Skip to main content
Log in

Cellular energy sensing and signaling by AMP-activated protein kinase

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

AMP-activated protein kinase (AMPK) is an energy sensing/signaling protein that, when activated, increases ATP production by stimulating glucose uptake and fatty acid oxidation while at the same time inhibiting ATP=consuming processes such as protein synthesis. Chronic activation of AMPK inhibits expression of lipogenic enzymes in the liver and enhances expression of mitochondrial oxidative enzymes in skeletal muscle. Deficiency of muscle LKB1, the upstream kinase of AMPK, results in greater fluctuation in energy charge during muscle contraction and decreased capacity for exercise at higher work rates. Because AMPK enhances both glucose uptake and fatty acid oxidation in skeletal muscle, it has become a target for prevention and treatment of type 2 diabetes and obesity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abbud, W., Habinowski, S., Zhang, J. Z., Kendrew, J., Elkairi, F. S., Kemp, B. E., Witters, L. A., & Ismail-Beigi, F. (2000). Stimulation of AMP-activated protein kinase (AMPK) is associated with enhancement of Glut1-mediated glucose transport. Archives of Biochemistry and Biophysics, 380, 347–352.

    PubMed  CAS  Google Scholar 

  2. Abu,-Elheiga, L., Brinkley, W. R., Zhong, L., Chirala, S. S., Woldegiorgis, G., Wakil, & SJ (2000). The subcellular localization of acetyl-CoA carboxylase 2. Proceedings of National Academic Sciences of the United States of America, 97, 1444–1449.

    CAS  Google Scholar 

  3. Adams, J., Chen, Z. P., Van Denderen, B. J., Morton, C. J., Parker, M. W., Witters, L. A., Stapleton, D., & Kemp, B. E. (2004). Intrasteric control of AMPK via the gamma1 subunit AMP allosteric regulatory site. Protein Science, 13, 155–165.

    PubMed  CAS  Google Scholar 

  4. Ai, H., Ihlemann, J., Hellsten, Y., Lauritzen, H. P., Hardie, D. G., Galbo, H., & Ploug, T. (2002). Effect of fiber type and nutritional state on AICAR- and contraction-stimulated glucose transport in rat muscle. American Journal of Physiology. Endocrinology and Metabolism, 282, E1291–1300.

    PubMed  CAS  Google Scholar 

  5. Alessi, D. R., Sakamoto, K.,& Bayascas, J. R. (2006). LKB1-dependent signaling pathways. Annual Review of Biochemistry, 75, 137–163.

    Google Scholar 

  6. Altarejos, J. Y., Taniguchi, M., Clanachan, A. S., & Lopaschuk, G. D. (2005). Myocardial ischemia differentially regulates LKB1 and an alternate 5′-AMP-activated protein kinase kinase. The Journal of Biological Chemistry, 280, 183–190.

    PubMed  CAS  Google Scholar 

  7. Andersson, U., Filipsson, K., Abbott, C. R., Woods, A., Smith, K., Bloom, S. R., Carling, D., & Small, C. J. (2004). AMP-activated protein kinase plays a role in the control of food intake. The Journal of Biological Chemistry, 279, 12005–12008.

    PubMed  CAS  Google Scholar 

  8. Barnes, B. R., & Zierath, J. R. (2005). Role of AMP-activated protein kinase in the control of glucose homeostasis. Current Molecular Medicine, 5, 341–348.

    PubMed  CAS  Google Scholar 

  9. Baron, S. J., Li, J., Russell, R. R., 3rd, Neumann, D., Miller, E. J., Tuerk, R., Wallimann, T., Hurley, R. L., Witters, L. A., & Young, L. H. (2005). Dual mechanisms regulating AMPK kinase action in the ischemic heart. Circulation Research, 96, 337–345.

    Google Scholar 

  10. Bateman, A. (1997). The structure of a domain common to archaebacteria and the homocystinuria disease protein. Trends in Biochemical Sciences, 22, 12–13.

    PubMed  CAS  Google Scholar 

  11. Beauloye, C., Marsin, A. S., Bertrand, L., Krause, U., Hardie, D. G., Vanoverschelde, J. L., & Hue, L. (2001). Insulin antagonizes AMP-activated protein kinase activation by ischemia or anoxia in rat hearts, without affecting total adenine nucleotides. FEBS Letters, 505, 348–352.

    PubMed  CAS  Google Scholar 

  12. Beckers, A., Organe, S., Timmermans, L., Vanderhoydonc, F., Deboel, L., Derua, R., Waelkens, E., Brusselmans, K., Verhoeven, G., & Swinnen, J. V. (2006). Methotrexate enhances the antianabolic and antiproliferative effects of 5-aminoimidazole-4-carboxamide riboside. Molecular Cancer Therapeutics, 5, 2211–2217.

    PubMed  CAS  Google Scholar 

  13. Bergeron, R., Previs, S. F., Cline, G. W., Perret, P., Russell, R. R., 3rd, Young, L. H., & Shulman, G. I. (2001). Effect of 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside infusion on in␣vivo glucose and lipid metabolism in lean and obese Zucker rats. Diabetes, 50, 1076–1082.

  14. Bergeron, R., Russell, R. R., 3rd, Young, L. H., Ren, J. M., Marcucci, M., Lee, A., & Shulman, G. I. (1999). Effect of AMPK activation on muscle glucose metabolism in conscious rats. The American Journal of Physiology, 276, E938–944.

    Google Scholar 

  15. Birk, J. B., & Wojtaszewski, J. F. (2006). Predominant {alpha}2/{beta}2/{gamma}3 AMPK Activation during exercise in human skeletal muscle. The Journal Physiology, 577, 1021–1032.

    Google Scholar 

  16. Bolster, D. R., Crozier, S. J., Kimball, S. R., & Jefferson, L. S. (2002). AMP-activated protein kinase suppresses protein synthesis in rat skeletal muscle through down-regulated mammalian target of rapamycin (mTOR) signaling. The Journal of Biological Chemistry, 277, 23977–23980.

    PubMed  CAS  Google Scholar 

  17. Bowker, S. L., Majumdar, S. R., Veugelers, P., & Johnson, J. A. (2006). Increased cancer-related mortality for patients with type 2 diabetes who use sulfonylureas or insulin: response to Farooki and Schneider. Diabetes Care, 29, 1990–1991.

    PubMed  Google Scholar 

  18. Brownsey, R. W., Boone, A. N., Elliott, J. E., Kulpa, J. E., & Lee, W. M. (2006). Regulation of acetyl-CoA carboxylase. Biochemical Society Transactions, 34, 223–227.

    PubMed  CAS  Google Scholar 

  19. Brozinick, J. T. Jr., & Birnbaum, M. J. (1998). Insulin, but not contraction, activates Akt/PKB in isolated rat skeletal muscle. The Journal of Biological Chemistry, 273, 14679–14682.

    PubMed  CAS  Google Scholar 

  20. Buhl, E. S., Jessen, N., Pold, R., Ledet, T., Flyvbjerg, A., Pedersen, S. B., Pedersen, O., Schmitz, O., & Lund, S. (2002). Long-term AICAR administration reduces metabolic disturbances and lowers blood pressure in rats displaying features of the insulin resistance syndrome. Diabetes, 51, 2199–2206.

    PubMed  CAS  Google Scholar 

  21. Carlson, C. L., & Winder, W. W. (1999). Liver AMP-activated protein kinase and acetyl-CoA carboxylase during and after exercise. Journal of Applied Physiology, 86, 669–674.

    PubMed  CAS  Google Scholar 

  22. Chen, Z. P., McConell, G. K., Michell, B. J., Snow, R. J., Canny, B. J., & Kemp, B. E. (2000). AMPK signaling in contracting human skeletal muscle: acetyl-CoA carboxylase and NO synthase phosphorylation. American Journal of Physiology. Endocrinology and Metabolism, 279, E1202–1206.

    PubMed  CAS  Google Scholar 

  23. Cheng, S. W., Fryer, L. G., Carling, D., & Shepherd, P. R. (2004). Thr2446 is a novel mammalian target of rapamycin (mTOR) phosphorylation site regulated by nutrient status. The Journal of Biological Chemistry, 279, 15719–15722.

    PubMed  CAS  Google Scholar 

  24. Cheung, P. C., Salt, I. P., Davies, S. P., Hardie, D. G., & Carling, D. (2000). Characterization of AMP-activated protein kinase␣gamma-subunit isoforms and their role in AMP binding. The Biochemical Journal, 346(Pt 3), 659–669.

    PubMed  CAS  Google Scholar 

  25. Cool, B., Zinker, B., Chiou, W., Kifle, L., Cao, N., Perham, M., Dickinson, R., Adler, A., Gagne, G., Iyengar, R., Zhao, G., Marsh, K., Kym, P., Jung, P., Camp, H. S., & Frevert, E. (2006). Identification and characterization of a small molecule AMPK activator that treats key components of type 2 diabetes and the metabolic syndrome. Cell Metabolism, 3, 403–416.

    PubMed  CAS  Google Scholar 

  26. Coven, D. L., Hu, X., Cong, L., Bergeron, R., Shulman, G. I., Hardie, D. G., & Young, L. H. (2003). Physiological role of AMP-activated protein kinase in the heart: graded activation during exercise. American Journal of Physiology. Endocrinology and Metabolism, 285, E629–636.

    PubMed  CAS  Google Scholar 

  27. Cusi, K., Consoli, A., & DeFronzo, R. A. (1996). Metabolic effects of metformin on glucose and lactate metabolism in noninsulin-dependent diabetes mellitus. The Journal of Clinical Endocrinology and Metabolism, 81, 4059–4067.

    PubMed  CAS  Google Scholar 

  28. Daniel, T., & Carling, D. (2002). Functional analysis of mutations in the gamma 2 subunit of AMP-activated protein kinase associated with cardiac hypertrophy and Wolff–Parkinson–White syndrome. The Journal of Biological Chemistry, 277, 51017–51024.

    PubMed  CAS  Google Scholar 

  29. Dasilva Xavier, G., Leclerc, I., Varadi, A., Tsuboi, T., Moule, S. K., & Rutter, G. A. (2003). Role for AMP-activated protein kinase in glucose-stimulated insulin secretion and preproinsulin gene expression. The Biochemical Journal, 371, 761–774.

    Google Scholar 

  30. Daval, M., Diot-Dupuy, F., Bazin, R., Hainault, I., Viollet, B., Vaulont, S., Hajduch, E., Ferre, P., & Foufelle, F. (2005). Anti-lipolytic action of AMP-activated protein kinase in rodent adipocytes. The Journal of Biological Chemistry, 280, 25250–25257.

    PubMed  CAS  Google Scholar 

  31. Daval, M., Foufelle, F., & Ferre, P. (2006). Functions of AMP-activated protein kinase in adipose tissue. Journal of Physiology, 574, 55–62.

    Google Scholar 

  32. Davies, S. P., Helps, N. R., Cohen, P. T., & Hardie, D. G. (1995). 5′-AMP inhibits dephosphorylation, as well as promoting phosphorylation, of the AMP-activated protein kinase. Studies using bacterially expressed human protein phosphatase-2C alpha and native bovine protein phosphatase-2AC. FEBS Letters, 377, 421–425.

    PubMed  CAS  Google Scholar 

  33. Davies, S. P., Sim, A. T., & Hardie, D. G. (1990). Location and function of three sites phosphorylated on rat acetyl-CoA carboxylase by the AMP-activated protein kinase. European Journal of Biochemistry, 187, 183–190.

    PubMed  CAS  Google Scholar 

  34. Derave, W., Ai, H., Ihlemann, J., Witters, L. A., Kristiansen, S., Richter, E. A., & Ploug, T. (2000). Dissociation of AMP-activated protein kinase activation and glucose transport in contracting slow-twitch muscle. Diabetes, 49, 1281–1287.

    PubMed  CAS  Google Scholar 

  35. Dixon, R., Gourzis, J., McDermott, D., Fujitaki, J., Dewland, P., & Gruber, H. (1991). AICA-riboside: safety, tolerance, and pharmacokinetics of a novel adenosine-regulating agent. Journal of Clinical Pharmacology, 31, 342–347.

    PubMed  CAS  Google Scholar 

  36. Dyck, J. R., Gao, G., Widmer, J., Stapleton, D., Fernandez, C. S., Kemp, B. E., & Witters, L. A. (1996). Regulation of 5′-AMP-activated protein kinase activity by the noncatalytic beta and gamma subunits. The Journal of Biological Chemistry, 271, 17798–17803.

    PubMed  CAS  Google Scholar 

  37. Dyck, J. R., Kudo, N., Barr, A. J., Davies, S. P., Hardie, D. G., & Lopaschuk, G. D. (1999). Phosphorylation control of cardiac acetyl-CoA carboxylase by cAMP-dependent protein kinase and␣5′-AMP activated protein kinase. European Journal of Biochemistry, 262, 184–190.

    PubMed  CAS  Google Scholar 

  38. Ellingson, W. J., Chesser, D. G., & Winder, W. W. (2006). The effects of 3-phosphoglycerate and other metabolites on the activation of Amp-activated protein kinase by Lkb1-Strad-Mo25. American Journal of Physiology. Endocrinology and Metabolism, 292, E400–407.

    Google Scholar 

  39. Evans, J. M., Donnelly, L. A., Emslie-Smith, A. M., Alessi, D. R., & Morris, A. D. (2005). Metformin and reduced risk of cancer in diabetic patients. BMJ, 330, 1304–1305.

    PubMed  Google Scholar 

  40. Fiedler, M., Zierath, J. R., Selen, G., Wallberg-Henriksson, H., Liang, Y., & Sakariassen, K. S. (2001). 5-aminoimidazole-4-carboxy-amide-1-beta-d-ribofuranoside treatment ameliorates hyperglycaemia and hyperinsulinaemia but not dyslipidaemia in KKAy-CETP mice. Diabetologia, 44, 2180–2186.

    PubMed  CAS  Google Scholar 

  41. Fisher, J. S., Gao, J., Han, D. H., Holloszy, J. O., & Nolte, L. A. (2002). Activation of AMP kinase enhances sensitivity of muscle glucose transport to insulin. American Journal of Physiology. Endocrinology and Metabolism, 282, E18–23.

    PubMed  CAS  Google Scholar 

  42. Frederich, M., & Balschi, J. A. (2002). The relationship between AMP-activated protein kinase activity and AMP concentration in the isolated perfused rat heart. The Journal of Biological Chemistry, 277, 1928–1932.

    PubMed  CAS  Google Scholar 

  43. Frederich, M., Zhang, L., & Balschi, J. A. (2005). Hypoxia and AMP independently regulate AMP-activated protein kinase activity in heart. American Journal of Physiology. Heart and Circulatory Physiology, 288, H2412–2421.

    PubMed  CAS  Google Scholar 

  44. Fryer, L. G., Hajduch, E., Rencurel, F., Salt, I. P., Hundal, H. S., Hardie, D. G., & Carling, D. (2000). Activation of glucose transport by AMP-activated protein kinase via stimulation of nitric oxide synthase. Diabetes, 49, 1978–1985.

    PubMed  CAS  Google Scholar 

  45. Fryer, L. G., Parbu-Patel, A., & Carling, D. (2002). The Anti-diabetic drugs rosiglitazone and metformin stimulate AMP-activated protein kinase through distinct signaling pathways. The Journal of Biological Chemistry, 277, 25226–25232.

    PubMed  CAS  Google Scholar 

  46. Fujii, N., Aschenbach, W. G., Musi, N., Hirshman, M. F., & Goodyear, L. J. (2004). Regulation of glucose transport by the AMP-activated protein kinase. The Proceedings of the Nutrition Society, 63, 205–210.

    PubMed  CAS  Google Scholar 

  47. Fujii, N., Jessen, N., Goodyear, L. J. (2006). AMP-activated protein kinase and the regulation of glucose transport. American Journal of Physiology. Endocrinology and Metabolism, 291, E867–877.

    Google Scholar 

  48. Gamble, J., & Lopaschuk, G. D. (1997). Insulin inhibition of 5′ adenosine monophosphate-activated protein kinase in the heart results in activation of acetyl coenzyme A carboxylase and inhibition of fatty acid oxidation. Metabolism, 46, 1270–1274.

    PubMed  CAS  Google Scholar 

  49. Garton, A. J., Campbell, D. G., Carling, D., Hardie, D. G., Colbran, R. J., & Yeaman, S. J. (1989). Phosphorylation of bovine hormone-sensitive lipase by the AMP-activated protein kinase. A possible antilipolytic mechanism. European Journal of Biochemistry, 179, 249–254.

    PubMed  CAS  Google Scholar 

  50. Gonzalez, A. A., Kumar, R., Mulligan, J. D., Davis, A. J., Weindruch, R., & Saupe, K. W. (2004). Metabolic adaptations to fasting and chronic caloric restriction in heart, muscle, and liver do not include changes in AMPK activity. American Journal of Physiology. Endocrinology and Metabolism, 287, E1032–1037.

    PubMed  CAS  Google Scholar 

  51. Halseth, A. E., Ensor, N. J., White, T. A., Ross, S. A., & Gulve, E. A. (2002). Acute and chronic treatment of ob/ob and db/db mice with AICAR decreases blood glucose concentrations. Biochemical and Biophysical Research Communications, 294, 798–805.

    PubMed  CAS  Google Scholar 

  52. Hancock, C. R., Janssen, E., & Terjung, R. L. (2006). Contraction-mediated phosphorylation of AMPK is lower in skeletal muscle of adenylate kinase-deficient mice. Journal of Applied Physiology, 100, 406–413.

    PubMed  CAS  Google Scholar 

  53. Hardie, D. G. (1999). Roles of the AMP-activated/SNF1 protein kinase family in the response to cellular stress. Biochemical Society Symposium, 64, 13–27.

    PubMed  CAS  Google Scholar 

  54. Hardie, D. G. (2003). Minireview: the AMP-activated protein kinase cascade: the key sensor of cellular energy status. Endocrinology, 144, 5179–5183.

    PubMed  CAS  Google Scholar 

  55. Hardie, D. G. (2004). AMP-activated protein kinase: a key system mediating metabolic responses to exercise. Medicine Science Sports Exercise, 36, 28–34.

    CAS  Google Scholar 

  56. Hardie, D. G. (2006). AMP-activated protein kinase as a drug target. Annual Review of Pharmacology and Toxicology, 47, 185–210.

    Google Scholar 

  57. Hardie, D. G., & Carling, D. (1997). The AMP-activated protein kinase—fuel gauge of the mammalian cell? European Journal of Biochemistry, 246, 259–273.

    PubMed  CAS  Google Scholar 

  58. Hardie, D. G., & Hawley, S. A. (2001). AMP-activated protein kinase: the energy charge hypothesis revisited. Bioessays, 23, 1112–1119.

    PubMed  CAS  Google Scholar 

  59. Hardie, D. G., & Sakamoto, K. (2006). AMPK: a key sensor of fuel and energy status in skeletal muscle. Physiology (Bethesda), 21, 48–60.

    CAS  Google Scholar 

  60. Hawley, S. A., Boudeau, J., Reid, J. L., Mustard, K. J., Udd, L., Makela, T. P., Alessi, D. R., & Hardie, D. G. (2003). Complexes between the LKB1 tumor suppressor, STRAD alpha/beta and MO25 alpha/beta are upstream kinases in the AMP-activated protein kinase cascade. Journal of Biology, 2, 28.

    PubMed  Google Scholar 

  61. Hawley, S. A., Davison, M., Woods, A., Davies, S. P., Beri, R. K., Carling, D., & Hardie, D. G. (1996). Characterization of the AMP-activated protein kinase kinase from rat liver, identification of threonine 172 as the major site at which it phosphorylates AMP-activated protein kinase. The Journal of Biological Chemistry, 271, 27879–27887.

    PubMed  CAS  Google Scholar 

  62. Hawley, S. A., Gadalla, A. E., Olsen, G. S., & Hardie, D. G. (2002). The antidiabetic drug metformin activates the AMP-activated protein kinase cascade via an adenine nucleotide-independent mechanism. Diabetes, 51, 2420–2425.

    PubMed  CAS  Google Scholar 

  63. Hawley, S. A., Pan, D. A., Mustard, K. J., Ross, L., Bain, J., Edelman, A. M., Frenguelli, B. G., & Hardie, D. G. (2005). Calmodulin-dependent protein kinase kinase-beta is an alternative upstream kinase for AMP-activated protein kinase. Cell Metabolism, 2, 9–19.

    PubMed  CAS  Google Scholar 

  64. Hay, N., & Sonenberg, N. (2004). Upstream and downstream of mTOR. Genes & Development, 18, 1926–1945.

    CAS  Google Scholar 

  65. Hayashi, T., Hirshman, M. F., Kurth, E. J., Winder, W. W., & Goodyear, L. J. (1998). Evidence for 5’ AMP-activated protein kinase mediation of the effect of muscle contraction on glucose transport. Diabetes, 47, 1369–1373.

    PubMed  CAS  Google Scholar 

  66. Holloway, G. P., Bezaire, V., Heigenhauser, G. J., Tandon, N. N., Glatz, J. F., Luiken, J. J., Bonen, A., & Spriet, L. L. (2006). Mitochondrial long chain fatty acid oxidation, fatty acid translocase/CD36 content and carnitine palmitoyltransferase I activity in human skeletal muscle during aerobic exercise. The Journal of Physiology, 571, 201–210.

    PubMed  CAS  Google Scholar 

  67. Holmes, B. F., Kurth-Kraczek, E. J., & Winder, W. W. (1999). Chronic activation of 5′-AMP-activated protein kinase increases GLUT-4, hexokinase, and glycogen in muscle. Journal of Applied Physiology, 87, 1990–1995.

    PubMed  CAS  Google Scholar 

  68. Holmes, B. F., Sparling, D. P., Olson, A. L., Winder, W. W., & Dohm, G. L. (2005). Regulation of muscle GLUT4 enhancer factor and myocyte enhancer factor 2 by AMP-activated protein kinase. American Journal of Physiology. Endocrinology and Metabolism, 289, E1071–1076.

    PubMed  CAS  Google Scholar 

  69. Hopkins, T. A., Dyck, J. R., & Lopaschuk, G. D. (2003). AMP-activated protein kinase regulation of fatty acid oxidation in the ischaemic heart. Biochemical Society Transactions, 31, 207–212.

    PubMed  CAS  Google Scholar 

  70. Horman, S., Browne, G., Krause, U., Patel, J., Vertommen, D., Bertrand, L., Lavoinne, A., Hue, L., Proud, C., & Rider, M. (2002). Activation of AMP-activated protein kinase leads to the phosphorylation of elongation factor 2 and an inhibition of protein synthesis. Current Biology, 12, 1419–1423.

    PubMed  CAS  Google Scholar 

  71. Horman, S., Vertommen, D., Heath, R., Neumann, D., Mouton, V., Woods, A., Schlattner, U., Wallimann, T., Carling, D., Hue, L., & Rider, M. H. (2006). Insulin antagonizes ischemia-induced Thr172 phosphorylation of AMP-activated protein kinase alpha-subunits in heart via hierarchical phosphorylation of Ser485/491. The Journal of Biological Chemistry, 281, 5335–5340.

    PubMed  CAS  Google Scholar 

  72. Hother-Nielsen, O., Schmitz, O., Andersen, P. H., Beck-Nielsen, H., & Pedersen, O. (1989). Metformin improves peripheral but not hepatic insulin action in obese patients with type II diabetes. Acta Endocrinologica (Copenh), 120, 257–265.

    CAS  Google Scholar 

  73. Hurley, R. L., Barre, L. K., Wood, S. D., Anderson, K. A., Kemp, B. E., Means, A. R., & Witters, L. A. (2006). Regulation of AMP-activated protein kinase by multi-site phosphorylation in response to agents that elevate cellular cAMP. The Journal of Biological Chemistry, 281, 36662–36672.

    Google Scholar 

  74. Hurst, D., Taylor, E. B., Cline, T. D., Greenwood, L. J., Compton, C. L., Lamb, J. D., & Winder, W. W. (2005). AMP-activated protein kinase kinase activity and phosphorylation of AMP-activated protein kinase in contracting muscle of sedentary and endurance-trained rats. American Journal of Physiology. Endocrinology and Metabolism, 289, E710–715.

    PubMed  CAS  Google Scholar 

  75. Hutber, C. A., Hardie, D. G., & Winder, W. W. (1997). Electrical stimulation inactivates muscle acetyl-CoA carboxylase and increases AMP-activated protein kinase. The American Journal of Physiology, 272, E262–266.

    PubMed  CAS  Google Scholar 

  76. Hutchinson, D. S., & Bengtsson, T. (2006). AMP-activated protein kinase activation by adrenoceptors in L6 skeletal muscle cells: mediation by alpha1-adrenoceptors causing glucose uptake. Diabetes, 55, 682–690.

    PubMed  CAS  Google Scholar 

  77. Hutchinson, D. S., Chernogubova, E., Dallner, O. S., Cannon, B., & Bengtsson, T. (2005). Beta-adrenoceptors, but not alpha-adrenoceptors, stimulate AMP-activated protein kinase in brown adipocytes independently of uncoupling protein-1. Diabetologia, 48, 2386–2395.

    PubMed  CAS  Google Scholar 

  78. Igata, M., Motoshima, H., Tsuruzoe, K., Kojima, K., Matsumura, T., Kondo, T., Taguchi, T., Nakamaru, K., Yano, M., Kukidome, D., Matsumoto, K., Toyonaga, T., Asano, T., Nishikawa, T., & Araki, E. (2005). Adenosine monophosphate-activated protein kinase suppresses vascular smooth muscle cell proliferation through the inhibition of cell cycle progression. Circulation Research, 97, 837–844.

    PubMed  CAS  Google Scholar 

  79. Iglesias, M. A., Ye, J. M., Frangioudakis, G., Saha, A. K., Tomas, E., Ruderman, N. B., Cooney, G. J., & Kraegen, E. W. (2002). AICAR administration causes an apparent enhancement␣of muscle and liver insulin action in insulin-resistant high-fat-fed rats. Diabetes, 51, 2886–2894.

    PubMed  CAS  Google Scholar 

  80. Imamura, K., Ogura, T., Kishimoto, A., Kaminishi, M., & Esumi, H. (2001). Cell cycle regulation via p53 phosphorylation by a 5′-AMP activated protein kinase activator, 5-aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside, in a human hepatocellular carcinoma cell line. Biochemical and Biophysical Research Communications, 287, 562–567.

    PubMed  CAS  Google Scholar 

  81. Ingebritsen, T. S., Stewart, A. A., & Cohen, P. (1983). The protein phosphatases involved in cellular regulation. 6. Measurement of type-1 and type-2 protein phosphatases in extracts of mammalian tissues; an assessment of their physiological roles. European Journal of Biochemistry, 132, 297–307.

    PubMed  CAS  Google Scholar 

  82. Inoki, K., Zhu, T., & Guan, K. L. (2003). TSC2 mediates cellular energy response to control cell growth and survival. Cell, 115, 577–590.

    PubMed  CAS  Google Scholar 

  83. Inzucchi, S. E., Maggs, D. G., Spollett, G. R., Page, S. L., Rife, F. S., Walton, V., & Shulman, G. I. (1998). Efficacy and metabolic effects of metformin and troglitazone in type II diabetes mellitus. The New England Journal of Medicine, 338, 867–872.

    PubMed  CAS  Google Scholar 

  84. Iseli, T. J., Walter, M., van Denderen, B. J., Katsis, F., Witters, L. A., Kemp, B. E., Michell, B. J., & Stapleton, D. (2005). AMP-activated protein kinase beta subunit tethers alpha and gamma subunits via its C-terminal sequence (186–270). The Journal of Biological Chemistry, 280, 13395–13400.

    PubMed  CAS  Google Scholar 

  85. Jessen, N., Pold, R., Buhl, E. S., Jensen, L. S., Schmitz, O., & Lund, S. (2003). Effects of AICAR and exercise on insulin-stimulated glucose uptake, signaling, and GLUT-4 content in rat muscles. Journal of Applied Physiology, 94, 1373–1379.

    PubMed  CAS  Google Scholar 

  86. Ju, J. S., Gitcho, M. A., Casmaer, C. A., Patil, P. B., Han, D. G., Spencer, S. A., & Fisher, J. S. (2007). Potentiation of insulin-stimulated glucose transport by the AMP-activated protein kinase. American Journal of Physiology. Cell Physiology, 292, C564–572.

    Google Scholar 

  87. Kahn, B. B., Alquier, T., Carling, D., & Hardie, D. G. (2005). AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism. Cell Metabolism, 1, 15–25.

    PubMed  CAS  Google Scholar 

  88. Kawanaka, K., Nolte, L. A., Han, D. H., Hansen, P. A., & Holloszy, J. O. (2000). Mechanisms underlying impaired GLUT-4 translocation in glycogen-supercompensated muscles of exercised rats. American Journal of Physiology. Endocrinology and Metabolism, 279, E1311–1318.

    PubMed  CAS  Google Scholar 

  89. Kelly, M., Keller, C., Avilucea, P. R., Keller, P., Luo, Z., Xiang, X., Giralt, M., Hidalgo, J., Saha, A. K., Pedersen, B. K., & Ruderman, N. B. (2004). AMPK activity is diminished in tissues of IL-6 knockout mice: the effect of exercise. Biochemical and Biophysical Research Communication, 320, 449–454.

    CAS  Google Scholar 

  90. Kim, M. S., Park, J. Y., Namkoong, C., Jang, P. G., Ryu, J. W., Song, H. S., Yun, J. Y., Namgoong, I. S., Ha, J., Park, I. S., Lee, I. K., Viollet, B., Youn, J. H., Lee, H. K., & Lee, K. U. (2004). Anti-obesity effects of alpha-lipoic acid mediated by suppression of hypothalamic AMP-activated protein kinase. Nature Medicine, 10, 727–733.

    PubMed  CAS  Google Scholar 

  91. Kim, J., Solis, R. S., Arias, E. B., & Cartee, G. D. (2004). Postcontraction insulin sensitivity: relationship with contraction protocol, glycogen concentration, and 5′ AMP-activated protein kinase phosphorylation. Journal of Applied Physiology, 96, 575–583.

    PubMed  CAS  Google Scholar 

  92. Koh, H. J., Arnolds, D. E., Fujii, N., Tran, T. T., Rogers, M. J., Jessen, N., Li, Y., Liew, C. W., Ho, R. C., Hirshman, M. F., Kulkarni, R. N., Kahn, C. R., & Goodyear, L. J. (2006). Skeletal muscle-selective knockout of LKB1 increases insulin sensitivity, improves glucose homeostasis, and decreases TRB3. Molecular and Cellular Biology, 26, 8217–8227.

    PubMed  CAS  Google Scholar 

  93. Koistinen, H. A., Galuska, D., Chibalin, A. V., Yang, J., Zierath, J. R., Holman, G. D., Wallberg-&, Henriksson, H. (2003). 5-amino-imidazole carboxamide riboside increases glucose transport and cell-surface GLUT4 content in skeletal muscle from subjects with type 2 diabetes. Diabetes, 52, 1066–1072.

    PubMed  CAS  Google Scholar 

  94. Kola, B., Hubina, E., Tucci, S. A., Kirkham, T. C., Garcia, E. A., Mitchell, S. E., Williams, L. M., Hawley, S. A., Hardie, D. G., Grossman, A. B., & Korbonits, M. (2005). Cannabinoids and ghrelin have both central and peripheral metabolic and cardiac effects via AMP-activated protein kinase. The Journal of Biological Chemistry, 280, 25196–25201.

    PubMed  CAS  Google Scholar 

  95. Kovacic, S., Soltys, C. L., Barr, A. J., Shiojima, I., Walsh, K., & Dyck, J. R. (2003). Akt activity negatively regulates phosphorylation of AMP-activated protein kinase in the heart. The Journal of Biological Chemistry, 278, 39422–39427.

    PubMed  CAS  Google Scholar 

  96. Kramer, H. F., Witczak, C. A., Fujii, N., Jessen, N., Taylor, E. B., Arnolds, D. E., Sakamoto, K., Hirshman, M. F., & Goodyear, L. J. (2006). Distinct signals regulate AS160 phosphorylation in response to insulin, AICAR, and contraction in mouse skeletal muscle. Diabetes, 55, 2067–2076.

    PubMed  CAS  Google Scholar 

  97. Kudo, N., Gillespie, J. G., Kung, L., Witters, L. A., Schulz, R., Clanachan, A. S., & Lopaschuk, G. D. (1996). Characterization of 5′AMP-activated protein kinase activity in the heart and its role in inhibiting acetyl-CoA carboxylase during reperfusion following ischemia. Biochimica et Biophysica Acta, 1301, 67–75.

    PubMed  Google Scholar 

  98. Kurth,-Kraczek, E. J., Hirshman, M. F., Goodyear, L. J., & Winder, W. W. (1999). 5′ AMP-activated protein kinase activation causes GLUT4 translocation in skeletal muscle. Diabetes, 48, 1667–1671.

    PubMed  CAS  Google Scholar 

  99. Lang, T., Yu, L., Tu, Q., Jiang, J., Chen, Z., Xin, Y., Liu, G., & Zhao, S. (2000). Molecular cloning, genomic organization, and mapping of PRKAG2, a heart abundant gamma 2 subunit of 5′-AMP-activated protein kinase, to human chromosome 7q36. Genomics, 70, 258–263.

    PubMed  CAS  Google Scholar 

  100. Lebrasseur, N. K., Kelly, M., Tsao, T. S., Farmer, S. R., Saha, A. K., & Ruderman, N. B., Tomas, E. (2006). Thiazolidinediones can rapidly activate AMP-activated protein kinase (AMPK) in mammalian tissues. American Journal of Physiology. Endocrinology and Metabolism, 291, E175–181.

    Google Scholar 

  101. Leclerc, I., & Rutter, G. A. (2004). AMP-activated protein kinase: a new beta-cell glucose sensor? Regulation by amino acids and calcium ions. Diabetes, 53(Suppl 3), S67–74.

    PubMed  CAS  Google Scholar 

  102. Leclerc, I., Woltersdorf, W. W., da Silva Xavier, G., Rowe, R. L., Cross, S. E., Korbutt, G. S., Rajotte, R. V., Smith, R., & Rutter, G. A. (2004). Metformin, but not leptin, regulates AMP-activated protein kinase in pancreatic islets: impact on glucose-stimulated insulin secretion. American Journal of Physiology. Endocrinology and Metabolism, 286, E1023–1031.

    PubMed  CAS  Google Scholar 

  103. Lehmann, J. M., Moore, L. B., Smith-Oliver, T. A., Wilkison, W. O., Willson, T. M., & Kliewer, S. A. (1995). An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor gamma (PPAR gamma). The Journal of Biological Chemistry, 270, 12953–12956.

    PubMed  CAS  Google Scholar 

  104. Lessard, S. J., Chen, Z. P., Watt, M. J., Hashem, M., Reid, J. J., Febbraio, M. A., Kemp, B. E., & Hawley, J. A. (2006). Chronic rosiglitazone treatment restores AMPKalpha2 activity in insulin-resistant rat skeletal muscle. American Journal of Physiology. Endocrinology and Metabolism, 290, E251–257.

    PubMed  CAS  Google Scholar 

  105. Leung, J. M., Stanley, T., 3rd, Mathew, J., Curling, P., Barash, P., Salmenpera, M., Reves, J. G., Hollenberg, M., & Mangano, D. T. (1994). An initial multicenter, randomized controlled trial on the safety and efficacy of acadesine in patients undergoing coronary artery bypass graft surgery. SPI Research Group. Anesthesia and analgesia, 78, 420–434.

  106. Lihn, A. S., Jessen, N., Pedersen, S. B., Lund, S., & Richelsen, B. (2004). AICAR stimulates adiponectin and inhibits cytokines in adipose tissue. Biochemical and Biophysical Research Communications, 316, 853–858.

    PubMed  CAS  Google Scholar 

  107. Lizcano, J. M., Goransson, O., Toth, R., Deak, M., Morrice, N. A., Boudeau, J., Hawley, S. A., Udd, L., Makela, T. P., Hardie, D. G., & Alessi, D. R. (2004). LKB1 is a master kinase that activates 13 kinases of the AMPK subfamily, including MARK/PAR-1. The EMBO Journal, 23, 833–843.

    PubMed  CAS  Google Scholar 

  108. Longnus, S. L., Segalen, C., Giudicelli, J., Sajan, M. P., Farese, R. V. Van, & Obberghen, E. (2005). Insulin signalling downstream of protein kinase B is potentiated by 5′AMP-activated protein kinase in rat hearts in␣vivo. Diabetologia, 48, 2591–2601.

    PubMed  CAS  Google Scholar 

  109. MacDonald, C., Wojtaszewski, J. F., Pedersen, B. K., Kiens, B., & Richter, E. A. (2003). Interleukin-6 release from human skeletal muscle during exercise: relation to AMPK activity. Journal of Applied Physiology, 95, 2273–2277.

    PubMed  CAS  Google Scholar 

  110. Maeda, N., Takahashi, M., Funahashi, T., Kihara, S., Nishizawa, H., Kishida, K., Nagaretani, H., Matsuda, M., Komuro, R., Ouchi, N., Kuriyama, H., Hotta, K., Nakamura, T., Shimomura, I., & Matsuzawa, Y. (2001). PPARgamma ligands increase expression and plasma concentrations of adiponectin, an adipose-derived protein. Diabetes, 50, 2094–2099.

    PubMed  CAS  Google Scholar 

  111. Mahlapuu, M., Johansson, C., Lindgren, K., Hjalm, G., Barnes, B. R., Krook, A., Zierath, J. R., Andersson, L., & Marklund, S. (2004). Expression profiling of the gamma-subunit isoforms of AMP-activated protein kinase suggests a major role for gamma3 in white skeletal muscle. American Journal of Physiology. Endocrinology Metabolism, 286, E194–200.

    CAS  Google Scholar 

  112. Marley, A. E., Sullivan, J. E., Carling, D., Abbott, W. M., Smith, G. J., Taylor, I. W., Carey, F., & Beri, R. K. (1996). Biochemical characterization and deletion analysis of recombinant human protein phosphatase 2C alpha. The Biochemical Journal, 320(Pt 3), 801–806.

    PubMed  CAS  Google Scholar 

  113. Marsin, A. S., Bertrand, L., Rider, M. H., Deprez, J., Beauloye, C., Vincent, M. F., Van den Berghe, G., Carling, D., & Hue, L. (2000). Phosphorylation and activation of heart PFK-2 by AMPK has a role in the stimulation of glycolysis during ischaemia. Current Biology, 10, 1247–1255.

    PubMed  CAS  Google Scholar 

  114. Merrill, G. F., Kurth, E. J., Hardie, D. G., & Winder, W. W. (1997). AICA riboside increases AMP-activated protein kinase, fatty acid oxidation, and glucose uptake in rat muscle. The American Journal of Physiology, 273, E1107–1112.

    PubMed  CAS  Google Scholar 

  115. Merrill, G. F., Kurth, E. J., Rasmussen, B. B., & Winder, W. W. (1998). Influence of malonyl-CoA and palmitate concentration on rate of palmitate oxidation in rat muscle. Journal of Applied Physiology, 85, 1909–1914.

    PubMed  CAS  Google Scholar 

  116. Minokoshi, Y., Alquier, T., Furukawa, N., Kim, Y. B., Lee, A., Xue, B., Mu, J., Foufelle, F., Ferre, P., Birnbaum, M. J., Stuck, B. J., & Kahn, B. B. (2004). AMP-kinase regulates food intake by responding to hormonal and nutrient signals in the hypothalamus. Nature, 428, 569–574.

    PubMed  CAS  Google Scholar 

  117. Minokoshi, Y., Kim, Y. B., Peroni, O. D., Fryer, L. G., Muller, C., Carling, D., & Kahn, B. B. (2002). Leptin stimulates fatty-acid oxidation by activating AMP-activated protein kinase. Nature, 415, 339–343.

    PubMed  CAS  Google Scholar 

  118. Mitchelhill, K. I., Michell, B. J., House, C. M., Stapleton, D., Dyck, J., Gamble, J., Ullrich, C., Witters, L. A., & Kemp, B. E. (1997). Posttranslational modifications of the 5′-AMP-activated protein kinase beta1 subunit. The Journal of Biological Chemistry, 272, 24475–24479.

    PubMed  CAS  Google Scholar 

  119. Momcilovic, M., Hong, S. P., Carlson, M. (2006). Mammalian TAK1 activates Snf1 protein kinase in yeast and phosphorylates AMP-activated protein kinase in vitro. The Journal of Biological Chemistry, 281, 25336–25343.

    Google Scholar 

  120. Moore, F., Weekes, J., & Hardie, D. G. (1991). Evidence that AMP triggers phosphorylation as well as direct allosteric activation of rat liver AMP-activated protein kinase. A sensitive mechanism to protect the cell against ATP depletion. European Journal of Biochemistry, 199, 691–697.

    PubMed  CAS  Google Scholar 

  121. Motoshima, H., Goldstein, B. J., Igata, M., & Araki, E. (2006). AMPK and cell proliferation–AMPK as a therapeutic target for␣atherosclerosis and cancer. The Journal of Physiology, 574, 63–71.

    PubMed  CAS  Google Scholar 

  122. Mu, J., Brozinick, J. T. Jr., Valladares, O., Bucan, M., & Birnbaum, M. J. (2001). A role for AMP-activated protein kinase in contraction- and hypoxia-regulated glucose transport in skeletal muscle. Molecular Cell, 7, 1085–1094.

    PubMed  CAS  Google Scholar 

  123. Muoio, D. M., Seefeld, K., Witters, L. A., & Coleman, R. A. (1999). AMP-activated kinase reciprocally regulates triacylglycerol synthesis and fatty acid oxidation in liver and muscle: evidence that sn-glycerol-3-phosphate acyltransferase is a novel target. The Biochemical Journal, 338(Pt 3), 783–791.

    PubMed  CAS  Google Scholar 

  124. Musi, N., & Goodyear, L. J. (2002). Targeting the AMP-activated protein kinase for the treatment of type 2 diabetes. Current Drug Targets. Immune, Endocrine, and Metabolic Disorders, 2, 119–127.

    CAS  Google Scholar 

  125. Musi, N., & Goodyear, L. J. (2003). AMP-activated protein kinase and muscle glucose uptake. Acta Physiologica Scandinavica, 178, 337–345.

    PubMed  CAS  Google Scholar 

  126. Musi, N., & Goodyear, L. J. (2006). Insulin resistance and improvements in signal transduction. Endocrine, 29, 73–80.

    PubMed  CAS  Google Scholar 

  127. Musi, N., Hayashi, T., Fujii, N., Hirshman, M. F., Witters, L. A., & Goodyear, L. J. (2001). AMP-activated protein kinase activity and glucose uptake in rat skeletal muscle. American Journal of Physiology. Endocrinology and Metabolism, 280, E677–684.

    PubMed  CAS  Google Scholar 

  128. Musi, N., Hirshman, M. F., Arad, M., Xing, Y., Fujii, N., Pomerleau, J., Ahmad, F., Berul, C. I., Seidman, J. G., Tian, R., & Goodyear, L. J. (2005). Functional role of AMP-activated protein kinase in the heart during exercise. FEBS Letters, 579, 2045–2050.

    PubMed  CAS  Google Scholar 

  129. Musi, N., Hirshman, M. F., Nygren, J., Svanfeldt, M., Bavenholm, P., Rooyackers, O., Zhou, G., Williamson, J. M., Ljunqvist, O., Efendic, S., Moller, D. E., Thorell, A., & Goodyear, L. J. (2002). Metformin increases AMP-activated protein kinase activity in skeletal muscle of subjects with type 2 diabetes. Diabetes, 51, 2074–2081.

    PubMed  CAS  Google Scholar 

  130. Namkoong, C., Kim, M. S., Jang, P. G., Han, S. M., Park, H. S., Koh, E. H., Lee, W. J., Kim, J. Y., Park, I. S., Park, J. Y., & Lee, K. U. (2005). Enhanced hypothalamic AMP-activated protein kinase activity contributes to hyperphagia in diabetic rats. Diabetes, 54, 63–68.

    PubMed  CAS  Google Scholar 

  131. Nielsen, J. N., Jorgensen, S. B., Frosig, C., Viollet, B., Andreelli, F., Vaulont, S., Kiens, B., Richter, E. A., & Wojtaszewski, J. F. (2003). A possible role for AMP-activated protein kinase in exercise-induced glucose utilization: insights from humans and transgenic animals. Biochemical Society Transactions, 31, 186–190.

    PubMed  CAS  Google Scholar 

  132. Odland, L. M., Heigenhauser, G. J., Lopaschuk, G. D., & Spriet, L. L. (1996). Human skeletal muscle malonyl-CoA at rest and during prolonged submaximal exercise. The American Journal of Physiology, 270, E541–544.

    PubMed  CAS  Google Scholar 

  133. Odland, L. M., Howlett, R. A., Heigenhauser, G. J., Hultman, E., & Spriet, L. L. (1998). Skeletal muscle malonyl-CoA content at the onset of exercise at varying power outputs in humans. The American Journal of Physiology, 274, E1080–1085.

    PubMed  CAS  Google Scholar 

  134. Ojuka, E. O., Jones, T. E., Nolte, L. A., Chen, M., Wamhoff, B. R., Sturek, M., & Holloszy, J. O. (2002). Regulation of GLUT4 biogenesis in muscle: evidence for involvement of AMPK and Ca(2+). American Journal of Physiology. Endocrinology and Metabolism, 282, E1008–1013.

    PubMed  CAS  Google Scholar 

  135. Owen, M. R., Doran, E., & Halestrap, A. P. (2000). Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain. The Biochemical Journal, 348(Pt 3), 607–614.

    PubMed  CAS  Google Scholar 

  136. Park, S. H., Gammon, S. R., Knippers, J. D., Paulsen, S. R., Rubink, D. S., & Winder, W. W. (2002). Phosphorylation-activity relationships of AMPK and acetyl-CoA carboxylase in muscle. Journal of Applied Physiology, 92, 2475–2482.

    PubMed  CAS  Google Scholar 

  137. Park, H., Kaushik, V. K., Constant, S., Prentki, M., Przybytkowski, E., Ruderman, N. B., & Saha, A. K. (2002). Coordinate regulation of malonyl-CoA decarboxylase, sn-glycerol-3-phosphate acyltransferase, and acetyl-CoA carboxylase by AMP-activated protein kinase in rat tissues in response to exercise. The Journal of Biological Chemistry, 277, 32571–32577.

    PubMed  CAS  Google Scholar 

  138. Pold, R., Jensen, L. S., Jessen, N., Buhl, E. S., Schmitz, O., Flyvbjerg, A., Fujii, N., Goodyear, L. J., Gotfredsen, C. F., Brand, C. L., & Lund, S. (2005). Long-term AICAR administration and exercise prevents diabetes in ZDF rats. Diabetes, 54, 928–934.

    PubMed  CAS  Google Scholar 

  139. Ponticos, M., Lu, Q. L., Morgan, J. E., Hardie, D. G., Partridge, T. A., & Carling, D. (1998). Dual regulation of the AMP-activated protein kinase provides a novel mechanism for the control of creatine kinase in skeletal muscle. The EMBO Journal, 17, 1688–1699.

    PubMed  CAS  Google Scholar 

  140. Rasmussen, B. B., & Winder, W. W. (1997). Effect of exercise intensity on skeletal muscle malonyl-CoA and acetyl-CoA carboxylase. Journal of Applied Physiology, 83, 1104–1109.

    PubMed  CAS  Google Scholar 

  141. Rattan, R., Giri, S., Singh, A. K., & Singh, I. (2005). 5-Aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside inhibits cancer cell proliferation in␣vitro and in␣vivo via AMP-activated protein kinase. The Journal of Biological Chemistry, 280, 39582–39593.

    PubMed  CAS  Google Scholar 

  142. Ravnskjaer, K., Boergesen, M., Dalgaard, L. T., & Mandrup, S. (2006). Glucose-induced repression of PPARalpha gene expression in pancreatic beta-cells involves PP2A activation and AMPK inactivation. Journal of Molecular Endocrinology, 36, 289–299.

    PubMed  CAS  Google Scholar 

  143. Reiter, A. K., Bolster, D. R., Crozier, S. J., Kimball, S. R., & Jefferson, L. S. (2005). Repression of protein synthesis and mTOR signaling in rat liver mediated by the AMPK activator aminoimidazole carboxamide ribonucleoside. American Journal of Physiology. Endocrinology and Metabolism, 288, E980–988.

    PubMed  CAS  Google Scholar 

  144. Richter, E. A., Derave, W., & Wojtaszewski, J. F. (2001). Glucose, exercise and insulin: emerging concepts. The Journal of Physiology, 535, 313–322.

    PubMed  CAS  Google Scholar 

  145. Richter, E. A., Wojtaszewski, J. F., Kristiansen, S., Daugaard, J. R., Nielsen, J. N., Derave, W., & Kiens, B. (2001). Regulation of muscle glucose transport during exercise. International Journal of Sport Nutrition and Exercise Metabolism, 11(Suppl), S71–77.

    PubMed  CAS  Google Scholar 

  146. Roepstorff, C., Halberg, N., Hillig, T., Saha, A. K., Ruderman, N. B., Wojtaszewski, J. F., Richter, E. A., & Kiens, B. (2005). Malonyl-CoA and carnitine in regulation of fat oxidation in human skeletal muscle during exercise. American Journal of Physiology. Endocrinology and Metabolism, 288, E133–142.

    PubMed  CAS  Google Scholar 

  147. Rosen, E. D., & Spiegelman, B. M. (2001). PPARgamma: a nuclear regulator of metabolism, differentiation, and cell growth. The Journal of Biological Chemistry, 276, 37731–37734.

    PubMed  CAS  Google Scholar 

  148. Ruderman, N. B., Park, H., Kaushik, V. K., Dean, D., Constant, S., Prentki, M., & Saha, A. K. (2003). AMPK as a metabolic switch in rat muscle, liver and adipose tissue after exercise. Acta Physiologica Scandinavica, 178, 435–442.

    PubMed  CAS  Google Scholar 

  149. Russell, R., 3rd (2003). The Role of AMP-activated protein kinase in fuel selection by the stressed heart. Current Hypertension Reports, 5, 459–465.

    Google Scholar 

  150. Russell, R. R., 3rd, Bergeron, R., Shulman, G. I., & Young, L. H. (1999). Translocation of myocardial GLUT-4 and increased glucose uptake through activation of AMPK by AICAR. The American Journal of Physiology, 277, H643–649.

    Google Scholar 

  151. Russell, R. R., 3rd, Li, J., Coven, D. L., Pypaert, M., Zechner, C., Palmeri, M., Giordano, F. J., Mu, J., Birnbaum, M. J., & Young, L. H. (2004). AMP-activated protein kinase mediates ischemic glucose uptake and prevents postischemic cardiac dysfunction, apoptosis, and injury. The Journal of Clinical Investigation, 114, 495–503.

    Google Scholar 

  152. Rutter, G. A., Da Silva, Xavier, G., & Leclerc, I. (2003). Roles of 5′-AMP-activated protein kinase (AMPK) in mammalian glucose homoeostasis. The Biochemical Journal, 375, 1–16.

    PubMed  CAS  Google Scholar 

  153. Sakamoto, K., Goransson, O., Hardie, D. G., & Alessi, D. R. (2004). Activity of LKB1 and AMPK-related kinases in skeletal muscle: effects of contraction, phenformin, and AICAR. American Journal of Physiology. Endocrinology and Metabolism, 287, E310–317.

    PubMed  CAS  Google Scholar 

  154. Sakamoto, K., McCarthy, A., Smith, D., Green, K. A., Grahame, Hardie, D., Ashworth, A., & Alessi, D. R. (2005). Deficiency of LKB1 in skeletal muscle prevents AMPK activation and glucose uptake during contraction. The EMBO Journal, 24, 1810–1820.

    PubMed  CAS  Google Scholar 

  155. Sakamoto, K., Zarrinpashneh, E., Budas, G. R., Pouleur, A. C., Dutta, A., Prescott, A. R., Vanoverschelde, J. L., Ashworth, A., Jovanovic, A., Alessi, D. R., & Bertrand, L. (2006). Deficiency of LKB1 in heart prevents ischemia-mediated activation of AMPKα2 but not AMPKα1. American Journal of Physiology. Endocrinology and Metabolism, 290, E780–788.

    PubMed  CAS  Google Scholar 

  156. Sakoda, H., Ogihara, T., Anai, M., Fujishiro, M., Ono, H., Onishi, Y., Katagiri, H., Abe, M., Fukushima, Y., Shojima, N., Inukai, K., Kikuchi, M., Oka, Y., & Asano, T. (2002). Activation of AMPK is essential for AICAR-induced glucose uptake by skeletal muscle but not adipocytes. American Journal of Physiology. Endocrinology and Metabolism, 282, E1239–1244.

    PubMed  CAS  Google Scholar 

  157. Salt, I., Celler, J. W., Hawley, S. A., Prescott, A., Woods, A., Carling, D., & Hardie, D. G. (1998). AMP-activated protein kinase: greater AMP dependence, and preferential nuclear localization, of complexes containing the alpha2 isoform. The Biochemical Journal, 334(Pt 1), 177–187.

    PubMed  CAS  Google Scholar 

  158. Salt, I. P., Connell, J. M., & Gould, G. W. (2000). 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR) inhibits insulin-stimulated glucose transport in 3T3-L1 adipocytes. Diabetes, 49, 1649–1656.

    PubMed  CAS  Google Scholar 

  159. Salt, I. P., Johnson, G., Ashcroft, S. J., & Hardie, D. G. (1998). AMP-activated protein kinase is activated by low glucose in cell lines derived from pancreatic beta cells, and may regulate insulin release. The Biochemical Journal, 335(Pt 3), 533–539.

    PubMed  CAS  Google Scholar 

  160. Sambandam, N., & Lopaschuk, G. D. (2003). AMP-activated protein kinase (AMPK) control of fatty acid and glucose metabolism in the ischemic heart. Progress in Lipid Research, 42, 238–256.

    PubMed  CAS  Google Scholar 

  161. Scott, J. W., Hawley, S. A., Green, K. A., Anis, M., Stewart, G., Scullion, G. A., Norman, D. G., & Hardie, D. G. (2004). CBS domains form energy-sensing modules whose binding of adenosine ligands is disrupted by disease mutations. The Journal of Clinical Investigation, 113, 274–284.

    PubMed  CAS  Google Scholar 

  162. Sell, H., Dietze-Schroeder, D., Eckardt, K., & Eckel, J. (2006). Cytokine secretion by human adipocytes is differentially regulated by adiponectin, AICAR, and troglitazone. Biochemical and Biophysical Research Communications, 343, 700–706.

    PubMed  CAS  Google Scholar 

  163. Shaw, R. J., Bardeesy, N., Manning, B. D., Lopez, L., Kosmatka, M., DePinho, R. A., & Cantley, L. C. (2004). The LKB1 tumor suppressor negatively regulates mTOR signaling. Cancer Cell, 6, 91–99.

    PubMed  CAS  Google Scholar 

  164. Shaw, R. J., Kosmatka, M., Bardeesy, N., Hurley, R. L., Witters, L. A., DePinho, R. A., & Cantley, L. C. (2004). The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress. Proceedings of National Academic Sciences of the United States of America, 101, 3329–3335.

    CAS  Google Scholar 

  165. Shaw, R. J., Lamia, K. A., Vasquez, D., Koo, S. H., Bardeesy, N., Depinho, R. A., Montminy, M., & Cantley, L. C. (2005). The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin. Science, 310, 1642–1646.

    PubMed  CAS  Google Scholar 

  166. Smith, J. L., Patil, P. B., & Fisher, J. S. (2005). AICAR and hyperosmotic stress increase insulin-stimulated glucose transport. Journal of Applied Physiology, 99, 877–883.

    PubMed  CAS  Google Scholar 

  167. Soltys, C. L., Kovacic, S., & Dyck, J. R. (2006). Activation of cardiac AMP-activated protein kinase by LKB1 expression or chemical hypoxia is blunted by increased Akt activity. American Journal of Physiology. Heart and Circulatory Physiology, 290, H2472–2479.

    PubMed  CAS  Google Scholar 

  168. Song, X. M., Fiedler, M., Galuska, D., Ryder, J. W., Fernstrom, M., Chibalin, A. V., Wallberg-Henriksson, H., & Zierath, J. R. (2002). 5-Aminoimidazole-4-carboxamide ribonucleoside treatment improves glucose homeostasis in insulin-resistant diabetic (ob/ob) mice. Diabetologia, 45, 56–65.

    PubMed  CAS  Google Scholar 

  169. Sponarova, J., Mustard, K. J., Horakova, O., Flachs, P., Rossmeisl, M., Brauner, P., Bardova, K., Thomason-Hughes, M., Braunerova, R., Janovska, P., Hardie, D. G., & Kopecky, J. (2005). Involvement of AMP-activated protein kinase in fat depot-specific metabolic changes during starvation. FEBS Letters, 579, 6105–6110.

    PubMed  CAS  Google Scholar 

  170. Stein, S. C., Woods, A., Jones, N. A., Davison, M. D., & Carling, D. (2000). The regulation of AMP-activated protein kinase by phosphorylation. The Biochemical Journal, 345(Pt 3), 437–443.

    PubMed  CAS  Google Scholar 

  171. Stephens, T. J., Chen, Z. P., Canny, B. J., Michell, B. J., Kemp, B. E., & McConell, G. K. (2002). Progressive increase in human skeletal muscle AMPKalpha2 activity and ACC phosphorylation during exercise. American Journal of Physiology. Endocrinology and Metabolism, 282, E688–694.

    PubMed  CAS  Google Scholar 

  172. Stoppani, J., Hildebrandt, A. L., Sakamoto, K., Cameron-Smith, D., Goodyear, L. J., & Neufer, P. D. (2002). AMP-activated protein kinase activates transcription of the UCP3 and HKII genes in rat skeletal muscle. American Journal of Physiology. Endocrinology and Metabolism, 283, E1239–1248.

    PubMed  CAS  Google Scholar 

  173. Sullivan, J. E., Brocklehurst, K. J., Marley, A. E., Carey, F., Carling, D., & Beri, R. K. (1994). Inhibition of lipolysis and lipogenesis in isolated rat adipocytes with AICAR, a cell-permeable activator of AMP-activated protein kinase. FEBS Letters, 353, 33–36.

    PubMed  CAS  Google Scholar 

  174. Suter, M., Riek, U., Tuerk, R., Schlattner, U., Wallimann, T., & Neumann, D. (2006). Dissecting the role of 5′-AMP for allosteric stimulation, activation and deactivation of AMP-activated protein kinase. The Journal of Biological Chemistry, 281, 32207–32216.

    Google Scholar 

  175. Swinnen, J. V., Beckers, A., Brusselmans, K., Organe, S., Segers, J., Timmermans, L., Vanderhoydonc, F., Deboel, L.,␣Derua, R., Waelkens, E., De Schrijver, E., Van de Sande, T., Noel, A., Foufelle, F., & Verhoeven, G. (2005). Mimicry of a cellular low energy status blocks tumor cell anabolism and suppresses the malignant phenotype. Cancer Research, 65, 2441–2448.

    PubMed  CAS  Google Scholar 

  176. Taylor, E. B., Ellingson, W. J., Lamb, J. D., Chesser, D. G., Compton, C. L., & Winder, W. W. (2006). Evidence against regulation of AMP-activated protein kinase and LKB1/STRAD/MO25 activity by creatine phosphate. American Journal of Physiology. Endocrinology and Metabolism, 290, E661–669.

    PubMed  CAS  Google Scholar 

  177. Taylor, E. B., Ellingson, W. J., Lamb, J. D., Chesser, D. G., & Winder, W. W. (2005). Long-chain acyl-CoA esters inhibit phosphorylation of AMP-activated protein kinase at threonine-172 by LKB1/STRAD/MO25. American Journal of Physiology. Endocrinology and Metabolism, 288, E1055–1061.

    PubMed  CAS  Google Scholar 

  178. Taylor, E. B., Lamb, J. D., Hurst, R. W., Chesser, D. G., Ellingson, W. J., Greenwood, L. J., Porter, B. B., Herway, S. T., & Winder, W. W. (2005). Endurance training increases skeletal muscle LKB1 and PGC-1alpha protein abundance: Effects of time and intensity. American Journal of Physiology. Endocrinology and Metabolism, 289, E960–968.

    PubMed  CAS  Google Scholar 

  179. Thomson, D. M., Porter, B. B., Tall, J. H., Kim, H. J., Barrow, J. R., & Winder, W. W. (2007). Skeletal muscle and heart LKB1 deficiency causes decreased voluntary running and reduced muscle mitochondrial marker enzyme expression in mice. American Journal of Physiology. Endocrinology and Metabolism, 292, E196–202.

    Google Scholar 

  180. Tomas, E., Tsao, T. S., Saha, A. K., Murrey, H. E., Zhang, Cc, C., Itani, S. I., Lodish, H. F., & Ruderman, N. B. (2002). Enhanced muscle fat oxidation and glucose transport by ACRP30 globular domain: acetyl-CoA carboxylase inhibition and AMP-activated protein kinase activation. Proceedings of National Academic Sciences of the United States of America, 99, 16309–16313.

    CAS  Google Scholar 

  181. Treebak, J. T., Glund, S., Deshmukh, A., Klein, D. K., Long, Y. C., Jensen, T. E., Jorgensen, S. B., Viollet, B., Andersson, L., Neumann, D., Wallimann, T., Richter, E. A., Chibalin, A. V., Zierath, J. R., & Wojtaszewski, J. F. (2006). AMPK-mediated AS160 phosphorylation in skeletal muscle is dependent on AMPK catalytic and regulatory subunits. Diabetes, 55, 2051–2058.

    PubMed  CAS  Google Scholar 

  182. Vavvas, D., Apazidis, A., Saha, A. K., Gamble, J., Patel, A., Kemp, B. E., Witters, L. A., & Ruderman, N. B. (1997). Contraction-induced changes in acetyl-CoA carboxylase and 5′-AMP-activated kinase in skeletal muscle. The Journal of Biological Chemistry, 272, 13255–13261.

    PubMed  CAS  Google Scholar 

  183. Vincent, M. F., Marangos, P., Gruber, H. E., & Van den Berghe, G. (1991). AICAriboside inhibits gluconeogenesis in isolated rat hepatocytes. Advances in Experimental Medicine and Biology, 309B, 359–362.

    PubMed  CAS  Google Scholar 

  184. Viollet, B., Andreelli, F., Jorgensen, S. B., Perrin, C., Flamez, D., Mu, J., Wojtaszewski, J. F., Schuit, F. C., Birnbaum, M., Richter, E., Burcelin, R., & Vaulont, S. (2003). Physiological role of AMP-activated protein kinase (AMPK): insights from knockout mouse models. Biochemical Society Transactions, 31, 216–219.

    Article  PubMed  CAS  Google Scholar 

  185. Viollet, B., Andreelli, F., Jorgensen, S. B., Perrin, C., Geloen, A., Flamez, D., Mu, J., Lenzner, C., Baud, O., Bennoun, M., Gomas, E., Nicolas, G., Wojtaszewski, J. F., Kahn, A., Carling, D., Schuit, F. C., Birnbaum, M. J., Richter, E. A., Burcelin, R., & Vaulont, S. (2003). The AMP-activated protein kinase alpha2 catalytic subunit controls whole-body insulin sensitivity. The Journal of Clinical Investigation, 111, 91–98.

    PubMed  CAS  Google Scholar 

  186. Warden, S. M., Richardson, C., O’Donnell, J. Jr., Stapleton, D., Kemp, B. E., & Witters, L. A. (2001). Post-translational modifications of the beta-1 subunit of AMP-activated protein kinase affect enzyme activity and cellular localization. The Biochemical Journal, 354, 275–283.

    PubMed  CAS  Google Scholar 

  187. Winder, W. W. (2000). AMP-activated protein kinase: possible target for treatment of type 2 diabetes. Diabetes Technology & Therapeutics, 2, 441–448.

    CAS  Google Scholar 

  188. Winder, W. W. (2001). Energy-sensing and signaling by AMP-activated protein kinase in skeletal muscle. Journal of Applied Physiology, 91, 1017–1028.

    PubMed  CAS  Google Scholar 

  189. Winder, W. W., & Hardie, D. G. (1996). Inactivation of acetyl-CoA carboxylase and activation of AMP-activated protein kinase in muscle during exercise. The American Journal of Physiology, 270, E299–304.

    PubMed  CAS  Google Scholar 

  190. Winder, W. W., & Hardie, D. G. (1999). AMP-activated protein kinase, a metabolic master switch: possible roles in type 2 diabetes. The American Journal of Physiology, 277, E1–10.

    PubMed  CAS  Google Scholar 

  191. Winder, W. W., Holmes, B. F., Rubink, D. S., Jensen, E. B., Chen, M., & Holloszy, J. O. (2000). Activation of AMP-activated protein kinase increases mitochondrial enzymes in skeletal muscle. Journal of Applied Physiology, 88, 2219–2226.

    PubMed  CAS  Google Scholar 

  192. Winder, W. W., Wilson, H. A., Hardie, D. G., Rasmussen, B. B., Hutber, C. A., Call, G. B., Clayton, R. D., Conley, L. M., Yoon, S., & Zhou, B. (1997). Phosphorylation of rat muscle acetyl-CoA carboxylase by AMP-activated protein kinase and protein kinase A. Journal of Applied Physiology, 82, 219–225.

    PubMed  CAS  Google Scholar 

  193. Witters, L. A., Gao, G., Kemp, B. E., & Quistorff, B. (1994). Hepatic 5′-AMP-activated protein kinase: zonal distribution and relationship to acetyl-CoA carboxylase activity in varying nutritional states. Archives of Biochemistry and Biophysics, 308, 413–419.

    PubMed  Google Scholar 

  194. Witters, L. A., & Kemp, B. E. (1992). Insulin activation of␣acetyl-CoA carboxylase accompanied by inhibition of the 5′-AMP-activated protein kinase. The Journal of Biological Chemistry, 267, 2864–2867.

    PubMed  CAS  Google Scholar 

  195. Witters, L. A., Kemp, B. E., & Means, A. R. (2006). Chutes and ladders: the search for protein kinases that act on AMPK. Trends in Biochemical Sciences, 31, 13–16.

    PubMed  CAS  Google Scholar 

  196. Wojtaszewski, J. F., MacDonald, C., Nielsen, J. N., Hellsten, Y., Hardie, D. G., Kemp, B. E., Kiens, B., & Richter, E. A. (2003). Regulation of 5′AMP-activated protein kinase activity and substrate utilization in exercising human skeletal muscle. American Journal of Physiology. Endocrinology and Metabolism, 284, E813–822.

    PubMed  CAS  Google Scholar 

  197. Wojtaszewski, J. F., Nielsen, P., Hansen, B. F., Richter, E. A., & Kiens, B. (2000). Isoform-specific and exercise intensity-dependent activation of 5′-AMP-activated protein kinase in human skeletal muscle. The Journal of Physiology, 528(Pt 1), 221–226.

    PubMed  CAS  Google Scholar 

  198. Wong, K. A., & Lodish HF (2006). A revised model for AMPK structure: The alpha-subunit binds to both the beta- and gamma-subunits but there is no direct binding between beta- and gamma-subunits. The Journal of Biological Chemistry, 281, 36434–36442.

    Google Scholar 

  199. Woods, A., Cheung, P. C., Smith, F. C., Davison, M. D., Scott, J., Beri, R. K., & Carling, D. (1996). Characterization of AMP-activated protein kinase beta and gamma subunits. Assembly of the heterotrimeric complex in␣vitro. The Journal of Biological Chemistry, 271, 10282–10290.

    PubMed  CAS  Google Scholar 

  200. Woods, A., Dickerson, K., Heath, R., Hong, S. P., Momcilovic, M., Johnstone, S. R., Carlson, M., & Carling, D. (2005). Ca2+/calmodulin-dependent protein kinase kinase-beta acts upstream of AMP-activated protein kinase in mammalian cells. Cell Metabolism, 2, 21–33.

    PubMed  CAS  Google Scholar 

  201. Woods, A., Johnstone, S. R., Dickerson, K., Leiper, F. C., Fryer, L. G., Neumann, D., Schlattner, U., Wallimann, T., Carlson, M., & Carling, D. (2003). LKB1 is the upstream kinase in the AMP-activated protein kinase cascade. Current Biology, 13, 2004–2008.

    PubMed  CAS  Google Scholar 

  202. Wright, D. C., Geiger, P. C., Holloszy, J. O., & Han, D. H. (2005). Contraction- and hypoxia-stimulated glucose transport is mediated by a Ca2+-dependent mechanism in slow-twitch rat soleus muscle. American Journal of Physiology. Endocrinology and Metabolism, 288, E1062–1066.

    PubMed  CAS  Google Scholar 

  203. Wright, D. C., Hucker, K. A., Holloszy, J. O., & Han, D. H. (2004). Ca2+ and AMPK both mediate stimulation of glucose transport by muscle contractions. Diabetes, 53, 330–335.

    PubMed  CAS  Google Scholar 

  204. Xiang, X., Saha, A. K., Wen, R., Ruderman, N. B., & Luo, Z. (2004). AMP-activated protein kinase activators can inhibit the growth of prostate cancer cells by multiple mechanisms. Biochemical and Biophysical Research Communications, 321, 161–167.

    PubMed  CAS  Google Scholar 

  205. Xie, M., Zhang, D., Dyck, J. R., Li, Y., Zhang, H., Morishima, M., Mann, D. L., Taffet, G. E., Baldini, A., Khoury, D. S., & Schneider, M. D. (2006). A pivotal role for endogenous TGF-{beta}-activated kinase-1 in the LKB1/AMP-activated protein kinase energy-sensor pathway. Proceedings of National Academic Sciences of the United States of America, 103, 17378–17383.

    Google Scholar 

  206. Yamaguchi, S., Katahira, H., Ozawa, S., Nakamichi, Y., Tanaka, T., Shimoyama, T., Takahashi, K., Yoshimoto, K., Imaizumi, M. O., Nagamatsu, S., & Ishida, H. (2005). Activators of AMP-activated protein kinase enhance GLUT4 translocation and its glucose transport activity in 3T3-L1 adipocytes. American Journal of Physiology. Endocrinology and Metabolism, 289, E643–649.

    PubMed  CAS  Google Scholar 

  207. Yamauchi, T., Kamon, J., Minokoshi, Y., Ito, Y., Waki, H., Uchida, S., Yamashita, S., Noda, M., Kita, S., Ueki, K., Eto, K., Akanuma, Y., Froguel, P., Foufelle, F., Ferre, P., Carling, D., Kimura, S., Nagai, R., Kahn, B. B., & Kadowaki, T. (2002). Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nature Medicine, 8, 1288–1295.

    PubMed  CAS  Google Scholar 

  208. Yeh, J. I., Gulve, E. A., Rameh, L., & Birnbaum, M. J. (1995). The effects of wortmannin on rat skeletal muscle. Dissociation of signaling pathways for insulin- and contraction-activated hexose transport. The Journal of Biological Chemistry, 270, 2107–2111.

    PubMed  CAS  Google Scholar 

  209. Young, L. H., Li, J., Baron, S. J., & Russell, R. R. (2005). AMP-activated protein kinase: a key stress signaling pathway in the heart. Trends in Cardiovascular Medicine, 15, 110–118.

    PubMed  CAS  Google Scholar 

  210. Yu, H., Fujii, N., Hirshman, M. F., Pomerleau, J. M., & Goodyear, L. J. (2004). Cloning and characterization of mouse 5′-AMP-activated protein kinase gamma3 subunit. American Journal of Physiology. Cell Physiology, 286, C283–292.

    PubMed  CAS  Google Scholar 

  211. Yu, X., McCorkle, S., Wang, M., Lee, Y., Li, J., Saha, A. K., Unger, R. H., & Ruderman, N. B. (2004). Leptinomimetic effects of the AMP kinase activator AICAR in leptin-resistant rats: prevention of diabetes and ectopic lipid deposition. Diabetologia, 47, 2012–2021.

    PubMed  CAS  Google Scholar 

  212. Zang, M., Xu, S., Maitland-Toolan, K. A., Zuccollo, A., Hou, X., Jiang, B., Wierzbicki, M., Verbeuren, T. J., & Cohen, R.␣A. (2006). Polyphenols stimulate AMP-activated protein kinase, lower lipids, and inhibit accelerated atherosclerosis in␣diabetic LDL receptor-deficient mice. Diabetes, 55, 2180–2191.

    PubMed  CAS  Google Scholar 

  213. Zheng, D., MacLean, P. S., Pohnert, S. C., Knight, J. B., Olson, A. L., Winder, W. W., & Dohm, G. L. (2001). Regulation of muscle GLUT-4 transcription by AMP-activated protein kinase. Journal of Applied Physiology, 91, 1073–1083.

    PubMed  CAS  Google Scholar 

  214. Zhou, G., Myers, R., Li, Y., Chen, Y., Shen, X., Fenyk-Melody, J., Wu, M., Ventre, J., Doebber, T., Fujii, N., Musi, N., Hirshman, M. F., Goodyear, L. J., & Moller, D. E. (2001). Role of AMP-activated protein kinase in mechanism of metformin action. The Journal of Clinical Investigation, 108, 1167–1174.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William W. Winder.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Winder, W.W., Thomson, D.M. Cellular energy sensing and signaling by AMP-activated protein kinase. Cell Biochem Biophys 47, 332–347 (2007). https://doi.org/10.1007/s12013-007-0008-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-007-0008-7

Keywords

Navigation