Skip to main content
Log in

A complete map of the Calcium/calmodulin-dependent protein kinase kinase 2 (CAMKK2) signaling pathway

  • NUTS AND BOLTS
  • Published:
Journal of Cell Communication and Signaling Aims and scope

Abstract

Calcium/calmodulin-dependent protein kinase kinase 2 (CAMKK2) is a serine/threonine-protein kinase belonging to the Ca2+/calmodulin-dependent protein kinase subfamily. CAMKK2 has an autocatalytic site, which gets exposed when Ca2+/calmodulin (CAM) binds to it. This results in autophosphorylation and complete activation of CAMKK2. The three major known downstream targets of CAMKK2 are 5′-adenosine monophosphate (AMP)-activated protein kinase (AMPKα), calcium/calmodulin-dependent protein kinase 1 (CAMK1) and calcium/calmodulin-dependent protein kinase 4 (CAMK4). Activation of these targets by CAMKK2 is important for the maintenance of different cellular and physiological processes within the cell. CAMKK2 is found to be important in neuronal development, bone remodeling, adipogenesis, and systemic glucose homeostasis, osteoclastgensis and postnatal myogensis. CAMKK2 is reported to be involved in pathologies like Duchenne muscular dystrophy, inflammation, osteoporosis and bone remodeling and is also reported to be overexpressed in prostate cancer, hepatic cancer, ovarian and gastric cancer. CAMKK2 is involved in increased cell proliferation and migration through CAMKK2/AMPK pathway in prostate cancer and activation of AKT in ovarian cancer. Although CAMKK2 is a molecule of great importance, a public resource of the CAMKK2 signaling pathway is currently lacking. Therefore, we carried out detailed data mining and documentation of the signaling events associated with CAMKK2 from published literature and developed an integrated reaction map of CAMKK2 signaling. This resulted in the cataloging of 285 reactions belonging to the CAMKK2 signaling pathway, which includes 33 protein–protein interactions, 74 post-translational modifications, 7 protein translocation events, and 22 activation/inhibition events. Besides, 124 gene regulation events and 25 activator/inhibitors involved in CAMKK2 activation were also cataloged. The CAMKK2 signaling pathway map data is made freely accessible through WikiPathway database (https://www.wikipathways.org/index.php/Pathway:WP4874). We expect that data on a signaling map of CAMKK2 will provide the scientific community with an improved platform to facilitate further molecular as well as biomedical investigations on CAMKK2 and its utility in the development of biomarkers and therapeutic targets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Abbreviations

CAMKK2:

Calcium/calmodulin-dependent protein kinase kinase 2

AMPKα:

5′-adenosine monophosphate-activated protein kinase

ACC:

Acetyl-CoA carboxylase 2

LTM:

Long-term memory

LTP:

Long-term potentiation

References

  • Abbott MJ, Edelman AM, Turcotte LP (2009) CaMKK is an upstream signal of AMP-activated protein kinase in regulation of substrate metabolism in contracting skeletal muscle. Am J Physiol Regul Integr Comp Physiol 297:R1724–R1732

    PubMed  Google Scholar 

  • Anderson KA, Ribar TJ, Lin F, Noeldner PK, Green MF, Muehlbauer MJ, Witters LA, Kemp BE, Means AR (2008) Hypothalamic CaMKK2 contributes to the regulation of energy balance. Cell Metab 7:377–388

    CAS  PubMed  Google Scholar 

  • Anderson KA, Lin F, Ribar TJ, Stevens RD, Muehlbauer MJ, Newgard CB, Means AR (2012) Deletion of CaMKK2 from the liver lowers blood glucose and improves whole-body glucose tolerance in the mouse. Mol Endocrinol 26:281–291

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cao W, Sohail M, Liu G, Koumbadinga GA, Lobo VG, Xie J (2011) Differential effects of PKA-controlled CaMKK2 variants on neuronal differentiation. RNA Biol 8:1061–1072

    CAS  PubMed  PubMed Central  Google Scholar 

  • Carafoli E (2002) Calcium signaling: a tale for all seasons. Proc Natl Acad Sci U S A 99:1115–1122

    CAS  PubMed  PubMed Central  Google Scholar 

  • Carden CP, Stewart A, Thavasu P, Kipps E, Pope L, Crespo M, Miranda S, Attard G, Garrett MD, Clarke PA, Workman P, de Bono JS, Gore M, Kaye SB, Banerji U (2012) The association of PI3 kinase signaling and chemoresistance in advanced ovarian cancer. Mol Cancer Ther 11:1609–1617

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cary RL, Waddell S, Racioppi L, Long F, Novack DV, Voor MJ, Sankar U (2013) Inhibition of Ca(2)(+)/calmodulin-dependent protein kinase kinase 2 stimulates osteoblast formation and inhibits osteoclast differentiation. J Bone Miner Res Off J Am Soc Bone Miner Res 28:1599–1610

    CAS  Google Scholar 

  • Dadwal UC, Chang ES, Sankar U (2018) Androgen receptor-CaMKK2 axis in prostate cancer and bone microenvironment. Front Endocrinol 9:335

    Google Scholar 

  • Dey G, Radhakrishnan A, Syed N, Thomas JK, Nadig A, Srikumar K, Mathur PP, Pandey A, Lin SK, Raju R, Prasad TS (2013) Signaling network of Oncostatin M pathway. J Cell Commun Signal 7:103–108

    PubMed  Google Scholar 

  • Dhanya R, Arya AD, Nisha P, Jayamurthy P (2017) Quercetin, a lead compound against type 2 diabetes ameliorates glucose uptake via AMPK pathway in skeletal muscle cell line. Front Pharmacol 8:336

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dong GZ, Lee JH, Ki SH, Yang JH, Cho IJ, Kang SH, Zhao RJ, Kim SC, Kim YW (2014) AMPK activation by isorhamnetin protects hepatocytes against oxidative stress and mitochondrial dysfunction. Eur J Pharmacol 740:634–640

    CAS  PubMed  Google Scholar 

  • Foretz M, Hebrard S, Leclerc J, Zarrinpashneh E, Soty M, Mithieux G, Sakamoto K, Andreelli F, Viollet B (2010) Metformin inhibits hepatic gluconeogenesis in mice independently of the LKB1/AMPK pathway via a decrease in hepatic energy state. J Clin Invest 120:2355–2369

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fu H, He HC, Han ZD, Wan YP, Luo HW, Huang YQ, Cai C, Liang YX, Dai QS, Jiang FN, Zhong WD (2015) MicroRNA-224 and its target CAMKK2 synergistically influence tumor progression and patient prognosis in prostate cancer. Tumour Biol J Int Soc Oncodev Biol Med 36:1983–1991

    CAS  Google Scholar 

  • Gaff J, Halstrom S, Temple SEL, Baltic S, Kamerman P, Price P (2018) Polymorphisms in P2X4R and CAMKK2 may affect TNFalpha production: implications for a role in HIV-associated sensory neuropathy. Hum Immunol 79:224–227

    CAS  PubMed  Google Scholar 

  • Gocher AM, Azabdaftari G, Euscher LM, Dai S, Karacosta LG, Franke TF, Edelman AM (2017) Akt activation by Ca(2+)/calmodulin-dependent protein kinase kinase 2 (CaMKK2) in ovarian cancer cells. J Biol Chem 292:14188–14204

    CAS  PubMed  PubMed Central  Google Scholar 

  • Goullee H, Wadley AL, Cherry CL, Allcock RJ, Black M, Kamerman PR, Price P (2016) Polymorphisms in CAMKK2 may predict sensory neuropathy in African HIV patients. J Neurovirol 22:508–517

    CAS  PubMed  Google Scholar 

  • Halstrom S, Cherry CL, Black M, Thomson R, Goullee H, Baltic S, Allcock R, Temple SEL, Price P (2017) A haplotype spanning P2X7R, P2X4R and CAMKK2 may mark susceptibility to pulmonary non-tuberculous mycobacterial disease. Immunogenetics 69:287–293

    CAS  PubMed  Google Scholar 

  • Ho N, Liauw JA, Blaeser F, Wei F, Hanissian S, Muglia LM, Wozniak DF, Nardi A, Arvin KL, Holtzman DM, Linden DJ, Zhuo M, Muglia LJ, Chatila TA (2000) Impaired synaptic plasticity and cAMP response element-binding protein activation in Ca2+/calmodulin-dependent protein kinase type IV/Gr-deficient mice. J Neurosci Off J Soc Neurosci 20:6459–6472

    CAS  Google Scholar 

  • Hsu LS, Chen GD, Lee LS, Chi CW, Cheng JF, Chen JY (2001) Human Ca2+/calmodulin-dependent protein kinase kinase beta gene encodes multiple isoforms that display distinct kinase activity. J Biol Chem 276:31113–31123

    CAS  PubMed  Google Scholar 

  • Jeong KJ, Kim DY, Quan HY, Jo HK, Kim GW, Chung SH (2014) Effects of eugenol on hepatic glucose production and AMPK signaling pathway in hepatocytes and C57BL/6 J mice. Fitoterapia 93:150–162

    CAS  PubMed  Google Scholar 

  • Jin SW, Choi CY, Hwang YP, Kim HG, Kim SJ, Chung YC, Lee KJ, Jeong TC, Jeong HG (2016) Betulinic acid increases eNOS phosphorylation and NO synthesis via the calcium-signaling pathway. J Agric Food Chem 64:785–791

    CAS  PubMed  Google Scholar 

  • Jo HK, Kim GW, Jeong KJ, Kim DY, Chung SH (2014) Eugenol ameliorates hepatic steatosis and fibrosis by down-regulating SREBP1 gene expression via AMPK-mTOR-p70S6K signaling pathway. Biol Pharm Bull 37:1341–1351

    CAS  PubMed  Google Scholar 

  • Kandasamy K, Keerthikumar S, Raju R, Keshava Prasad TS, Ramachandra YL, Mohan S, Pandey A (2009) PathBuilder—open source software for annotating and developing pathway resources. Bioinformatics 25:2860–2862

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kandasamy K, Mohan SS, Raju R, Keerthikumar S, Kumar GS, Venugopal AK, Telikicherla D, Navarro JD, Mathivanan S, Pecquet C, Gollapudi SK, Tattikota SG, Mohan S, Padhukasahasram H, Subbannayya Y, Goel R, Jacob HK, Zhong J, Sekhar R, Nanjappa V, Balakrishnan L, Subbaiah R, Ramachandra YL, Rahiman BA, Prasad TS, Lin JX, Houtman JC, Desiderio S, Renauld JC, Constantinescu SN, Ohara O, Hirano T, Kubo M, Singh S, Khatri P, Draghici S, Bader GD, Sander C, Leonard WJ, Pandey A (2010) NetPath: a public resource of curated signal transduction pathways. Genome Biol 11:R3

    PubMed  PubMed Central  Google Scholar 

  • Kang S, Huang J, Lee BK, Jung YS, Im E, Koh JM, Im DS (2018) Omega-3 polyunsaturated fatty acids protect human hepatoma cells from developing steatosis through FFA4 (GPR120). Biochim Biophys Acta Mol Cell Biol Lipids 1863:105–116

    CAS  PubMed  Google Scholar 

  • Kokubo M, Nishio M, Ribar TJ, Anderson KA, West AE, Means AR (2009) BDNF-mediated cerebellar granule cell development is impaired in mice null for CaMKK2 or CaMKIV. J Neurosci Off J Soc Neurosci 29:8901–8913

    CAS  Google Scholar 

  • Lee ES, Uhm KO, Lee YM, Kwon J, Park SH, Soo KH (2008) Oxytocin stimulates glucose uptake in skeletal muscle cells through the calcium–CaMKK–AMPK pathway. Regul Pept 151:71–74

    CAS  PubMed  Google Scholar 

  • Lin F, Ribar TJ, Means AR (2011) The Ca2+/calmodulin-dependent protein kinase kinase, CaMKK2, inhibits preadipocyte differentiation. Endocrinology 152:3668–3679

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lin F, Marcelo KL, Rajapakshe K, Coarfa C, Dean A, Wilganowski N, Robinson H, Sevick E, Bissig KD, Goldie LC, Means AR, York B (2015) The camKK2/camKIV relay is an essential regulator of hepatic cancer. Hepatology 62:505–520

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu L, McCullough L, Li J (2014) Genetic deletion of calcium/calmodulin-dependent protein kinase kinase beta (CaMKK beta) or CaMK IV exacerbates stroke outcomes in ovariectomized (OVXed) female mice. BMC Neurosci 15:118

    PubMed  PubMed Central  Google Scholar 

  • MacDonald AF, Bettaieb A, Donohoe DR, Alani DS, Han A, Zhao Y, Whelan J (2018) Concurrent regulation of LKB1 and CaMKK2 in the activation of AMPK in castrate-resistant prostate cancer by a well-defined polyherbal mixture with anticancer properties. BMC Complement Altern Med 18:188

    PubMed  PubMed Central  Google Scholar 

  • Marcelo KL, Means AR, York B (2016) The Ca(2+)/calmodulin/CaMKK2 axis: nature’s metabolic CaMshaft. Trends Endocrinol Metab TEM 27:706–718

    CAS  PubMed  Google Scholar 

  • Martinelli R, Gegg M, Longbottom R, Adamson P, Turowski P, Greenwood J (2009) ICAM-1-mediated endothelial nitric oxide synthase activation via calcium and AMP-activated protein kinase is required for transendothelial lymphocyte migration. Mol Biol Cell 20:995–1005

    CAS  PubMed  PubMed Central  Google Scholar 

  • Massie CE, Lynch A, Ramos-Montoya A, Boren J, Stark R, Fazli L, Warren A, Scott H, Madhu B, Sharma N, Bon H, Zecchini V, Smith DM, Denicola GM, Mathews N, Osborne M, Hadfield J, Macarthur S, Adryan B, Lyons SK, Brindle KM, Griffiths J, Gleave ME, Rennie PS, Neal DE, Mills IG (2011) The androgen receptor fuels prostate cancer by regulating central metabolism and biosynthesis. EMBO J 30:2719–2733

    CAS  PubMed  PubMed Central  Google Scholar 

  • McCullough LD, Tarabishy S, Liu L, Benashski S, Xu Y, Ribar T, Means A, Li J (2013) Inhibition of calcium/calmodulin-dependent protein kinase kinase beta and calcium/calmodulin-dependent protein kinase IV is detrimental in cerebral ischemia. Stroke 44:2559–2566

    CAS  PubMed  Google Scholar 

  • Minichiello L, Calella AM, Medina DL, Bonhoeffer T, Klein R, Korte M (2002) Mechanism of TrkB-mediated hippocampal long-term potentiation. Neuron 36:121–137

    CAS  PubMed  Google Scholar 

  • Mizuno K, Antunes-Martins A, Ris L, Peters M, Godaux E, Giese KP (2007) Calcium/calmodulin kinase kinase beta has a male-specific role in memory formation. Neuroscience 145:393–402

    CAS  PubMed  Google Scholar 

  • Peng IC, Chen Z, Sun W, Li YS, Marin TL, Hsu PH, Su MI, Cui X, Pan S, Lytle CY, Johnson DA, Blaeser F, Chatila T, Shyy JY (2012) Glucagon regulates ACC activity in adipocytes through the CAMKKbeta/AMPK pathway. Am J Physiol Endocrinol Metab 302:E1560–E1568

    CAS  PubMed  PubMed Central  Google Scholar 

  • Peters M, Mizuno K, Ris L, Angelo M, Godaux E, Giese KP (2003) Loss of Ca2+/calmodulin kinase kinase beta affects the formation of some, but not all, types of hippocampus-dependent long-term memory. J Neurosci Off J Soc Neurosci 23:9752–9760

    CAS  Google Scholar 

  • Pinto SM, Subbannayya Y, Rex DAB, Raju R, Chatterjee O, Advani J, Radhakrishnan A, Keshava Prasad TS, Wani MR, Pandey A (2018) A network map of IL-33 signaling pathway. J Cell Commun Signal 12:615–624

    PubMed  PubMed Central  Google Scholar 

  • Pivovarova NB, Andrews SB (2010) Calcium-dependent mitochondrial function and dysfunction in neurons. FEBS J 277:3622–3636

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pritchard ZJ, Cary RL, Yang C, Novack DV, Voor MJ, Sankar U (2015) Inhibition of CaMKK2 reverses age-associated decline in bone mass. Bone 75:120–127

    CAS  PubMed  PubMed Central  Google Scholar 

  • Racioppi L (2013) CaMKK2: a novel target for shaping the androgen-regulated tumor ecosystem. Trends Mol Med 19:83–88

    CAS  PubMed  PubMed Central  Google Scholar 

  • Racioppi L, Means AR (2012) Calcium/calmodulin-dependent protein kinase kinase 2: roles in signaling and pathophysiology. J Biol Chem 287:31658–31665

    CAS  PubMed  PubMed Central  Google Scholar 

  • Racioppi L, Noeldner PK, Lin F, Arvai S, Means AR (2012) Calcium/calmodulin-dependent protein kinase kinase 2 regulates macrophage-mediated inflammatory responses. J Biol Chem 287:11579–11591

    CAS  PubMed  PubMed Central  Google Scholar 

  • Racioppi L, Nelson ER, Huang W, Mukherjee D, Lawrence SA, Lento W, Masci AM, Jiao Y, Park S, York B, Liu Y, Baek AE, Drewry DH, Zuercher WJ, Bertani FR, Businaro L, Geradts J, Hall A, Means AR, Chao N, Chang CY, McDonnell DP (2019) CaMKK2 in myeloid cells is a key regulator of the immune-suppressive microenvironment in breast cancer. Nat Commun 10:2450

    PubMed  PubMed Central  Google Scholar 

  • Radhakrishnan A, Raju R, Tuladhar N, Subbannayya T, Thomas JK, Goel R, Telikicherla D, Palapetta SM, Rahiman BA, Venkatesh DD, Urmila KK, Harsha HC, Mathur PP, Prasad TS, Pandey A, Shemanko C, Chatterjee A (2012) A pathway map of prolactin signaling. J Cell Commun Signal 6:169–173

    PubMed  PubMed Central  Google Scholar 

  • Raju R, Balakrishnan L, Nanjappa V, Bhattacharjee M, Getnet D, Muthusamy B, Kurian Thomas J, Sharma J, Rahiman BA, Harsha HC, Shankar S, Prasad TS, Mohan SS, Bader GD, Wani MR, Pandey A (2011a) A comprehensive manually curated reaction map of RANKL/RANK-signaling pathway. Database J Biol Databases Curation 2011:bar021

    Google Scholar 

  • Raju R, Nanjappa V, Balakrishnan L, Radhakrishnan A, Thomas JK, Sharma J, Tian M, Palapetta SM, Subbannayya T, Sekhar NR, Muthusamy B, Goel R, Subbannayya Y, Telikicherla D, Bhattacharjee M, Pinto SM, Syed N, Srikanth MS, Sathe GJ, Ahmad S, Chavan SN, Kumar GS, Marimuthu A, Prasad TS, Harsha HC, Rahiman BA, Ohara O, Bader GD, Sujatha Mohan S, Schiemann WP, Pandey A (2011b) NetSlim: high-confidence curated signaling maps. Database J Biol Databases Curation 2011:bar032

    Google Scholar 

  • Rex DAB, Nupur Agarwal TS, Prasad K, Kandasamy RK, Subbannayya Y, Pinto SM (2020) A comprehensive pathway map of IL-18-mediated signalling. J Cell Comm Signal 14(2):257–266

    CAS  Google Scholar 

  • Rosen ED, Spiegelman BM (2006) Adipocytes as regulators of energy balance and glucose homeostasis. Nature 444:847–853

    CAS  PubMed  PubMed Central  Google Scholar 

  • Saneyoshi T, Wayman G, Fortin D, Davare M, Hoshi N, Nozaki N, Natsume T, Soderling TR (2008) Activity-dependent synaptogenesis: regulation by a CaM-kinase kinase/CaM-kinase I/betaPIX signaling complex. Neuron 57:94–107

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schmitt JM, Wayman GA, Nozaki N, Soderling TR (2004) Calcium activation of ERK mediated by calmodulin kinase I. J Biol Chem 279:24064–24072

    CAS  PubMed  Google Scholar 

  • Shen QW, Zhu MJ, Tong J, Ren J, Du M (2007) Ca2+/calmodulin-dependent protein kinase kinase is involved in AMP-activated protein kinase activation by alpha-lipoic acid in C2C12 myotubes. Am J Physiol Cell Physiol 293:C1395–C1403

    CAS  PubMed  Google Scholar 

  • Shima T, Mizokami A, Miyagi T, Kawai K, Izumi K, Kumaki M, Ofude M, Zhang J, Keller ET, Namiki M (2012) Down-regulation of calcium/calmodulin-dependent protein kinase kinase 2 by androgen deprivation induces castration-resistant prostate cancer. Prostate 72:1789–1801

    CAS  PubMed  Google Scholar 

  • Subbannayya Y, Syed N, Barbhuiya MA, Raja R, Marimuthu A, Sahasrabuddhe N, Pinto SM, Manda SS, Renuse S, Manju HC, Zameer MA, Sharma J, Brait M, Srikumar K, Roa JC, Vijaya Kumar M, Kumar KV, Prasad TS, Ramaswamy G, Kumar RV, Pandey A, Gowda H, Chatterjee A (2015) Calcium calmodulin dependent kinase kinase 2—a novel therapeutic target for gastric adenocarcinoma. Cancer Biol Ther 16:336–345

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tatemichi TK, Desmond DW, Stern Y, Paik M, Sano M, Bagiella E (1994) Cognitive impairment after stroke: frequency, patterns, and relationship to functional abilities. J Neurol Neurosurg Psychiatry 57:202–207

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tokumitsu H, Wayman GA, Muramatsu M, Soderling TR (1997) Calcium/calmodulin-dependent protein kinase kinase: identification of regulatory domains. Biochemistry 36:12823–12827

    CAS  PubMed  Google Scholar 

  • van Iersel MP, Kelder T, Pico AR, Hanspers K, Coort S, Conklin BR, Evelo C (2008) Presenting and exploring biological pathways with PathVisio. BMC Bioinform 9:399

    Google Scholar 

  • Verma R, Balakrishnan L, Sharma K, Khan AA, Advani J, Gowda H, Tripathy SP, Suar M, Pandey A, Gandotra S, Prasad TS, Shankar S (2016) A network map of Interleukin-10 signaling pathway. J Cell Commun Signal 10:61–67

    PubMed  Google Scholar 

  • Viollet B, Guigas B, Sanz Garcia N, Leclerc J, Foretz M, Andreelli F (2012) Cellular and molecular mechanisms of metformin: an overview. Clin Sci (Lond) 122:253–270

    CAS  Google Scholar 

  • Wang B, Wu Z, Ji Y, Sun K, Dai Z, Wu G (2016) L-glutamine enhances tight junction integrity by activating CaMK kinase 2–AMP-activated protein kinase signaling in intestinal porcine epithelial cells. J Nutr 146:501–508

    CAS  PubMed  Google Scholar 

  • Williams JN, Sankar U (2019) CaMKK2 signaling in metabolism and skeletal disease: a new axis with therapeutic potential. Curr Osteoporos Rep 17:169–177

    PubMed  PubMed Central  Google Scholar 

  • Williams JN, Kambrath AV, Patel RB, Kang KS, Mevel E, Li Y, Cheng YH, Pucylowski AJ, Hassert MA, Voor MJ, Kacena MA, Thompson WR, Warden SJ, Burr DB, Allen MR, Robling AG, Sankar U (2018) Inhibition of CaMKK2 enhances fracture healing by stimulating Indian hedgehog signaling and accelerating endochondral ossification. J Bone Miner Res Off J Am Soc Bone Miner Res 33:930–944

    CAS  Google Scholar 

  • Williamson DL, Butler DC, Alway SE (2009) AMPK inhibits myoblast differentiation through a PGC-1alpha-dependent mechanism. Am J Physiol Endocrinol Metab 297:E304–E314

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang S, Wang J (2015) Estrogen activates AMP-activated protein kinase in human endothelial cells via ERbeta/Ca(2+)/calmodulin-dependent protein kinase kinase beta pathway. Cell Biochem Biophys 72:701–707

    CAS  PubMed  Google Scholar 

  • Yang J, Yu J, Li D, Yu S, Ke J, Wang L, Wang Y, Qiu Y, Gao X, Zhang J, Huang L (2017) Store-operated calcium entry-activated autophagy protects EPC proliferation via the CAMKK2-MTOR pathway in ox-LDL exposure. Autophagy 13:82–98

    CAS  PubMed  Google Scholar 

  • Ye C, Zhang D, Zhao L, Li Y, Yao X, Wang H, Zhang S, Liu W, Cao H, Yu S, Wang Y, Jiang J, Wang H, Li X, Ying H (2016) CaMKK2 suppresses muscle regeneration through the inhibition of myoblast proliferation and differentiation. Int J Mol Sci 17(10):1695

    PubMed Central  Google Scholar 

  • Yoon EK, Jeong YT, Li X, Song C, Park DC, Kim YH, Kim YD, Chang HW, Lee SH, Hwang SL (2013) Glyceollin improves endoplasmic reticulum stress-induced insulin resistance through CaMKK-AMPK pathway in L6 myotubes. J Nutr Biochem 24:1053–1061

    CAS  PubMed  Google Scholar 

  • York B, Li F, Lin F, Marcelo KL, Mao J, Dean A, Gonzales N, Gooden D, Maity S, Coarfa C, Putluri N, Means AR (2017) Pharmacological inhibition of CaMKK2 with the selective antagonist STO-609 regresses NAFLD. Sci Rep 7:11793

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Karnataka Biotechnology and Information Technology Services (KBITS), Government of Karnataka, for the support of the Center for Systems Biology and Molecular Medicine at Yenepoya (Deemed to be University) under the Biotechnology Skill Enhancement Programme in Multiomics Technology (BiSEP GO ITD 02 MDA 2017). MAN is a recipient of a Senior Research Fellowship from the University Grants Commission (UGC), Government of India. RDAB is a recipient of a Senior Research Fellowship from the Indian Council of Medical Research (ICMR), Government of India. GK has been a recipient of a Senior Research Fellowship from the Council of Scientific & Industrial Research (CSIR) Government of India and is currently a recipient of KSTePs DST-Ph.D. Fellowship from the Department of Science and Technology-Karnataka Science and Technology Promotion Society, Government of Karnataka (2020–2021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. S. Keshava Prasad.

Ethics declarations

Conflict of interest

The authors report no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Najar, M.A., Rex, D.A.B., Modi, P.K. et al. A complete map of the Calcium/calmodulin-dependent protein kinase kinase 2 (CAMKK2) signaling pathway. J. Cell Commun. Signal. 15, 283–290 (2021). https://doi.org/10.1007/s12079-020-00592-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12079-020-00592-1

Keywords

Navigation