Skip to main content

Advertisement

Log in

Traumatic-noise-induced hair cell death and hearing loss is mediated by activation of CaMKKβ

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Background

The Ca2+/calmodulin-dependent protein kinase kinases (CaMKKs) are serine/threonine-directed protein kinases that are activated following increases in intracellular calcium, playing a critical role in neuronal signaling. Inner-ear-trauma-induced calcium overload in sensory hair cells has been well documented in the pathogenesis of traumatic noise-induced hair cell death and hearing loss, but there are no established pharmaceutical therapies available due to a lack of specific therapeutic targets. In this study, we investigated the activation of CaMKKβ in the inner ear after traumatic noise exposure and assessed the prevention of noise-induced hearing loss (NIHL) with RNA silencing.

Results

Treatment with short hairpin RNA of CaMKKβ (shCaMKKβ) via adeno-associated virus transduction significantly knocked down CaMKKβ expression in the inner ear. Knockdown of CaMKKβ significantly attenuated noise-induced hair cell loss and hearing loss (NIHL). Additionally, pretreatment with naked CaMKKβ small interfering RNA (siCaMKKβ) attenuated noise-induced losses of inner hair cell synapses and OHCs and NIHL. Furthermore, traumatic noise exposure activates CaMKKβ in OHCs as demonstrated by immunolabeling for p-CaMKI. CaMKKβ mRNA assessed by fluorescence in-situ hybridization and immunolabeling for CaMKKβ in OHCs also increased after the exposure. Finally, pretreatment with siCaMKKβ diminished noise-induced activation of AMPKα in OHCs.

Conclusions

These findings demonstrate that traumatic-noise-induced OHC loss and hearing loss occur primarily via activation of CaMKKβ. Targeting CaMKKβ is a key strategy for prevention of noise-induced hearing loss. Furthermore, our data suggest that noise-induced activation of AMPKα in OHCs occurs via the CaMKKβ pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

taken from the apical, middle, basal, and hook turns of whole mount surface preparations immunolabeled with myosin VIIa and then stained with DAB to illustrate OHCs and IHCs. OHC 1, 2, 3, and IHC indicate three rows of outer hair cells and one row of inner hair cells. Counts of OHC loss are shown in Fig. 4A. These images are representative of six mice for each group. Scale bar = 10 µm

Fig. 4

taken from the lower basal cochlear turn. Scale bar = 20 µm. C Noise-induced auditory threshold shifts are significantly reduced in AAV-shCaMKKβ mice compared to AAV-shCtrl mice calculated as baseline ABR thresholds subtracted from thresholds measured 14 d after noise exposure for each individual mouse. Data are presented as individual mice ± SD. D Noise-diminished DPOAE amplitudes are significantly reversed by shCaMKKβ application measured 14 d after noise exposure. Data are presented as means ± SD. The detailed statistical values are listed in Table S2; *indicates the p value of the comparison between shCtrl + noise exposure vs shCaMKKβ + noise exposure, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001

Fig. 5

taken from the basal turn at 4 mm from the apex and are representative of 5–7 mice for each group. Scale bar = 10 µm. F Counts of OHC loss along the entire length of the cochlear duct show that pretreatment with siCaMKKβ significantly reduced noise-induced OHC loss. Data are presented as means + SD. Detailed statistical values are listed in Table S4. The number of animals in each group is indicated in the labels, *indicates the p value for the comparison between siCtrl + PTSN vs siCaMKKβ + PTSN. *p < 0.05, **p < 0.01, ***p < 0.001

Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Availability of data and materials

All data generated or analyzed during this study are included in this published article and its supplementary information files.

Abbreviations

AAV:

Adeno-associated virus

ABR:

Auditory brainstem response

AMPKα:

AMP-dependent protein kinase α subunit

CaMKKβ:

Ca2+/calmodulin-dependent protein kinase kinase-β

DPOAE:

Distortion product otoacoustic emissions

eGFP:

Enhanced green fluorescent protein

FISH:

Fluorescent in-situ hybridization

HCs:

Hair cells

IHCs:

Inner hair cells

IP:

Intraperitoneal injection

KO:

Knockout mice

LKB1:

Liver kinase B1

MET:

Mechanoelectrical transducer channels

NIHL:

Noise-induced hearing loss

OHCs:

Outer hair cells

PBS:

Phosphate-buffered saline

PBS-T:

PBS with 0.1% Tween 20

PTS:

Permanent threshold shift

PTSN:

PTS-noise

ROS:

Reactive oxygen species

RWM:

Round window membrane

SDS-PAGE:

Sodium dodecyl sulfate polyacrylamide gel electrophoresis

SPL:

Sound pressure level

siRNA:

Small interfering RNA silencing

shRNA:

Short hairpin RNA silencing

siControl:

Scrambled siRNA

TTS:

Temporary threshold shift

TDT:

Tucker Davis Technology

References

  1. Anderson KA, Ribar TJ, Lin F, Noeldner PK, Green MF, Muehlbauer MJ, Witters LA, Kemp BE, Means AR (2008) Hypothalamic CaMKK2 contributes to the regulation of energy balance. Cell Metab 7:377–388

    Article  CAS  PubMed  Google Scholar 

  2. Askew C, Chien WW (2020) Adeno-associated virus gene replacement for recessive inner ear dysfunction: Progress and challenges. Hear Res 394:107947

    Article  PubMed  PubMed Central  Google Scholar 

  3. Bankoti K, Generotti C, Hwa T, Wang L, O’Malley BW Jr, Li D (2021) Advances and challenges in adeno-associated viral inner-ear gene therapy for sensorineural hearing loss. Molecular therapy Methods & clinical development 21:209–236

    Article  CAS  Google Scholar 

  4. Carling D (2017) AMPK signalling in health and disease. Curr Opin Cell Biol 45:31–37

    Article  CAS  PubMed  Google Scholar 

  5. Ceriani F, Mammano F (2012) Calcium signaling in the cochlea - Molecular mechanisms and physiopathological implications. Cell Commun Signal 10:20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chakraborty C, Sharma AR, Sharma G, Doss CGP, Lee SS (2017) Therapeutic miRNA and siRNA: moving from bench to clinic as next generation medicine. Mol Ther Nucleic Acids 8:132–143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chen FQ, Zheng HW, Hill K, Sha SH (2012) Traumatic noise activates rho-family GTPases through transient cellular energy depletion. J Neurosci 32:12421–12430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chen J, Hill K, Sha SH (2016) Inhibitors of histone deacetylases attenuate noise-induced hearing loss. J Assoc Res Otolaryngol 17:289–302

    Article  PubMed  PubMed Central  Google Scholar 

  9. Crane R, Conley SM, Al-Ubaidi MR, Naash MI (2021) Gene therapy to the retina and the cochlea. Front Neurosci 15:652215

    Article  PubMed  PubMed Central  Google Scholar 

  10. Dong JY, Fan PD, Frizzell RA (1996) Quantitative analysis of the packaging capacity of recombinant adeno-associated virus. Hum Gene Ther 7:2101–2112

    Article  CAS  PubMed  Google Scholar 

  11. Dumont RA, Lins U, Filoteo AG, Penniston JT, Kachar B, Gillespie PG (2001) Plasma membrane Ca2+-ATPase isoform 2a is the PMCA of hair bundles. J Neurosci 21:5066–5078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Esterberg R, Hailey DW, Coffin AB, Raible DW, Rubel EW (2013) Disruption of intracellular calcium regulation is integral to aminoglycoside-induced hair cell death. J Neurosci 33:7513–7525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Esterberg R, Hailey DW, Rubel EW, Raible DW (2014) ER-mitochondrial calcium flow underlies vulnerability of mechanosensory hair cells to damage. J Neurosci 34:9703–9719

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Fang QJ, Wu F, Chai R, Sha SH (2019) Cochlear surface preparation in the adult mouse. J Vis Exp. https://doi.org/10.3791/60299

    Article  PubMed  Google Scholar 

  15. Fetoni AR, Paciello F, Rolesi R, Paludetti G, Troiani D (2019) Targeting dysregulation of redox homeostasis in noise-induced hearing loss: Oxidative stress and ROS signaling. Free Radic Biol Med 135:46–59

    Article  CAS  PubMed  Google Scholar 

  16. Fettiplace R (2017) Hair cell transduction, tuning, and synaptic transmission in the mammalian cochlea. Compr Physiol 7:1197–1227

    Article  PubMed  PubMed Central  Google Scholar 

  17. Fridberger A, Flock A, Ulfendahl M, Flock B (1998) Acoustic overstimulation increases outer hair cell Ca2+ concentrations and causes dynamic contractions of the hearing organ. Proc Natl Acad Sci U S A 95:7127–7132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Grotemeier A, Alers S, Pfisterer SG, Paasch F, Daubrawa M, Dieterle A, Viollet B, Wesselborg S, Proikas-Cezanne T, Stork B (2010) AMPK-independent induction of autophagy by cytosolic Ca2+ increase. Cell Signal 22:914–925

    Article  CAS  PubMed  Google Scholar 

  19. Hardie DG (2003) Minireview: the AMP-activated protein kinase cascade: the key sensor of cellular energy status. Endocrinology 144:5179–5183

    Article  CAS  PubMed  Google Scholar 

  20. He Z-H, Pan S, Zheng H-W, Fang Q-J, Hill K, Sha S-H (2021) Treatment with calcineurin inhibitor fk506 attenuates noise-induced hearing loss. Front Cell Develop Biol. https://doi.org/10.3389/fcell.2021.648461

    Article  Google Scholar 

  21. Henderson D, Bielefeld EC, Harris KC, Hu BH (2006) The role of oxidative stress in noise-induced hearing loss. Ear Hear 27:1–19

    Article  PubMed  Google Scholar 

  22. Hill K, Yuan H, Wang X, Sha SH (2016) Noise-induced loss of hair cells and cochlear synaptopathy are mediated by the activation of AMPK. J Neurosci 36:7497–7510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ho MK, Li X, Wang J, Ohmen JD, Friedman RA (2014) FVB/NJ mice demonstrate a youthful sensitivity to noise-induced hearing loss and provide a useful genetic model for the study of neural hearing loss. Audiol Neurotol Extra 4:1–11

    Article  PubMed  PubMed Central  Google Scholar 

  24. Hurley RL, Anderson KA, Franzone JM, Kemp BE, Means AR, Witters LA (2005) The Ca2+/calmodulin-dependent protein kinase kinases are AMP-activated protein kinase kinases. J Biol Chem 280:29060–29066

    Article  CAS  PubMed  Google Scholar 

  25. Isgrig K, McDougald DS, Zhu J, Wang HJ, Bennett J, Chien WW (2019) AAV2.7m8 is a powerful viral vector for inner ear gene therapy. Nat Commun 10:427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jeon SM (2016) Regulation and function of AMPK in physiology and diseases. Exp Mol Med 48:e245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kersigo J, Pan N, Lederman JD, Chatterjee S, Abel T, Pavlinkova G, Silos-Santiago I, Fritzsch B (2018) A RNAscope whole mount approach that can be combined with immunofluorescence to quantify differential distribution of mRNA. Cell Tissue Res 374:251–262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kimura Y, Corcoran EE, Eto K, Gengyo-Ando K, Muramatsu MA, Kobayashi R, Freedman JH, Mitani S, Hagiwara M, Means AR, Tokumitsu H (2002) A CaMK cascade activates CRE-mediated transcription in neurons of Caenorhabditis elegans. EMBO Rep 3:962–966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kopke R, Slade MD, Jackson R, Hammill T, Fausti S, Lonsbury-Martin B, Sanderson A, Dreisbach L, Rabinowitz P, Torre P 3rd, Balough B (2015) Efficacy and safety of N-acetylcysteine in prevention of noise induced hearing loss: a randomized clinical trial. Hear Res 323:40–50

    Article  CAS  PubMed  Google Scholar 

  30. Kramer S, Dreisbach L, Lockwood J, Baldwin K, Kopke R, Scranton S, O’Leary M (2006) Efficacy of the antioxidant N-acetylcysteine (NAC) in protecting ears exposed to loud music. J Am Acad Audiol 17:265–278

    Article  PubMed  Google Scholar 

  31. Kujawa SG, Liberman MC (2009) Adding insult to injury: cochlear nerve degeneration after “temporary” noise-induced hearing loss. J Neurosci 29:14077–14085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Landegger LD, Pan B, Askew C, Wassmer SJ, Gluck SD, Galvin A, Taylor R, Forge A, Stankovic KM, Holt JR, Vandenberghe LH (2017) A synthetic AAV vector enables safe and efficient gene transfer to the mammalian inner ear. Nat Biotechnol 35:280–284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Le Prell CG, Hammill TL, Murphy WJ (2019) Noise-induced hearing loss and its prevention: Integration of data from animal models and human clinical trials. J Acoust Soc Am 146:4051

    Article  PubMed  PubMed Central  Google Scholar 

  34. Lin CY, Wu JL, Shih TS, Tsai PJ, Sun YM, Ma MC, Guo YL (2010) N-Acetyl-cysteine against noise-induced temporary threshold shift in male workers. Hear Res 269:42–47

    Article  CAS  PubMed  Google Scholar 

  35. Mammano F, Frolenkov GI, Lagostena L, Belyantseva IA, Kurc M, Dodane V, Colavita A, Kachar B (1999) ATP-Induced Ca(2+) release in cochlear outer hair cells: localization of an inositol triphosphate-gated Ca(2+) store to the base of the sensory hair bundle. J Neurosci 19:6918–6929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Marcelo KL, Means AR, York B (2016) The Ca(2+)/Calmodulin/CaMKK2 Axis: Nature’s Metabolic CaMshaft. Trends Endocrinol Metab 27:706–718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Means AR (2000) Regulatory cascades involving calmodulin-dependent protein kinases. Mol Endocrinol 14:4–13

    Article  CAS  PubMed  Google Scholar 

  38. Muller M, von Hunerbein K, Hoidis S, Smolders JW (2005) A physiological place-frequency map of the cochlea in the CBA/J mouse. Hear Res 202:63–73

    Article  PubMed  Google Scholar 

  39. Najar MA, Rex DAB, Modi PK, Agarwal N, Dagamajalu S, Karthikkeyan G, Vijayakumar M, Chatterjee A, Sankar U, Prasad TSK (2021) A complete map of the Calcium/calmodulin-dependent protein kinase kinase 2 (CAMKK2) signaling pathway. J Cell Commun Signal 15:283–290

    Article  PubMed  CAS  Google Scholar 

  40. Nyberg S, Abbott NJ, Shi X, Steyger PS, Dabdoub A (2019) Delivery of therapeutics to the inner ear: The challenge of the blood-labyrinth barrier. Sci Transl Med. https://doi.org/10.1126/scitranslmed.aao0935

    Article  PubMed  PubMed Central  Google Scholar 

  41. Ohinata Y, Yamasoba T, Schacht J, Miller JM (2000) Glutathione limits noise-induced hearing loss. Hear Res 146:28–34

    Article  CAS  PubMed  Google Scholar 

  42. Ohlemiller KK (2019) Mouse methods and models for studies in hearing. J Acoust Soc Am 146:3668

    Article  PubMed  Google Scholar 

  43. Oishi N, Chen FQ, Zheng HW, Sha SH (2013) Intra-tympanic delivery of short interfering RNA into the adult mouse cochlea. Hear Res 296:36–41

    Article  CAS  PubMed  Google Scholar 

  44. Orrenius S, Zhivotovsky B, Nicotera P (2003) Regulation of cell death: the calcium-apoptosis link. Nat Rev Mol Cell Biol 4:552–565

    Article  CAS  PubMed  Google Scholar 

  45. Pfisterer SG, Mauthe M, Codogno P, Proikas-Cezanne T (2011) Ca2+/calmodulin-dependent kinase (CaMK) signaling via CaMKI and AMP-activated protein kinase contributes to the regulation of WIPI-1 at the onset of autophagy. Mol Pharmacol 80:1066–1075

    Article  CAS  PubMed  Google Scholar 

  46. Racioppi L, Nelson ER, Huang W, Mukherjee D, Lawrence SA, Lento W, Masci AM, Jiao Y, Park S, York B, Liu Y, Baek AE, Drewry DH, Zuercher WJ, Bertani FR, Businaro L, Geradts J, Hall A, Means AR, Chao N, Chang CY, McDonnell DP (2019) CaMKK2 in myeloid cells is a key regulator of the immune-suppressive microenvironment in breast cancer. Nat Commun 10:2450

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Racioppi L, Noeldner PK, Lin F, Arvai S, Means AR (2012) Calcium/calmodulin-dependent protein kinase kinase 2 regulates macrophage-mediated inflammatory responses. J Biol Chem 287:11579–11591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ryan AF, Bennett TM, Woolf NK, Axelsson A (1994) Protection from noise-induced hearing loss by prior exposure to a nontraumatic stimulus: role of the middle ear muscles. Hear Res 72:23–28

    Article  CAS  PubMed  Google Scholar 

  49. Salehi P, Nelson CN, Chen Y, Lei D, Crish SD, Nelson J, Zuo H, Bao J (2018) Detection of single mRNAs in individual cells of the auditory system. Hear Res 367:88–96

    Article  CAS  PubMed  Google Scholar 

  50. Selbert MA, Anderson KA, Huang QH, Goldstein EG, Means AR, Edelman AM (1995) Phosphorylation and activation of Ca(2+)-calmodulin-dependent protein kinase IV by Ca(2+)-calmodulin-dependent protein kinase Ia kinase. Phosphorylation of threonine 196 is essential for activation. J Biol Chem 270:17616–17621

    Article  CAS  PubMed  Google Scholar 

  51. Sha SH, Schacht J (2017) Emerging therapeutic interventions against noise-induced hearing loss. Expert Opin Investig Drugs 26:85–96

    Article  CAS  PubMed  Google Scholar 

  52. Shende P, Patel C (2019) siRNA: an alternative treatment for diabetes and associated conditions. J Drug Target 27:174–182

    Article  CAS  PubMed  Google Scholar 

  53. Shuster B, Casserly R, Lipford E, Olszewski R, Milon B, Viechweg S, Davidson K, Enoch J, McMurray M, Rutherford MA, Ohlemiller KK, Hoa M, Depireux DA, Mong JA, Hertzano R (2021) Estradiol protects against noise-induced hearing loss and modulates auditory physiology in female mice. Int J Mol Sci. https://doi.org/10.3390/ijms222212208

    Article  PubMed  PubMed Central  Google Scholar 

  54. Skelding KA, Rostas JA (2012) The role of molecular regulation and targeting in regulating calcium/calmodulin stimulated protein kinases. Adv Exp Med Biol 740:703–730

    Article  CAS  PubMed  Google Scholar 

  55. Spicer SS, Thomopoulos GN, Schulte BA (1999) Novel membranous structures in apical and basal compartments of inner hair cells. J Comp Neurol 409:424–437

    Article  CAS  PubMed  Google Scholar 

  56. Sun L, Li J, Xiao X (2000) Overcoming adeno-associated virus vector size limitation through viral DNA heterodimerization. Nat Med 6:599–602

    Article  CAS  PubMed  Google Scholar 

  57. Tanaka M, Asaoka M, Yanagawa Y, Hirashima N (2011) Long-term gene-silencing effects of siRNA introduced by single-cell electroporation into postmitotic CNS neurons. Neurochem Res 36:1482–1489

    Article  CAS  PubMed  Google Scholar 

  58. Taylor CR, Levenson RM (2006) Quantification of immunohistochemistry–issues concerning methods, utility and semiquantitative assessment II. Histopathology 49:411–424

    Article  CAS  PubMed  Google Scholar 

  59. Ulfendahl M, Scarfone E, Flock A, Le Calvez S, Conradi P (2000) Perilymphatic fluid compartments and intercellular spaces of the inner ear and the organ of Corti. Neuroimage 12:307–313

    Article  CAS  PubMed  Google Scholar 

  60. Viberg A, Canlon B (2004) The guide to plotting a cochleogram. Hear Res 197:1–10

    Article  PubMed  Google Scholar 

  61. Walker RA (2006) Quantification of immunohistochemistry–issues concerning methods, utility and semiquantitative assessment I. Histopathology 49:406–410

    Article  CAS  PubMed  Google Scholar 

  62. Wan G, Gomez-Casati ME, Gigliello AR, Liberman MC, Corfas G (2014) Neurotrophin-3 regulates ribbon synapse density in the cochlea and induces synapse regeneration after acoustic trauma. Elife. https://doi.org/10.7554/eLife.03564

    Article  PubMed  PubMed Central  Google Scholar 

  63. Wang J, Puel JL (2018) Toward Cochlear Therapies. Physiol Rev 98:2477–2522

    Article  CAS  PubMed  Google Scholar 

  64. Wang X, Zhu Y, Long H, Pan S, Xiong H, Fang Q, Hill K, Lai R, Yuan H, Sha SH (2018) Mitochondrial calcium transporters mediate sensitivity to noise-induced losses of hair cells and cochlear synapses. Front Mol Neurosci 11:469

    Article  CAS  PubMed  Google Scholar 

  65. Wang Y, Hirose K, Liberman MC (2002) Dynamics of noise-induced cellular injury and repair in the mouse cochlea. J Assoc Res Otolaryngol 3:248–268

    Article  PubMed  PubMed Central  Google Scholar 

  66. Wang Y, Sun Y, Chang Q, Ahmad S, Zhou B, Kim Y, Li H, Lin X (2013) Early postnatal virus inoculation into the scala media achieved extensive expression of exogenous green fluorescent protein in the inner ear and preserved auditory brainstem response thresholds. J Gene Med 15:123–133

    Article  CAS  PubMed  Google Scholar 

  67. Winder WW, Thomson DM (2007) Cellular energy sensing and signaling by AMP-activated protein kinase. Cell Biochem Biophys 47:332–347

    Article  CAS  PubMed  Google Scholar 

  68. Wu F, Xiong H, Sha S (2020) Noise-induced loss of sensory hair cells is mediated by ROS/AMPKalpha pathway. Redox Biol 29:101406

    Article  CAS  PubMed  Google Scholar 

  69. Xiong H, Long H, Pan S, Lai R, Wang X, Zhu Y, Hill K, Fang Q, Zheng Y, Sha SH (2019) Inhibition of histone methyltransferase G9a attenuates noise-induced cochlear synaptopathy and hearing loss. J Assoc Res Otolaryngol 20:217–232

    Article  PubMed  PubMed Central  Google Scholar 

  70. Yamane H, Nakai Y, Takayama M, Konishi K, Iguchi H, Nakagawa T, Shibata S, Kato A, Sunami K, Kawakatsu C (1995) The emergence of free radicals after acoustic trauma and strial blood flow. Acta Otolaryngol Suppl 519:87–92

    Article  CAS  PubMed  Google Scholar 

  71. Yamashita D, Jiang HY, Schacht J, Miller JM (2004) Delayed production of free radicals following noise exposure. Brain Res 1019:201–209

    Article  CAS  PubMed  Google Scholar 

  72. Yu Q, Wang Y, Chang Q, Wang J, Gong S, Li H, Lin X (2014) Virally expressed connexin26 restores gap junction function in the cochlea of conditional Gjb2 knockout mice. Gene Ther 21:71–80

    Article  CAS  PubMed  Google Scholar 

  73. Yuan H, Wang X, Hill K, Chen J, Lemasters J, Yang SM, Sha SH (2015) Autophagy attenuates noise-induced hearing loss by reducing oxidative stress. Antioxid Redox Signal 22:1308–1324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Zheng HW, Chen J, Sha SH (2014) Receptor-interacting protein kinases modulate noise-induced sensory hair cell death. Cell Death Dis 5:e1262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr. Jochen Schacht for his valuable comments on the manuscript. We also thank Dr. Yuan Shao in the MUSC Biorepository & Tissue Analysis Shared Resource for technical assistance with in-situ hybridization RNAscope and Andra Talaska for proofreading of the manuscript.

Funding

The research project described was supported by grant R01 DC009222 from the National Institute on Deafness and Other Communication Disorders, National Institutes of Health. All experiments described in this manuscript were conducted in the WR Building at Medical University of South Carolina in renovated space supported by grant C06 RR014516. Animals were housed in MUSC CRI animal facilities supported by grant C06 RR015455 from the Extramural Research Facilities Program of the National Center for Research Resources.

Author information

Authors and Affiliations

Authors

Contributions

FW, KH, QF authors have contributed equally to this work. SS designed research; FW, KH, QF, ZH, HZ, XW, and HX performed research; FW, KH, QF, and SS analyzed data; FW, KH, and SS wrote the paper. All authors have reviewed the contents of the manuscript, approve of its contents, and validate the accuracy of the data.

Corresponding author

Correspondence to Su-Hua Sha.

Ethics declarations

Conflict of interests

The authors declare that they have no competing interests.

Ethics approval and consent to participate

No human data or tissue were involved. All animal research protocols were approved by the Institutional Animal Care & Use Committee at MUSC. Animal care was under the supervision of the Division of Laboratory Animal Resources at MUSC.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 416 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, F., Hill, K., Fang, Q. et al. Traumatic-noise-induced hair cell death and hearing loss is mediated by activation of CaMKKβ. Cell. Mol. Life Sci. 79, 249 (2022). https://doi.org/10.1007/s00018-022-04268-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00018-022-04268-4

Keywords

Navigation