. Lett. 110(199402), 1 (2013)

    Google Scholar 

  41. Urban, P., Musilová, V., Skrbek, L.: Efficiency of heat transfer in turbulent Rayleigh–Bénard convection. Phys. Rev. Lett. 107, 014302 (2011)

    Article  ADS  Google Scholar 

  42. van der Poel, E.P., Ostilla-Monico, R., Verzicco, R., Lohse, D.: Effect of velocity boundary conditions on the heat transfer and flow topology in two-dimensional Rayleigh–Bénard convection. Phys. Rev. E 90(013017) (2014)

  43. Wang, L., Xin, Z., Zang, A.: Vanishing viscous limits for 3D Navier–Stokes equations with a Navier-slip boundary condition. J. Math. Fluid Mech. 14(4), 791–825 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  44. Wang, X.: A note on long time behavior of solutions to the Boussinesq system at large Prandtl number. In: Nonlinear Partial Differential Equations and Related Analysis, Contemporary Mathematics, vol. 371, pp. 315–323. American Mathematical Society, Providence (2005)

  45. Whitehead, J.P., Doering, C.R.: The ultimate regime of two-dimensional Rayleigh–Bénard convection with stress-free boundaries. Phys. Rev. Lett. 106, 244501 (2011)

    Article  ADS  Google Scholar 

  46. Whitehead, J.P., Doering, C.R.: Rigid rigorous bounds on heat transport in a slippery container. J. Fluid Mech. 707, 241–259 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  47. Whitehead, J.P., Wittenberg, R.: A rigorous bound on the vertical transport of heat in Rayleigh–Bénard convection at infinite Prandtl number with mixed thermal boundary conditions. J. Math. Phys. 55(093104) (2014)

  48. Wittenberg, R.W.: Bounds on Rayleigh–Bénard convection with imperfectly conducting plates. J. Fluid Mech. 665, 158–198 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  49. Xiao, Y., Xin, Z.: On the vanishing viscosity limit for the 3D Navier–Stokes equations with a slip boundary condition. Commun. Pure Appl. Math. 60(7), 1027–1055 (2007)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank the anonymous referee for some insightful comments and corrections which improved the presentation of this result. G-MG is partially supported by the Research—RI Grant, Office of the Executive Vice President for Research and Innovation, University of Louisville, and the Victor A. Olorunsola Endowed Research Award for Young Scholars, College of Arts and Sciences, University of Louisville. This collaboration arose following participation in a Mathematics Research Communities workshop sponsored by the American Mathematical Society, and further extended through a visit of G-MG sponsored by the Department of Mathematics at Brigham Young University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. P. Whitehead.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by G.P. Galdi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gie, GM., Whitehead, J.P. Boundary Layer Analysis for Navier-Slip Rayleigh–Bénard Convection: The Non-existence of an Ultimate State. J. Math. Fluid Mech. 21, 3 (2019). https://doi.org/10.1007/s00021-018-0404-3

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00021-018-0404-3

Keywords

Navigation