Skip to main content

Advertisement

Log in

The role of immune dysfunction in obesity-associated cancer risk, progression, and metastasis

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Obesity has been linked to an increased risk of and a worse prognosis for several types of cancer. A number of interrelated mediators contribute to obesity’s pro-tumor effects, including chronic adipose inflammation and other perturbations of immune cell development and function. Here, we review studies examining the impact of obesity-induced immune dysfunction on cancer risk and progression. While the role of adipose tissue inflammation in obesity-associated cancer risk has been well characterized, the effects of obesity on immune cell infiltration and activity within the tumor microenvironment are not well studied. In this review, we aim to highlight the impact of both adipose-mediated inflammatory signaling and intratumoral immunosuppressive signaling in obesity-induced cancer risk, progression, and metastasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Hales CM, Carroll MD, Fryar CD, Ogden CL (2020) Prevalence of obesity and severe obesity among adults: United States, 2017–2018. NCHS Data 360:1–8

    Google Scholar 

  2. Obesity Update - OECD. https://www.oecd.org/health/obesity-update.htm. Accessed 6 Jun 2020

  3. Jih J, Mukherjea A, Vittinghoff E, Nguyen TT, Tsoh JY, Fukuoka Y, Bender MS, Tseng W, Kanaya AM (2014) Using appropriate body mass index cut points for overweight and obesity among Asian Americans. Prev Med 65:1–6. https://doi.org/10.1016/j.ypmed.2014.04.010

    Article  PubMed  PubMed Central  Google Scholar 

  4. WHO Expert Consultation (2004) Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies. Lancet 363:157–163. https://doi.org/10.1016/S0140-6736(03)15268-3

    Article  Google Scholar 

  5. Lauby-Secretan B, Scoccianti C, Loomis D, Grosse Y, Bianchini F, Straif K (2016) Body fatness and cancer: viewpoint of the IARC working group. N Engl J Med 375:794–798. https://doi.org/10.1056/NEJMsr1606602

    Article  PubMed  PubMed Central  Google Scholar 

  6. Colditz GA, Peterson LL (2018) Obesity and cancer: evidence, impact, and future directions. Clin Chem 64:154–162. https://doi.org/10.1373/clinchem.2017.277376

    Article  CAS  PubMed  Google Scholar 

  7. Bhaskaran K, Dos-santos-Silva I, Leon DA, Douglas IJ, Smeeth L (2018) Association of BMI with overall and cause-specific mortality: a population-based cohort study of 3·6 million adults in the UK. Lancet Diabetes Endocrinol 6:944–953. https://doi.org/10.1016/S2213-8587(18)30288-2

    Article  PubMed  PubMed Central  Google Scholar 

  8. Gallo M, Adinolfi V, Barucca V, Prinzi N, Renzelli V, Barrea L, Di Giacinto P, Ruggeri RM, Sesti F, Arvat E, Baldelli R, Arvat E, Colao A, Isidori A, Lenzi A, Baldell R, Albertelli M, Attala D, Bianchi A, Di Sarno A, Feola T, Mazziotti G, Nervo A, Pozza C, Puliani G, Razzore P, Ramponi S, Ricciardi S, Rizza L, Rota F, Sbardella E, Zatelli MC, EOLO Group (2020) Expected and paradoxical effects of obesity on cancer treatment response. Rev Endocr Metab Disord. https://doi.org/10.1007/s11154-020-09597-y

    Article  PubMed  PubMed Central  Google Scholar 

  9. Hsieh CC, Trichopoulos D, Katsouyanni K, Yuasa S (1990) Age at menarche, age at menopause, height and obesity as risk factors for breast cancer: associations and interactions in an international case-control study. Int J Cancer 46:796–800. https://doi.org/10.1002/ijc.2910460508

    Article  CAS  PubMed  Google Scholar 

  10. Bhaskaran K, Douglas I, Forbes H, dos-Santos-Silva I, Leon DA, Smeeth L (2014) Body-mass index and risk of 22 specific cancers: a population-based cohort study of 5·24 million UK adults. Lancet 384:755–765. https://doi.org/10.1016/S0140-6736(14)60892-8

    Article  PubMed  PubMed Central  Google Scholar 

  11. Raglan O, Kalliala I, Markozannes G, Cividini S, Gunter MJ, Nautiyal J, Gabra H, Paraskevaidis E, Martin-Hirsch P, Tsilidis KK, Kyrgiou M (2019) Risk factors for endometrial cancer: an umbrella review of the literature. Int J Cancer 145:1719–1730. https://doi.org/10.1002/ijc.31961

    Article  CAS  PubMed  Google Scholar 

  12. Fortner RT, Poole EM, Wentzensen NA, Trabert B, White E, Arslan AA, Patel AV, Setiawan VW, Visvanathan K, Weiderpass E, Adami H-O, Black A, Bernstein L, Brinton LA, Buring J, Clendenen TV, Fournier A, Fraser G, Gapstur SM, Gaudet MM, Giles GG, Gram IT, Hartge P, Hoffman-Bolton J, Idahl A, Kaaks R, Kirsh VA, Knutsen S, Koh W-P, Lacey JV, Lee I-M, Lundin E, Merritt MA, Milne RL, Onland-Moret NC, Peters U, Poynter JN, Rinaldi S, Robien K, Rohan T, Sánchez M-J, Schairer C, Schouten LJ, Tjonneland A, Townsend MK, Travis RC, Trichopoulou A, van den Brandt PA, Vineis P, Wilkens L, Wolk A, Yang HP, Zeleniuch-Jacquotte A, Tworoger SS (2019) Ovarian cancer risk factors by tumor aggressiveness: an analysis from the ovarian cancer cohort consortium. Int J Cancer 145:58–69. https://doi.org/10.1002/ijc.32075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sonnenschein E, Toniolo P, Terry MB, Bruning PF, Kato I, Koenig KL, Shore RE (1999) Body fat distribution and obesity in pre- and postmenopausal breast cancer. Int J Epidemiol 28:1026–1031. https://doi.org/10.1093/ije/28.6.1026

    Article  CAS  PubMed  Google Scholar 

  14. Pichard C, Plu-Bureau G, Neves-e Castro M, Gompel A (2008) Insulin resistance, obesity and breast cancer risk. Maturitas 60:19–30. https://doi.org/10.1016/j.maturitas.2008.03.002

    Article  CAS  PubMed  Google Scholar 

  15. Cleland WH, Mendelson CR, Simpson ER (1985) Effects of aging and obesity on aromatase activity of human adipose cells. J Clin Endocrinol Metab 60:174–177. https://doi.org/10.1210/jcem-60-1-174

    Article  CAS  PubMed  Google Scholar 

  16. Simpson ER (2003) Sources of estrogen and their importance. J Steroid Biochem Mol Biol 86:225–230. https://doi.org/10.1016/S0960-0760(03)00360-1

    Article  CAS  PubMed  Google Scholar 

  17. Brown KA, Iyengar NM, Zhou XK, Gucalp A, Subbaramaiah K, Wang H, Giri DD, Morrow M, Falcone DJ, Wendel NK, Winston LA, Pollak M, Dierickx A, Hudis CA, Dannenberg AJ (2017) Menopause is a determinant of breast aromatase expression and its associations with BMI, inflammation, and systemic markers. J Clin Endocrinol Metab 102:1692–1701. https://doi.org/10.1210/jc.2016-3606

    Article  PubMed  PubMed Central  Google Scholar 

  18. Enriori CL, Orsini W, del Carmen CM, Etkin AE, Cardillo LR, Reforzo-Membrives J (1986) Decrease of circulating level of SHBG in postmenopausal obese women as a risk factor in breast cancer: reversible effect of weight loss. Gynecol Oncol 23:77–86. https://doi.org/10.1016/0090-8258(86)90118-6

    Article  CAS  PubMed  Google Scholar 

  19. Wu F, Ames R, Evans MC, France JT, Reid IR (2001) Determinants of sex hormone-binding globulin in normal postmenopausal women. Clin Endocrinol (Oxf) 54:81–87. https://doi.org/10.1046/j.1365-2265.2001.01183.x

    Article  CAS  Google Scholar 

  20. Goldštajn MŠ, Toljan K, Grgić F, Jurković I, Baldani DP (2016) Sex hormone binding globulin (SHBG) as a marker of clinical disorders. Coll Antropol 40:211–218

    PubMed  Google Scholar 

  21. Lukanova A, Lundin E, Micheli A, Arslan A, Ferrari P, Rinaldi S, Krogh V, Lenner P, Shore RE, Biessy C, Muti P, Riboli E, Koenig KL, Levitz M, Stattin P, Berrino F, Hallmans G, Kaaks R, Toniolo P, Zeleniuch-Jacquotte A (2004) Circulating levels of sex steroid hormones and risk of endometrial cancer in postmenopausal women. Int J Cancer 108:425–432. https://doi.org/10.1002/ijc.11529

    Article  CAS  PubMed  Google Scholar 

  22. Li CI, Malone KE, Porter PL, Weiss NS, Tang M-TC, Cushing-Haugen KL, Daling JR (2003) Relationship between long durations and different regimens of hormone therapy and risk of breast cancer. JAMA 289:3254–3263. https://doi.org/10.1001/jama.289.24.3254

    Article  CAS  PubMed  Google Scholar 

  23. Huang Z, Hankinson SE, Colditz GA, Stampfer MJ, Hunter DJ, Manson JE, Hennekens CH, Rosner B, Speizer FE, Willett WC (1997) Dual effects of weight and weight gain on breast cancer risk. JAMA 278:1407–1411. https://doi.org/10.1001/jama.1997.03550170037029

    Article  CAS  PubMed  Google Scholar 

  24. Beral V, Reeves G, Bull D, Green J (2011) Breast cancer risk in relation to the interval between menopause and starting hormone therapy. J Natl Cancer Inst 103:296–305. https://doi.org/10.1093/jnci/djq527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Reeves GK, Beral V, Green J, Gathani T, Bull D (2006) Hormonal therapy for menopause and breast-cancer risk by histological type: a cohort study and meta-analysis. Lancet Oncol 7:910–918. https://doi.org/10.1016/S1470-2045(06)70911-1

    Article  CAS  PubMed  Google Scholar 

  26. McCullough ML, Patel AV, Patel R, Rodriguez C, Feigelson HS, Bandera EV, Gansler T, Thun MJ, Calle EE (2008) Body mass and endometrial cancer risk by hormone replacement therapy and cancer subtype. Cancer Epidemiol Biomarkers Prev 17:73–79. https://doi.org/10.1158/1055-9965.EPI-07-2567

    Article  CAS  PubMed  Google Scholar 

  27. Leitzmann MF, Koebnick C, Danforth KN, Brinton LA, Moore SC, Hollenbeck AR, Schatzkin A, Lacey JV (2009) Body mass index and risk of ovarian cancer. Cancer 115:812–822. https://doi.org/10.1002/cncr.24086

    Article  PubMed  Google Scholar 

  28. Ambikairajah A, Walsh E, Tabatabaei-Jafari H, Cherbuin N (2019) Fat mass changes during menopause: a metaanalysis. Am J Obstet Gynecol 221:393-409.e50. https://doi.org/10.1016/j.ajog.2019.04.023

    Article  PubMed  Google Scholar 

  29. Chang JW, Shin DW, Han KD, Jeon KH, Yoo JE, Cho IY, Choi YJ, Hong JY (2020) Obesity has a stronger relationship with colorectal cancer in postmenopausal women than premenopausal women. Cancer Epidemiol Biomarkers Prev 29:2277–2288. https://doi.org/10.1158/1055-9965.EPI-20-0594

    Article  PubMed  Google Scholar 

  30. Iyengar NM, Brown KA, Zhou XK, Gucalp A, Subbaramaiah K, Giri DD, Zahid H, Bhardwaj P, Wendel NK, Falcone DJ, Wang H, Williams S, Pollak M, Morrow M, Hudis CA, Dannenberg AJ (2017) Metabolic obesity, adipose inflammation and elevated breast aromatase in women with normal body mass index. Cancer Prev Res 10:235–243. https://doi.org/10.1158/1940-6207.CAPR-16-0314

    Article  CAS  Google Scholar 

  31. Feuerer M, Herrero L, Cipolletta D, Naaz A, Wong J, Nayer A, Lee J, Goldfine AB, Benoist C, Shoelson S, Mathis D (2009) Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters. Nat Med 15:930–939. https://doi.org/10.1038/nm.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mahlakõiv T, Flamar A-L, Johnston LK, Moriyama S, Putzel GG, Bryce PJ, Artis D (2019) Stromal cells maintain immune cell homeostasis in adipose tissue via production of interleukin-33. Sci Immunol 4(35):eaax0416. https://doi.org/10.1126/sciimmunol.aax0416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Smith TD, Tse MJ, Read EL, Liu WF (2016) Regulation of macrophage polarization and plasticity by complex activation signals. Integr Biol (Camb) 8:946–955. https://doi.org/10.1039/c6ib00105j

    Article  CAS  Google Scholar 

  34. Li Q, Hata A, Kosugi C, Kataoka N, Funaki M (2010) The density of extracellular matrix proteins regulates inflammation and insulin signaling in adipocytes. FEBS Lett 584:4145–4150. https://doi.org/10.1016/j.febslet.2010.08.033

    Article  CAS  PubMed  Google Scholar 

  35. Trayhurn P (2013) Hypoxia and adipose tissue function and dysfunction in obesity. Physiol Rev 93:1–21. https://doi.org/10.1152/physrev.00017.2012

    Article  CAS  PubMed  Google Scholar 

  36. Rausch ME, Weisberg S, Vardhana P, Tortoriello DV (2008) Obesity in C57BL/6J mice is characterized by adipose tissue hypoxia and cytotoxic T-cell infiltration. Int J Obes (Lond) 32:451–463. https://doi.org/10.1038/sj.ijo.0803744

    Article  CAS  Google Scholar 

  37. Hara Y, Wakino S, Tanabe Y, Saito M, Tokuyama H, Washida N, Tatematsu S, Yoshioka K, Homma K, Hasegawa K, Minakuchi H, Fujimura K, Hosoya K, Hayashi K, Nakayama K, Itoh H (2011) Rho and Rho-kinase activity in adipocytes contributes to a vicious cycle in obesity that may involve mechanical stretch. Sci Signal 4:ra3. https://doi.org/10.1126/scisignal.2001227

    Article  CAS  PubMed  Google Scholar 

  38. Golden PL, Maccagnan TJ, Pardridge WM (1997) Human blood-brain barrier leptin receptor. Binding and endocytosis in isolated human brain microvessels. J Clin Invest 99:14–18. https://doi.org/10.1172/JCI119125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM (1994) Positional cloning of the mouse obese gene and its human homologue. Nature 372:425–432. https://doi.org/10.1038/372425a0

    Article  CAS  PubMed  Google Scholar 

  40. Longo M, Zatterale F, Naderi J, Parrillo L, Formisano P, Raciti GA, Beguinot F, Miele C (2019) Adipose tissue dysfunction as determinant of obesity-associated metabolic complications. Int J Mol Sci. https://doi.org/10.3390/ijms20092358

    Article  PubMed  PubMed Central  Google Scholar 

  41. Tandon P, Wafer R, Minchin JEN (2018) Adipose morphology and metabolic disease. J Exp Biol 221(Pt Suppl 1):jeb164970. https://doi.org/10.1242/jeb.164970

    Article  PubMed  Google Scholar 

  42. Skurk T, Alberti-Huber C, Herder C, Hauner H (2007) Relationship between adipocyte size and adipokine expression and secretion. J Clin Endocrinol Metab 92:1023–1033. https://doi.org/10.1210/jc.2006-1055

    Article  CAS  PubMed  Google Scholar 

  43. Gustafson B, Gogg S, Hedjazifar S, Jenndahl L, Hammarstedt A, Smith U (2009) Inflammation and impaired adipogenesis in hypertrophic obesity in man. Am J Physiol Endocrinol Metab 297:E999–E1003. https://doi.org/10.1152/ajpendo.00377.2009

    Article  CAS  PubMed  Google Scholar 

  44. Iikuni N, Lam QLK, Lu L, Matarese G, La Cava A (2008) Leptin and Inflammatio. Curr Immunol Rev 4:70–79. https://doi.org/10.2174/157339508784325046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Nyambuya TM, Dludla PV, Mxinwa V, Nkambule BB (2019) Obesity-induced inflammation and insulin resistance: a mini-review on T-cells. Metabol Open 3:100015. https://doi.org/10.1016/j.metop.2019.100015

    Article  PubMed  PubMed Central  Google Scholar 

  46. Liu R, Nikolajczyk BS (2019) Tissue immune cells fuel obesity-associated inflammation in adipose tissue and beyond. Front Immunol 10:1587. https://doi.org/10.3389/fimmu.2019.01587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Martin SS, Qasim A, Reilly MP (2008) Leptin resistance: a possible interface of inflammation and metabolism in obesity-related cardiovascular disease. J Am Coll Cardiol 52:1201–1210. https://doi.org/10.1016/j.jacc.2008.05.060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Gruzdeva O, Borodkina D, Uchasova E, Dyleva Y, Barbarash O (2019) Leptin resistance: underlying mechanisms and diagnosis. Diabetes Metab Syndr Obes 12:191–198. https://doi.org/10.2147/DMSO.S182406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Multhoff G, Molls M, Radons J (2011) Chronic inflammation in cancer development. Front Immunol 2:98. https://doi.org/10.3389/fimmu.2011.00098

    Article  PubMed  Google Scholar 

  50. Pérez-Hernández AI, Catalán V, Gómez-Ambrosi J, Rodríguez A, Frühbeck G (2014) Mechanisms linking excess adiposity and carcinogenesis promotion. Front Endocrinol (Lausanne) 5:65. https://doi.org/10.3389/fendo.2014.00065

    Article  Google Scholar 

  51. Moossavi M, Parsamanesh N, Bahrami A, Atkin SL, Sahebkar A (2018) Role of the NLRP3 inflammasome in cancer. Mol Cancer 17:158. https://doi.org/10.1186/s12943-018-0900-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lee H, Jeong AJ, Ye S-K (2019) Highlighted STAT3 as a potential drug target for cancer therapy. BMB Rep 52:415–423. https://doi.org/10.5483/BMBRep.2019.52.7.152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Koppikar P, Lui VWY, Man D, Xi S, Chai RL, Nelson E, Tobey ABJ, Grandis JR (2008) Constitutive activation of signal transducer and activator of transcription 5 contributes to tumor growth, epithelial-mesenchymal transition, and resistance to epidermal growth factor receptor targeting. Clin Cancer Res 14:7682–7690. https://doi.org/10.1158/1078-0432.CCR-08-1328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Bowers LW, Maximo IXF, Brenner AJ, Beeram M, Hursting SD, Price RS, Tekmal RR, Jolly CA, deGraffenried LA (2014) NSAID use reduces breast cancer recurrence in overweight and obese women: role of prostaglandin-aromatase interactions. Cancer Res 74:4446–4457. https://doi.org/10.1158/0008-5472.CAN-13-3603

    Article  CAS  PubMed  Google Scholar 

  55. Bowers LW, Brenner AJ, Hursting SD, Tekmal RR, deGraffenried LA (2015) Obesity-associated systemic interleukin-6 promotes pre-adipocyte aromatase expression via increased breast cancer cell prostaglandin E2 production. Breast Cancer Res Treat 149:49–57. https://doi.org/10.1007/s10549-014-3223-0

    Article  CAS  PubMed  Google Scholar 

  56. Iyengar NM, Zhou XK, Gucalp A, Morris PG, Howe LR, Giri DD, Morrow M, Wang H, Pollak M, Jones LW, Hudis CA, Dannenberg AJ (2016) Systemic correlates of white adipose tissue inflammation in early-stage breast cancer. Clin Cancer Res 22:2283–2289. https://doi.org/10.1158/1078-0432.CCR-15-2239

    Article  CAS  PubMed  Google Scholar 

  57. Cho U, Kim B, Kim S, Han Y, Song YS (2018) Pro-inflammatory M1 macrophage enhances metastatic potential of ovarian cancer cells through NF-κB activation. Mol Carcinog 57:235–242. https://doi.org/10.1002/mc.22750

    Article  CAS  PubMed  Google Scholar 

  58. Gorska E, Popko K, Stelmaszczyk-Emmel A, Ciepiela O, Kucharska A, Wasik M (2010) Leptin receptors. Eur J Med Res 15:50–54. https://doi.org/10.1186/2047-783X-15-S2-50

    Article  PubMed  PubMed Central  Google Scholar 

  59. Busso N, So A, Chobaz-Péclat V, Morard C, Martinez-Soria E, Talabot-Ayer D, Gabay C (2002) Leptin signaling deficiency impairs humoral and cellular immune responses and attenuates experimental arthritis. J Immunol 168:875–882. https://doi.org/10.4049/jimmunol.168.2.875

    Article  CAS  PubMed  Google Scholar 

  60. Myers MG, Cowley MA, Münzberg H (2008) Mechanisms of leptin action and leptin resistance. Annu Rev Physiol 70:537–556. https://doi.org/10.1146/annurev.physiol.70.113006.100707

    Article  CAS  PubMed  Google Scholar 

  61. Münzberg H, Myers MG (2005) Molecular and anatomical determinants of central leptin resistance. Nat Neurosci 8:566–570. https://doi.org/10.1038/nn1454

    Article  CAS  PubMed  Google Scholar 

  62. Münzberg H, Flier JS, Bjørbæk C (2004) Region-specific leptin resistance within the hypothalamus of diet-induced obese mice. Endocrinology 145:4880–4889. https://doi.org/10.1210/en.2004-0726

    Article  CAS  PubMed  Google Scholar 

  63. Lord GM, Matarese G, Howard JK, Baker RJ, Bloom SR, Lechler RI (1998) Leptin modulates the T-cell immune response and reverses starvation-induced immunosuppression. Nature 394:897–901. https://doi.org/10.1038/29795

    Article  CAS  PubMed  Google Scholar 

  64. Martín-Romero C, Santos-Alvarez J, Goberna R, Sánchez-Margalet V (2000) Human leptin enhances activation and proliferation of human circulating T lymphocytes. Cell Immunol 199:15–24. https://doi.org/10.1006/cimm.1999.1594

    Article  CAS  PubMed  Google Scholar 

  65. De Rosa V, Procaccini C, Calì G, Pirozzi G, Fontana S, Zappacosta S, La Cava A, Matarese G (2007) A key role of leptin in the control of regulatory T cell proliferation. Immunity 26:241–255. https://doi.org/10.1016/j.immuni.2007.01.011

    Article  CAS  PubMed  Google Scholar 

  66. Lee S-M, Choi H-J, Oh C-H, Oh J-W, Han J-S (2014) Leptin increases TNF-α expression and production through phospholipase D1 in Raw 264.7 cells. PLoS ONE 9(7):e102373. https://doi.org/10.1371/journal.pone.0102373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Loffreda S, Yang SQ, Lin HZ, Karp CL, Brengman ML, Wang DJ, Klein AS, Bulkley GB, Bao C, Noble PW, Lane MD, Diehl AM (1998) Leptin regulates proinflammatory immune responses. FASEB J 12:57–65. https://doi.org/10.1096/fsb2fasebj.12.1.57

    Article  CAS  PubMed  Google Scholar 

  68. Pham DV, Park PH (2020) Recent insights on modulation of inflammasomes by adipokines: a critical event for the pathogenesis of obesity and metabolism-associated diseases. Arch Pharm Res 43:997–1016. https://doi.org/10.1007/s12272-020-01274-7

    Article  CAS  PubMed  Google Scholar 

  69. Fu S, Liu L, Han L, Yu Y (2017) Leptin promotes IL-18 secretion by activating the NLRP3 inflammasome in RAW 264.7 cells. Mol Med Rep 16:9770–9776. https://doi.org/10.3892/mmr.2017.7797

    Article  CAS  PubMed  Google Scholar 

  70. Hoffmann A, Ebert T, Klöting N, Kolb M, Gericke M, Jeromin F, Jessnitzer B, Lössner U, Burkhardt R, Stumvoll M, Fasshauer M, Kralisch S (2019) Leptin decreases circulating inflammatory IL-6 and MCP-1 in mice. BioFactors 45:43–48. https://doi.org/10.1002/biof.1457

    Article  CAS  PubMed  Google Scholar 

  71. Patraca I, Martínez N, Busquets O, Martí A, Pedrós I, Beas-Zarate C, Marin M, Ettcheto M, Sureda F, Auladell C, Camins A, Folch J (2017) Anti-inflammatory role of leptin in glial cells through p38 MAPK pathway inhibition. Pharmacol Rep 69:409–418. https://doi.org/10.1016/j.pharep.2016.12.005

    Article  CAS  PubMed  Google Scholar 

  72. Konturek PC, Jaworek J, Maniatoglou A, Bonior J, Meixner H, Konturek SJ, Hahn EG (2002) Leptin modulates the inflammatory response in acute pancreatitis. Digestion 65:149–160. https://doi.org/10.1159/000064935

    Article  CAS  PubMed  Google Scholar 

  73. Çakır B, Bozkurt A, Ercan F, Yeğen BÇ (2004) The anti-inflammatory effect of leptin on experimental colitis: involvement of endogenous glucocorticoids. Peptides 25:95–104. https://doi.org/10.1016/j.peptides.2003.11.005

    Article  CAS  PubMed  Google Scholar 

  74. Daley-Brown D, Harbuzariu A, Kurian AA, Oprea-Ilies G, Gonzalez-Perez RR (2019) Leptin-induced Notch and IL-1 signaling crosstalk in endometrial adenocarcinoma is associated with invasiveness and chemoresistance. World J Clin Oncol 10:222–233. https://doi.org/10.5306/wjco.v10.i6.222

    Article  PubMed  PubMed Central  Google Scholar 

  75. Gu F, Zhang H, Yao L, Jiang S, Lu H, Xing X, Zhang C, Jiang P, Zhang R (2019) Leptin contributes to the taxol chemoresistance in epithelial ovarian cancer. Oncol Lett 18:561–570. https://doi.org/10.3892/ol.2019.10381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Feng H, Zhang Q, Zhao Y, Zhao L, Shan B (2020) Leptin acts on mesenchymal stem cells to promote chemoresistance in osteosarcoma cells. Aging (Albany NY) 12:6340–6351. https://doi.org/10.18632/aging.103027

    Article  CAS  Google Scholar 

  77. Yadav NVS, Barcikowski A, Uehana Y, Jacobs AT, Connelly L (2020) Breast adipocyte co-culture increases the expression of pro-angiogenic factors in macrophages. Front Oncol 10:454. https://doi.org/10.3389/fonc.2020.00454

    Article  PubMed  PubMed Central  Google Scholar 

  78. Yu F, Fu R, Liu L, Wang X, Wu T, Shen W, Gui Z, Mo X, Fang B, Xia L (2019) Leptin-induced angiogenesis of Ea.hy926 endothelial cells via the Akt and Wnt signaling pathways in vitro and in vivo. Front Pharmacol 10:1275. https://doi.org/10.3389/fphar.2019.01275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Liang X, Wang S, Wang X, Zhang L, Zhao H, Zhang L (2018) Leptin promotes the growth of breast cancer by upregulating the Wnt/β-catenin pathway. Exp Ther Med 16:767–771. https://doi.org/10.3892/etm.2018.6212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Yan D, Avtanski D, Saxena NK, Sharma D (2012) Leptin-induced epithelial-mesenchymal transition in breast cancer cells requires β-catenin activation via Akt/GSK3- and MTA1/Wnt1 protein-dependent pathways. J Biol Chem 287:8598–8612. https://doi.org/10.1074/jbc.M111.322800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Thiagarajan PS, Zheng Q, Bhagrath M, Mulkearns-Hubert EE, Myers MG, Lathia JD, Reizes O (2017) STAT3 activation by leptin receptor is essential for TNBC stem cell maintenance. Endocr Relat Cancer 24:415–426. https://doi.org/10.1530/ERC-16-0349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Zheng Q, Banaszak L, Fracci S, Basali D, Dunlap SM, Hursting SD, Rich JN, Hjlemeland AB, Vasanji A, Berger NA, Lathia JD, Reizes O (2013) Leptin receptor maintains cancer stem-like properties in triple negative breast cancer cells. Endocr Relat Cancer 20:797–808. https://doi.org/10.1530/ERC-13-0329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Strong AL, Ohlstein JF, Biagas BA, Rhodes LV, Pei DT, Tucker HA, Llamas C, Bowles AC, Dutreil MF, Zhang S, Gimble JM, Burow ME, Bunnell BA (2015) Leptin produced by obese adipose stromal/stem cells enhances proliferation and metastasis of estrogen receptor positive breast cancers. Breast Cancer Res 17:112. https://doi.org/10.1186/s13058-015-0622-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Smith U, Kahn BB (2016) Adipose tissue regulates insulin sensitivity: role of adipogenesis, de novo lipogenesis and novel lipids. J Intern Med 280:465–475. https://doi.org/10.1111/joim.12540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Zatterale F, Longo M, Naderi J, Raciti GA, Desiderio A, Miele C, Beguinot F (2020) Chronic adipose tissue inflammation linking obesity to insulin resistance and type 2 diabetes. Front Physiol. https://doi.org/10.3389/fphys.2019.01607

    Article  PubMed  PubMed Central  Google Scholar 

  86. McArdle MA, Finucane OM, Connaughton RM, McMorrow AM, Roche HM (2013) Mechanisms of obesity-induced inflammation and insulin resistance: insights into the emerging role of nutritional strategies. Front Endocrinol (Lausanne) 4:52. https://doi.org/10.3389/fendo.2013.00052

    Article  Google Scholar 

  87. Tripathy D, Mohanty P, Dhindsa S, Syed T, Ghanim H, Aljada A, Dandona P (2003) Elevation of free fatty acids induces inflammation and impairs vascular reactivity in healthy subjects. Diabetes 52:2882–2887. https://doi.org/10.2337/diabetes.52.12.2882

    Article  CAS  PubMed  Google Scholar 

  88. de Alvaro C, Teruel T, Hernandez R, Lorenzo M (2004) Tumor necrosis factor α produces insulin resistance in skeletal muscle by activation of inhibitor κB kinase in a p38 MAPK-dependent manner. J Biol Chem 279:17070–17078. https://doi.org/10.1074/jbc.M312021200

    Article  CAS  PubMed  Google Scholar 

  89. Jansen HJ, Stienstra R, van Diepen JA, Hijmans A, van der Laak JA, Vervoort GMM, Tack CJ (2013) Start of insulin therapy in patients with type 2 diabetes mellitus promotes the influx of macrophages into subcutaneous adipose tissue. Diabetologia 56:2573–2581. https://doi.org/10.1007/s00125-013-3018-6

    Article  CAS  PubMed  Google Scholar 

  90. Pedersen DJ, Guilherme A, Danai LV, Heyda L, Matevossian A, Cohen J, Nicoloro SM, Straubhaar J, Noh HL, Jung D, Kim JK, Czech MP (2015) A major role of insulin in promoting obesity-associated adipose tissue inflammation. Mol Metab 4:507–518. https://doi.org/10.1016/j.molmet.2015.04.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Sartipy P, Loskutoff DJ (2003) Monocyte chemoattractant protein 1 in obesity and insulin resistance. Proc Natl Acad Sci USA 100:7265–7270. https://doi.org/10.1073/pnas.1133870100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Morvan D, Steyaert JM, Schwartz L, Israel M, Demidem A (2012) Normal human melanocytes exposed to chronic insulin and glucose supplementation undergo oncogenic changes and methyl group metabolism cellular redistribution. Am J Physiol Endocrinol Metab 302:E1407-1418. https://doi.org/10.1152/ajpendo.00594.2011

    Article  CAS  PubMed  Google Scholar 

  93. Baricevic I, Roberts DL, Renehan AG (2014) Chronic insulin exposure does not cause insulin resistance but is associated with chemo-resistance in colon cancer cells. Horm Metab Res 46:85–93. https://doi.org/10.1055/s-0033-1354414

    Article  CAS  PubMed  Google Scholar 

  94. Chan S-H, Kikkawa U, Matsuzaki H, Chen J-H, Chang W-C (2012) Insulin receptor substrate-1 prevents autophagy-dependent cell death caused by oxidative stress in mouse NIH/3T3 cells. J Biomed Sci 19:64. https://doi.org/10.1186/1423-0127-19-64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Wang Y, Hua S, Tian W, Zhang L, Zhao J, Zhang H, Zhang W, Xue F (2012) Mitogenic and anti-apoptotic effects of insulin in endometrial cancer are phosphatidylinositol 3-kinase/Akt dependent. Gynecol Oncol 125:734–741. https://doi.org/10.1016/j.ygyno.2012.03.012

    Article  CAS  PubMed  Google Scholar 

  96. Esposito DL, Aru F, Lattanzio R, Morgano A, Abbondanza M, Malekzadeh R, Bishehsari F, Valanzano R, Russo A, Piantelli M, Moschetta A, Lotti LV, Mariani-Costantini R (2012) The insulin receptor substrate 1 (IRS1) in intestinal epithelial differentiation and in colorectal cancer. PLoS ONE 7:e36190. https://doi.org/10.1371/journal.pone.0036190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Gallagher EJ, LeRoith D (2010) The proliferating role of insulin and insulin-like growth factors in cancer. Trends Endocrinol Metab 21:610–618. https://doi.org/10.1016/j.tem.2010.06.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Wu Y, Brodt P, Sun H, Mejia W, Novosyadlyy R, Nunez N, Chen X, Mendoza A, Hong S-H, Khanna C, Yakar S (2010) Insulin-like growth factor-i regulates the liver microenvironment in obese mice and promotes liver metastasis. Cancer Res 70:57–67. https://doi.org/10.1158/0008-5472.CAN-09-2472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Bruning PF, Bonfrèr JMG, van Noord PAH, Hart AAM, de Jong-Bakker M, Nooijen WJ (1992) Insulin resistance and breast-cancer risk. Int J Cancer 52:511–516. https://doi.org/10.1002/ijc.2910520402

    Article  CAS  PubMed  Google Scholar 

  100. Stolzenberg-Solomon RZ, Graubard BI, Chari S, Limburg P, Taylor PR, Virtamo J, Albanes D (2005) Insulin, glucose, insulin resistance, and pancreatic cancer in male smokers. JAMA 294:2872–2878. https://doi.org/10.1001/jama.294.22.2872

    Article  CAS  PubMed  Google Scholar 

  101. Soliman PT, Wu D, Tortolero-Luna G, Schmeler KM, Slomovitz BM, Bray MS, Gershenson DM, Lu KH (2006) Association between adiponectin, insulin resistance, and endometrial cancer. Cancer 106:2376–2381. https://doi.org/10.1002/cncr.21866

    Article  CAS  PubMed  Google Scholar 

  102. Colangelo LA, Gapstur SM, Gann PH, Dyer AR, Liu K (2002) Colorectal cancer mortality and factors related to the insulin resistance syndrome. Cancer Epidemiol Biomarkers Prev 11:385–391

    PubMed  Google Scholar 

  103. Hsing AW, Gao Y-T, Chua S, Deng J, Stanczyk FZ (2003) Insulin resistance and prostate cancer risk. J Natl Cancer Inst 95:67–71. https://doi.org/10.1093/jnci/95.1.67

    Article  CAS  PubMed  Google Scholar 

  104. Unamuno X, Gómez-Ambrosi J, Rodríguez A, Becerril S, Frühbeck G, Catalán V (2018) Adipokine dysregulation and adipose tissue inflammation in human obesity. Eur J Clin Invest 48:e12997. https://doi.org/10.1111/eci.12997

    Article  CAS  PubMed  Google Scholar 

  105. Coussens LM, Werb Z (2002) Inflammation and cancer. Nature 420:860–867. https://doi.org/10.1038/nature01322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Quail DF, Dannenberg AJ (2019) The obese adipose tissue microenvironment in cancer development and progression. Nat Rev Endocrinol 15:139–154. https://doi.org/10.1038/s41574-018-0126-x

    Article  PubMed  PubMed Central  Google Scholar 

  107. Shirakawa K, Yan X, Shinmura K, Endo J, Kataoka M, Katsumata Y, Yamamoto T, Anzai A, Isobe S, Yoshida N, Itoh H, Manabe I, Sekai M, Hamazaki Y, Fukuda K, Minato N, Sano M (2016) Obesity accelerates T cell senescence in murine visceral adipose tissue. J Clin Invest 126:4626–4639. https://doi.org/10.1172/JCI88606

    Article  PubMed  PubMed Central  Google Scholar 

  108. Catrysse L, van Loo G (2017) Inflammation and the metabolic syndrome: the tissue-specific functions of NF-κB. Trends Cell Biol 27:417–429. https://doi.org/10.1016/j.tcb.2017.01.006

    Article  CAS  PubMed  Google Scholar 

  109. Francisco V, Pino J, Campos-Cabaleiro V, Ruiz-Fernández C, Mera A, Gonzalez-Gay MA, Gómez R, Gualillo O (2018) Obesity, fat mass and immune system: role for leptin. Front Physiol 9:640. https://doi.org/10.3389/fphys.2018.00640

    Article  PubMed  PubMed Central  Google Scholar 

  110. Ghilardi N, Ziegler S, Wiestner A, Stoffel R, Heim MH, Skoda RC (1996) Defective STAT signaling by the leptin receptor in diabetic mice. Proc Natl Acad Sci USA 93:6231–6235. https://doi.org/10.1073/pnas.93.13.6231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Lee G-H, Proenca R, Montez JM, Carroll KM, Darvishzadeh JG, Lee JI, Friedman JM (1996) Abnormal splicing of the leptin receptor in diabetic mice. Nature 379:632–635. https://doi.org/10.1038/379632a0

    Article  CAS  PubMed  Google Scholar 

  112. Howard JK, Lord GM, Matarese G, Vendetti S, Ghatei MA, Ritter MA, Lechler RI, Bloom SR (1999) Leptin protects mice from starvation-induced lymphoid atrophy and increases thymic cellularity in ob/ob mice. J Clin Invest 104:1051–1059. https://doi.org/10.1172/JCI6762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Winer S, Paltser G, Chan Y, Tsui H, Engleman E, Winer D, Dosch H-M (2009) Obesity predisposes to Th17 bias. Eur J Immunol 39:2629–2635. https://doi.org/10.1002/eji.200838893

    Article  CAS  PubMed  Google Scholar 

  114. Wei L, Laurence A, Elias KM, O’Shea JJ (2007) IL-21 is produced by Th17 cells and drives IL-17 production in a STAT3-dependent manner. J Biol Chem 282:34605–34610. https://doi.org/10.1074/jbc.M705100200

    Article  CAS  PubMed  Google Scholar 

  115. Chen Y, Tian J, Tian X, Tang X, Rui K, Tong J, Lu L, Xu H, Wang S (2014) Adipose tissue dendritic cells enhances inflammation by prompting the generation of Th17 cells. PLoS ONE 9(3):e92450. https://doi.org/10.1371/journal.pone.0092450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Stritesky GL, Yeh N, Kaplan MH (2008) IL-23 promotes maintenance but not commitment to the Th17 lineage. J Immunol 181:5948–5955. https://doi.org/10.4049/jimmunol.181.9.5948

    Article  CAS  PubMed  Google Scholar 

  117. Endo Y, Asou HK, Matsugae N, Hirahara K, Shinoda K, Tumes DJ, Tokuyama H, Yokote K, Nakayama T (2015) Obesity drives Th17 cell differentiation by inducing the lipid metabolic kinase, acc1. Cell Rep 12:1042–1055. https://doi.org/10.1016/j.celrep.2015.07.014

    Article  CAS  PubMed  Google Scholar 

  118. Fabrizi M, Marchetti V, Mavilio M, Marino A, Casagrande V, Cavalera M, Moreno-Navarrete JM, Mezza T, Sorice GP, Fiorentino L, Menghini R, Lauro R, Monteleone G, Giaccari A, Fernandez Real JM, Federici M (2014) IL-21 is a major negative regulator of IRF4-dependent lipolysis affecting Tregs in adipose tissue and systemic insulin sensitivity. Diabetes 63:2086–2096. https://doi.org/10.2337/db13-0939

    Article  CAS  PubMed  Google Scholar 

  119. Agrawal S, Gollapudi S, Su H, Gupta S (2011) Leptin activates human B cells to secrete TNF-α, IL-6, and IL-10 via JAK2/STAT3 and p38MAPK/ERK1/2 signaling pathway. J Clin Immunol 31:472–478. https://doi.org/10.1007/s10875-010-9507-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Lam QLK, Wang S, Ko OKH, Kincade PW, Lu L (2010) Leptin signaling maintains B-cell homeostasis via induction of Bcl-2 and cyclin D1. Proc Natl Acad Sci USA 107:13812–13817. https://doi.org/10.1073/pnas.1004185107

    Article  PubMed  PubMed Central  Google Scholar 

  121. Claycombe K, King LE, Fraker PJ (2008) A role for leptin in sustaining lymphopoiesis and myelopoiesis. Proc Natl Acad Sci USA 105:2017–2021. https://doi.org/10.1073/pnas.0712053105

    Article  PubMed  PubMed Central  Google Scholar 

  122. DeFuria J, Belkina AC, Jagannathan-Bogdan M, Snyder-Cappione J, Carr JD, Nersesova YR, Markham D, Strissel KJ, Watkins AA, Zhu M, Allen J, Bouchard J, Toraldo G, Jasuja R, Obin MS, McDonnell ME, Apovian C, Denis GV, Nikolajczyk BS (2013) B cells promote inflammation in obesity and type 2 diabetes through regulation of T-cell function and an inflammatory cytokine profile. Proc Natl Acad Sci USA 110:5133–5138. https://doi.org/10.1073/pnas.1215840110

    Article  PubMed  PubMed Central  Google Scholar 

  123. Frasca D, Ferracci F, Diaz A, Romero M, Lechner S, Blomberg BB (2016) Obesity decreases B cell responses in young and elderly individuals. Obesity (Silver Spring) 24:615–625. https://doi.org/10.1002/oby.21383

    Article  CAS  Google Scholar 

  124. Frasca D, Romero M, Diaz A, Alter-Wolf S, Ratliff M, Landin AM, Riley RL, Blomberg BB (2012) A molecular mechanism for TNF-α-mediated downregulation of B cell responses. J Immunol 188:279–286. https://doi.org/10.4049/jimmunol.1003964

    Article  CAS  PubMed  Google Scholar 

  125. Kosaraju R, Guesdon W, Crouch MJ, Teague HL, Sullivan EM, Karlsson EA, Schultz-Cherry S, Gowdy K, Bridges LC, Reese LR, Neufer PD, Armstrong M, Reisdorph N, Milner JJ, Beck M, Shaikh SR (2017) B cell activity is impaired in human and mouse obesity and is responsive to an essential fatty acid upon murine influenza infection. J Immunol 198:4738–4752. https://doi.org/10.4049/jimmunol.1601031

    Article  CAS  PubMed  Google Scholar 

  126. Winer DA, Winer S, Shen L, Wadia PP, Yantha J, Paltser G, Tsui H, Wu P, Davidson MG, Alonso MN, Leong H, Glassford A, Caimol M, Kenkel JA, Tedder TF, McLaughlin T, Miklos DB, Dosch H-M, Engleman EG (2011) B cells promote insulin resistance through modulation of T cells and production of pathogenic IgG antibodies. Nat Med 17:610–617. https://doi.org/10.1038/nm.2353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Nishimura S, Manabe I, Takaki S, Nagasaki M, Otsu M, Yamashita H, Sugita J, Yoshimura K, Eto K, Komuro I, Kadowaki T, Nagai R (2013) Adipose natural regulatory B cells negatively control adipose tissue inflammation. Cell Metab 18:759–766. https://doi.org/10.1016/j.cmet.2013.09.017

    Article  CAS  PubMed  Google Scholar 

  128. García-Hernández MH, Rodríguez-Varela E, García-Jacobo RE, Hernández-De la Torre M, Uresti-Rivera EE, González-Amaro R, Portales-Pérez DP (2018) Frequency of regulatory B cells in adipose tissue and peripheral blood from individuals with overweight, obesity and normal-weight. Obes Res Clin Pract 12:513–519. https://doi.org/10.1016/j.orcp.2018.07.001

    Article  PubMed  Google Scholar 

  129. Hill AA, Bolus WR, Hasty AH (2014) A decade of progress in adipose tissue macrophage biology. Immunol Rev 262:134–152. https://doi.org/10.1111/imr.12216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Patel PS, Buras ED, Balasubramanyam A (2013) The role of the immune system in obesity and insulin resistance. J Obes 2013:616193. https://doi.org/10.1155/2013/616193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Stienstra R, van Diepen JA, Tack CJ, Zaki MH, van de Veerdonk FL, Perera D, Neale GA, Hooiveld GJ, Hijmans A, Vroegrijk I, van den Berg S, Romijn J, Rensen PCN, Joosten LAB, Netea MG, Kanneganti T-D (2011) Inflammasome is a central player in the induction of obesity and insulin resistance. Proc Natl Acad Sci USA 108:15324–15329. https://doi.org/10.1073/pnas.1100255108

    Article  PubMed  PubMed Central  Google Scholar 

  132. Wree A, McGeough MD, Inzaugarat ME, Eguchi A, Schuster S, Johnson CD, Peña CA, Geisler LJ, Papouchado BG, Hoffman HM, Feldstein AE (2018) NLRP3 inflammasome driven liver injury and fibrosis: Roles of IL-17 and TNF in mice. Hepatology 67:736–749. https://doi.org/10.1002/hep.29523

    Article  CAS  PubMed  Google Scholar 

  133. Li P, Lu M, Nguyen MTA, Bae EJ, Chapman J, Feng D, Hawkins M, Pessin JE, Sears DD, Nguyen A-K, Amidi A, Watkins SM, Nguyen U, Olefsky JM (2010) Functional heterogeneity of CD11c-positive adipose tissue macrophages in diet-induced obese mice. J Biol Chem 285:15333–15345. https://doi.org/10.1074/jbc.M110.100263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Lumeng CN, Bodzin JL, Saltiel AR (2007) Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J Clin Invest 117:175–184. https://doi.org/10.1172/JCI29881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Suganami T, Ogawa Y (2010) Adipose tissue macrophages: their role in adipose tissue remodeling. J Leukoc Biol 88:33–39. https://doi.org/10.1189/jlb.0210072

    Article  CAS  PubMed  Google Scholar 

  136. Lee JY, Sohn KH, Rhee SH, Hwang D (2001) Saturated fatty acids, but not unsaturated fatty acids, induce the expression of cyclooxygenase-2 mediated through toll-like receptor 4. J Biol Chem 276:16683–16689. https://doi.org/10.1074/jbc.M011695200

    Article  CAS  PubMed  Google Scholar 

  137. Santos-Alvarez J, Goberna R, Sánchez-Margalet V (1999) Human leptin stimulates proliferation and activation of human circulating monocytes. Cell Immunol 194:6–11. https://doi.org/10.1006/cimm.1999.1490

    Article  CAS  PubMed  Google Scholar 

  138. Acedo SC, Gambero S, Cunha FGP, Lorand-Metze I, Gambero A (2013) Participation of leptin in the determination of the macrophage phenotype: an additional role in adipocyte and macrophage crosstalk. Vitro Cell Dev Biol Anim 49:473–478. https://doi.org/10.1007/s11626-013-9629-x

    Article  CAS  Google Scholar 

  139. Zarkesh-Esfahani H, Pockley G, Metcalfe RA, Bidlingmaier M, Wu Z, Ajami A, Weetman AP, Strasburger CJ, Ross RJM (2001) High-dose leptin activates human leukocytes via receptor expression on monocytes. J Immunol 167:4593–4599. https://doi.org/10.4049/jimmunol.167.8.4593

    Article  CAS  PubMed  Google Scholar 

  140. Breznik JA, Naidoo A, Foley KP, Schulz C, Lau TC, Loukov D, Sloboda DM, Bowdish DME, Schertzer JD (2018) TNF, but not hyperinsulinemia or hyperglycemia, is a key driver of obesity-induced monocytosis revealing that inflammatory monocytes correlate with insulin in obese male mice. Physiol Rep 6:e13937. https://doi.org/10.14814/phy2.13937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Kanda H, Tateya S, Tamori Y, Kotani K, Hiasa K, Kitazawa R, Kitazawa S, Miyachi H, Maeda S, Egashira K, Kasuga M (2006) MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity. J Clin Invest 116:1494–1505. https://doi.org/10.1172/JCI26498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Kamei N, Tobe K, Suzuki R, Ohsugi M, Watanabe T, Kubota N, Ohtsuka-Kowatari N, Kumagai K, Sakamoto K, Kobayashi M, Yamauchi T, Ueki K, Oishi Y, Nishimura S, Manabe I, Hashimoto H, Ohnishi Y, Ogata H, Tokuyama K, Tsunoda M, Ide T, Murakami K, Nagai R, Kadowaki T (2006) Overexpression of monocyte chemoattractant protein-1 in adipose tissues causes macrophage recruitment and insulin resistance. J Biol Chem 281:26602–26614. https://doi.org/10.1074/jbc.M601284200

    Article  CAS  PubMed  Google Scholar 

  143. LaMarche NM, Lynch L (2018) Adipose dendritic cells come out of hiding. Cell Metab 27:485–486. https://doi.org/10.1016/j.cmet.2018.02.014

    Article  CAS  PubMed  Google Scholar 

  144. Macdougall CE, Wood EG, Loschko J, Scagliotti V, Cassidy FC, Robinson ME, Feldhahn N, Castellano L, Voisin M-B, Marelli-Berg F, Gaston-Massuet C, Charalambous M, Longhi MP (2018) Visceral adipose tissue immune homeostasis is regulated by the crosstalk between adipocytes and dendritic cell subsets. Cell Metab 27:588-601.e4. https://doi.org/10.1016/j.cmet.2018.02.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Cho KW, Zamarron BF, Muir LA, Singer K, Porsche CE, DelProposto JB, Geletka L, Meyer KA, O’Rourke RW, Lumeng CN (2016) Adipose tissue dendritic cells are independent contributors to obesity-induced inflammation and insulin resistance. J Immunol 197:3650–3661. https://doi.org/10.4049/jimmunol.1600820

    Article  CAS  PubMed  Google Scholar 

  146. Bertola A, Ciucci T, Rousseau D, Bourlier V, Duffaut C, Bonnafous S, Blin-Wakkach C, Anty R, Iannelli A, Gugenheim J, Tran A, Bouloumié A, Gual P, Wakkach A (2012) Identification of adipose tissue dendritic cells correlated with obesity-associated insulin-resistance and inducing Th17 responses in mice and patients. Diabetes 61:2238–2247. https://doi.org/10.2337/db11-1274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Mattioli B, Straface E, Quaranta MG, Giordani L, Viora M (2005) Leptin promotes differentiation and survival of human dendritic cells and licenses them for Th1 priming. J Immunol 174:6820–6828. https://doi.org/10.4049/jimmunol.174.11.6820

    Article  CAS  PubMed  Google Scholar 

  148. Moraes-Vieira PMM, Larocca RA, Bassi EJ, Peron JPS, Andrade-Oliveira V, Wasinski F, Araujo R, Thornley T, Quintana FJ, Basso AS, Strom TB, Câmara NOS (2014) Leptin deficiency impairs maturation of dendritic cells and enhances induction of regulatory T and Th17 cells. Eur J Immunol 44:794–806. https://doi.org/10.1002/eji.201343592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Lam QLK, Liu S, Cao X, Lu L (2006) Involvement of leptin signaling in the survival and maturation of bone marrow-derived dendritic cells. Eur J Immunol 36:3118–3130. https://doi.org/10.1002/eji.200636602

    Article  CAS  PubMed  Google Scholar 

  150. Orlova EG, Shirshev SV, Loginova OA (2015) Leptin and ghrelin regulate dendritic cell maturation and dendritic cell induction of regulatory T-cells. Dokl Biol Sci 462:171–174. https://doi.org/10.1134/S001249661503014X

    Article  CAS  PubMed  Google Scholar 

  151. Lynch LA, O’Connell JM, Kwasnik AK, Cawood TJ, O’Farrelly C, O’Shea DB (2009) Are natural killer cells protecting the metabolically healthy obese patient? Obesity (Silver Spring) 17:601–605. https://doi.org/10.1038/oby.2008.565

    Article  CAS  Google Scholar 

  152. Viel S, Besson L, Charrier E, Marçais A, Disse E, Bienvenu J, Walzer T, Dumontet C (2017) Alteration of natural killer cell phenotype and function in obese individuals. Clin Immunol 177:12–17. https://doi.org/10.1016/j.clim.2016.01.007

    Article  CAS  PubMed  Google Scholar 

  153. Viel S, Besson L, Charrier E, Bienvenu J, Disse E, Walzer T, Dumontet C (2015) Natural killer cells display an activated phenotype but reduced effector functions in obese patients. Blood 126:3430–3430. https://doi.org/10.1182/blood.V126.23.3430.3430

    Article  Google Scholar 

  154. Michelet X, Dyck L, Hogan A, Loftus RM, Duquette D, Wei K, Beyaz S, Tavakkoli A, Foley C, Donnelly R, O’Farrelly C, Raverdeau M, Vernon A, Pettee W, O’Shea D, Nikolajczyk BS, Mills KHG, Brenner MB, Finlay D, Lynch L (2018) Metabolic reprogramming of natural killer cells in obesity limits antitumor responses. Nat Immunol 19:1330–1340. https://doi.org/10.1038/s41590-018-0251-7

    Article  CAS  PubMed  Google Scholar 

  155. Bähr I, Jahn J, Zipprich A, Pahlow I, Spielmann J, Kielstein H (2018) Impaired natural killer cell subset phenotypes in human obesity. Immunol Res 66:234–244. https://doi.org/10.1007/s12026-018-8989-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Molofsky AB, Nussbaum JC, Liang H-E, Van Dyken SJ, Cheng LE, Mohapatra A, Chawla A, Locksley RM (2013) Innate lymphoid type 2 cells sustain visceral adipose tissue eosinophils and alternatively activated macrophages. J Exp Med 210:535–549. https://doi.org/10.1084/jem.20121964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Souza-Almeida G, D’Avila H, Almeida PE, Luna-Gomes T, Liechocki S, Walzog B, Hepper I, Castro-Faria-Neto HC, Bozza PT, Bandeira-Melo C, Maya-Monteiro CM (2018) Leptin mediates in vivo neutrophil migration: involvement of tumor necrosis factor-alpha and CXCL1. Front Immunol 9:111. https://doi.org/10.3389/fimmu.2018.00111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Zarkesh-Esfahani H, Pockley AG, Wu Z, Hellewell PG, Weetman AP, Ross RJM (2004) Leptin indirectly activates human neutrophils via induction of TNF-alpha. J Immunol 172:1809–1814. https://doi.org/10.4049/jimmunol.172.3.1809

    Article  CAS  PubMed  Google Scholar 

  159. Incio J, Liu H, Suboj P, Chin SM, Chen IX, Pinter M, Ng MR, Nia HT, Grahovac J, Kao S, Babykutty S, Huang Y, Jung K, Rahbari NN, Han X, Chauhan VP, Martin JD, Kahn J, Huang P, Desphande V, Michaelson J, Michelakos TP, Ferrone CR, Soares R, Boucher Y, Fukumura D, Jain RK (2016) Obesity-induced inflammation and desmoplasia promote pancreatic cancer progression and resistance to chemotherapy. Cancer Discov 6:852–869. https://doi.org/10.1158/2159-8290.CD-15-1177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Taildeman J, Pérez-Novo CA, Rottiers I, Ferdinande L, Waeytens A, De Colvenaer V, Bachert C, Demetter P, Waelput W, Braet K, Cuvelier CA (2009) Human mast cells express leptin and leptin receptors. Histochem Cell Biol 131:703–711. https://doi.org/10.1007/s00418-009-0575-3

    Article  CAS  PubMed  Google Scholar 

  161. Liu J, Divoux A, Sun J, Zhang J, Clément K, Glickman JN, Sukhova GK, Wolters PJ, Du J, Gorgun CZ, Doria A, Libby P, Blumberg RS, Kahn BB, Hotamisligil GS, Shi G-P (2009) Genetic deficiency and pharmacological stabilization of mast cells reduce diet-induced obesity and diabetes in mice. Nat Med 15:940–945. https://doi.org/10.1038/nm.1994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Zhou Y, Yu X, Chen H, Sjöberg S, Roux J, Zhang L, Ivoulsou A-H, Bensaid F, Liu C-L, Liu J, Tordjman J, Clement K, Lee C-H, Hotamisligil GS, Libby P, Shi G-P (2015) Leptin deficiency shifts mast cells toward anti-inflammatory actions and protects mice from obesity and diabetes by polarizing M2 macrophages. Cell Metab 22:1045–1058. https://doi.org/10.1016/j.cmet.2015.09.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Kado T, Nawaz A, Takikawa A, Usui I, Tobe K (2019) Linkage of CD8 + T cell exhaustion with high-fat diet-induced tumourigenesis. Sci Rep 9:1–8. https://doi.org/10.1038/s41598-019-48678-0

    Article  CAS  Google Scholar 

  164. Wang Z, Aguilar EG, Luna JI, Dunai C, Khuat LT, Le CT, Mirsoian A, Minnar CM, Stoffel KM, Sturgill IR, Grossenbacher SK, Withers SS, Rebhun RB, Hartigan-O’Connor DJ, Méndez-Lagares G, Tarantal AF, Isseroff RR, Griffith TS, Schalper KA, Merleev A, Saha A, Maverakis E, Kelly K, Aljumaily R, Ibrahimi S, Mukherjee S, Machiorlatti M, Vesely SK, Longo DL, Blazar BR, Canter RJ, Murphy WJ, Monjazeb AM (2019) Paradoxical effects of obesity on T cell function during tumor progression and PD-1 checkpoint blockade. Nat Med 25:141–151. https://doi.org/10.1038/s41591-018-0221-5

    Article  CAS  PubMed  Google Scholar 

  165. Galvin KC, Conroy MJ, Doyle SL, Dunne MR, Fahey R, Foley E, O’Sullivan KE, Doherty DG, Geoghegan JG, Ravi N, O’Farrelly C, Reynolds JV, Lysaght J (2018) Extratumoral PD-1 blockade does not perpetuate obesity-associated inflammation in esophageal adenocarcinoma. Cancer Lett 418:230–238. https://doi.org/10.1016/j.canlet.2018.01.039

    Article  CAS  PubMed  Google Scholar 

  166. Bing C (2015) Is interleukin-1β a culprit in macrophage-adipocyte crosstalk in obesity? Adipocyte 4:149–152. https://doi.org/10.4161/21623945.2014.979661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Gabrilovich DI, Ostrand-Rosenberg S, Bronte V (2012) Coordinated regulation of myeloid cells by tumours. Nat Rev Immunol 12:253–268. https://doi.org/10.1038/nri3175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Limagne E, Euvrard R, Thibaudin M, Rébé C, Derangère V, Chevriaux A, Boidot R, Végran F, Bonnefoy N, Vincent J, Bengrine-Lefevre L, Ladoire S, Delmas D, Apetoh L, Ghiringhelli F (2016) Accumulation of MDSC and Th17 Cells in patients with metastatic colorectal cancer predicts the efficacy of a FOLFOX-Bevacizumab drug treatment regimen. Cancer Res 76:5241–5252. https://doi.org/10.1158/0008-5472.CAN-15-3164

    Article  CAS  PubMed  Google Scholar 

  169. Liu J, Duan Y, Cheng X, Chen X, Xie W, Long H, Lin Z, Zhu B (2011) IL-17 is associated with poor prognosis and promotes angiogenesis via stimulating VEGF production of cancer cells in colorectal carcinoma. Biochem Biophys Res Commun 407:348–354. https://doi.org/10.1016/j.bbrc.2011.03.021

    Article  CAS  PubMed  Google Scholar 

  170. Chung AS, Wu X, Zhuang G, Ngu H, Kasman I, Zhang J, Vernes J-M, Jiang Z, Meng YG, Peale FV, Ouyang W, Ferrara N (2013) An interleukin-17-mediated paracrine network promotes tumor resistance to anti-angiogenic therapy. Nat Med 19:1114–1123. https://doi.org/10.1038/nm.3291

    Article  CAS  PubMed  Google Scholar 

  171. Yang S, Wang B, Guan C, Wu B, Cai C, Wang M, Zhang B, Liu T, Yang P (2011) Foxp3+IL-17+ T cells promote development of cancer-initiating cells in colorectal cancer. J Leukoc Biol 89:85–91. https://doi.org/10.1189/jlb.0910506

    Article  CAS  PubMed  Google Scholar 

  172. Kryczek I, Wu K, Zhao E, Wei S, Vatan L, Szeliga W, Huang E, Greenson J, Chang A, Roliński J, Radwan P, Fang J, Wang G, Zou W (2011) IL-17+ regulatory T cells in the microenvironments of chronic inflammation and cancer. J Immunol 186:4388–4395. https://doi.org/10.4049/jimmunol.1003251

    Article  CAS  PubMed  Google Scholar 

  173. Chellappa S, Hugenschmidt H, Hagness M, Line PD, Labori KJ, Wiedswang G, Taskén K, Aandahl EM (2016) Regulatory T cells that co-express RORγt and FOXP3 are pro-inflammatory and immunosuppressive and expand in human pancreatic cancer. Oncoimmunology 5:e1102828. https://doi.org/10.1080/2162402X.2015.1102828

    Article  CAS  PubMed  Google Scholar 

  174. Hoechst B, Gamrekelashvili J, Manns MP, Greten TF, Korangy F (2011) Plasticity of human Th17 cells and iTregs is orchestrated by different subsets of myeloid cells. Blood 117:6532–6541. https://doi.org/10.1182/blood-2010-11-317321

    Article  CAS  PubMed  Google Scholar 

  175. Downs-Canner S, Berkey S, Delgoffe GM, Edwards RP, Curiel T, Odunsi K, Bartlett DL, Obermajer N (2017) Suppressive IL-17A+Foxp3+ and ex-Th17 IL-17AnegFoxp3+ Treg cells are a source of tumour-associated Treg cells. Nat Commun 8:14649. https://doi.org/10.1038/ncomms14649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Hsieh P-S, Jin J-S, Chiang C-F, Chan P-C, Chen C-H, Shih K-C (2009) COX-2-mediated inflammation in fat is crucial for obesity-linked insulin resistance and fatty liver. Obesity 17:1150–1157. https://doi.org/10.1038/oby.2008.674

    Article  CAS  PubMed  Google Scholar 

  177. Fain JN, Leffler CW, Cowan GS, Buffington C, Pouncey L, Bahouth SW (2001) Stimulation of leptin release by arachidonic acid and prostaglandin E(2) in adipose tissue from obese humans. Metabolism 50:921–928. https://doi.org/10.1053/meta.2001.24927

    Article  CAS  PubMed  Google Scholar 

  178. Samad F, Yamamoto K, Pandey M, Loskutoff DJ (1997) Elevated expression of transforming growth factor-beta in adipose tissue from obese mice. Mol Med 3:37–48. https://doi.org/10.1007/BF03401666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Wouters MCA, Nelson BH (2018) Prognostic significance of tumor-infiltrating B cells and plasma cells in human cancer. Clin Cancer Res 24:6125–6135. https://doi.org/10.1158/1078-0432.CCR-18-1481

    Article  CAS  PubMed  Google Scholar 

  180. Nielsen JS, Nelson BH (2012) Tumor-infiltrating B cells and T cells. Oncoimmunology 1:1623–1625. https://doi.org/10.4161/onci.21650

    Article  PubMed  PubMed Central  Google Scholar 

  181. Garaud S, Buisseret L, Solinas C, Gu-Trantien C, de Wind A, den Eynden GV, Naveaux C, Lodewyckx J-N, Boisson A, Duvillier H, Craciun L, Ameye L, Veys I, Paesmans M, Larsimont D, Piccart-Gebhart M, Willard-Gallo K (2019) Tumor-infiltrating B cells signal functional humoral immune responses in breast cancer. JCI Insight 4(18):e129641. https://doi.org/10.1172/jci.insight.129641

    Article  PubMed Central  Google Scholar 

  182. Kabir SM, Lee E-S, Son D-S (2014) Chemokine network during adipogenesis in 3T3-L1 cells. Adipocyte 3:97–106. https://doi.org/10.4161/adip.28110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Schwartz M, Zhang Y, Rosenblatt JD (2016) B cell regulation of the anti-tumor response and role in carcinogenesis. J Immunother Cancer 4:40. https://doi.org/10.1186/s40425-016-0145-x

    Article  PubMed  PubMed Central  Google Scholar 

  184. Jeske SS, Brand M, Ziebart A, Laban S, Doescher J, Greve J, Jackson EK, Hoffmann TK, Brunner C, Schuler PJ (2020) Adenosine-producing regulatory B cells in head and neck cancer. Cancer Immunol Immunother 69:1205–1216. https://doi.org/10.1007/s00262-020-02535-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Galván GC, Johnson CB, Price RS, Liss MA, Jolly CA, deGraffenried LA (2017) Effects of obesity on the regulation of macrophage population in the prostate tumor microenvironment. Nutr Cancer 69:996–1002. https://doi.org/10.1080/01635581.2017.1359320

    Article  CAS  PubMed  Google Scholar 

  186. Lin Y, Xu J, Lan H (2019) Tumor-associated macrophages in tumor metastasis: biological roles and clinical therapeutic applications. J Hematol Onco 12:76. https://doi.org/10.1186/s13045-019-0760-3

    Article  Google Scholar 

  187. Zhang S, Che D, Yang F, Chi C, Meng H, Shen J, Qi L, Liu F, Lv L, Li Y, Meng Q, Liu J, Shang L, Yu Y (2017) Tumor-associated macrophages promote tumor metastasis via the TGF-β/SOX9 axis in non-small cell lung cancer. Oncotarget 8:99801–99815. https://doi.org/10.18632/oncotarget.21068

    Article  PubMed  PubMed Central  Google Scholar 

  188. Arendt LM, McCready J, Keller PJ, Baker DD, Naber SP, Seewaldt V, Kuperwasser C (2013) Obesity promotes breast cancer by CCL2-mediated macrophage recruitment and angiogenesis. Cancer Res 73:6080–6093. https://doi.org/10.1158/0008-5472.CAN-13-0926

    Article  CAS  PubMed  Google Scholar 

  189. Bardi GT, Ann Smith M, Hood JL (2018) Melanoma exosomes promote mixed M1 and M2 macrophage polarization. Cytokine 105:63–72. https://doi.org/10.1016/j.cyto.2018.02.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. James BR, Tomanek-Chalkley A, Askeland EJ, Kucaba T, Griffith TS, Norian LA (2012) Diet-induced obesity alters dendritic cell function in the presence and absence of tumor growth. J Immunol 189:1311–1321. https://doi.org/10.4049/jimmunol.1100587

    Article  CAS  PubMed  Google Scholar 

  191. Zhao Y, Sun R, You L, Gao C, Tian Z (2003) Expression of leptin receptors and response to leptin stimulation of human natural killer cell lines. Biochem Biophys Res Commun 300:247–252. https://doi.org/10.1016/s0006-291x(02)02838-3

    Article  CAS  PubMed  Google Scholar 

  192. Tian Z, Sun R, Wei H, Gao B (2002) Impaired natural killer (NK) cell activity in leptin receptor deficient mice: leptin as a critical regulator in NK cell development and activation. Biochem Biophys Res Commun 298:297–302. https://doi.org/10.1016/S0006-291X(02)02462-2

    Article  CAS  PubMed  Google Scholar 

  193. Elinav E, Abd-Elnabi A, Pappo O, Bernstein I, Klein A, Engelhardt D, Rabbani E, Ilan Y (2006) Suppression of hepatocellular carcinoma growth in mice via leptin, is associated with inhibition of tumor cell growth and natural killer cell activation. J Hepatol 44:529–536. https://doi.org/10.1016/j.jhep.2005.08.013

    Article  CAS  PubMed  Google Scholar 

  194. Lautenbach A, Breitmeier D, Kuhlmann S, Nave H (2011) Human obesity reduces the number of hepatic leptin receptor (ob-R) expressing NK cells. Endocr Res 36:158–166. https://doi.org/10.3109/07435800.2011.580442

    Article  CAS  PubMed  Google Scholar 

  195. Nave H, Mueller G, Siegmund B, Jacobs R, Stroh T, Schueler U, Hopfe M, Behrendt P, Buchenauer T, Pabst R, Brabant G (2008) Resistance of Janus kinase-2 dependent leptin signaling in natural killer (NK) cells: a novel mechanism of NK cell dysfunction in diet-induced obesity. Endocrinology 149:3370–3378. https://doi.org/10.1210/en.2007-1516

    Article  CAS  PubMed  Google Scholar 

  196. Mori A, Sakurai H, Choo M-K, Obi R, Koizumi K, Yoshida C, Shimada Y, Saiki I (2006) Severe pulmonary metastasis in obese and diabetic mice. Int J Cancer 119:2760–2767. https://doi.org/10.1002/ijc.22248

    Article  CAS  PubMed  Google Scholar 

  197. Meriño M, Briones L, Palma V, Herlitz K, Escudero C (2017) Role of adenosine receptors in the adipocyte–macrophage interaction during obesity. Endocrinol Diabetes Nutr 64:317–327. https://doi.org/10.1016/j.endien.2017.08.001

    Article  PubMed  Google Scholar 

  198. Chambers AM, Lupo KB, Matosevic S (2018) Tumor microenvironment-induced immunometabolic reprogramming of natural killer cells. Front Immunol 9:2517. https://doi.org/10.3389/fimmu.2018.02517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Yokota J (2000) Tumor progression and metastasis. Carcinogenesis 21:497–503. https://doi.org/10.1093/carcin/21.3.497

    Article  CAS  PubMed  Google Scholar 

  200. diSibio G, French SW (2008) Metastatic patterns of cancers: results from a large autopsy study. Arch Pathol Lab Med 132:931–939. https://doi.org/10.1043/1543-2165(2008)132[931:MPOCRF]2.0.CO;2

    Article  PubMed  Google Scholar 

  201. Gong Z, Agalliu I, Lin DW, Stanford JL, Kristal AR (2007) Obesity is associated with increased risks of prostate cancer metastasis and death after initial cancer diagnosis in middle-aged men. Cancer 109:1192–1202. https://doi.org/10.1002/cncr.22534

    Article  PubMed  Google Scholar 

  202. DeNardo DG, Johansson M, Coussens LM (2008) Immune cells as mediators of solid tumor metastasis. Cancer Metastasis Rev 27:11–18. https://doi.org/10.1007/s10555-007-9100-0

    Article  CAS  PubMed  Google Scholar 

  203. Yu Y-RA, O’Koren EG, Hotten DF, Kan MJ, Kopin D, Nelson ER, Que L, Gunn MD (2016) A protocol for the comprehensive flow cytometric analysis of immune cells in normal and inflamed murine non-lymphoid tissues. PLoS ONE 11:e0150606. https://doi.org/10.1371/journal.pone.0150606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Kim EJ, Choi M-R, Park H, Kim M, Hong JE, Lee J-Y, Chun HS, Lee KW, Yoon Park JH (2011) Dietary fat increases solid tumor growth and metastasis of 4T1 murine mammary carcinoma cells and mortality in obesity-resistant BALB/c mice. Breast Cancer Res 13:R78. https://doi.org/10.1186/bcr2927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Quail DF, Olson OC, Bhardwaj P, Walsh LA, Akkari L, Quick ML, Chen I-C, Wendel N, Ben-Chetrit N, Walker J, Holt PR, Dannenberg AJ, Joyce JA (2017) Obesity alters the lung myeloid cell landscape to enhance breast cancer metastasis through IL5 and GM-CSF. Nat Cell Biol 19:974–987. https://doi.org/10.1038/ncb3578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Park H, Kim M, Kwon GT, Lim DY, Yu R, Sung M-K, Lee KW, Daily JW, Park JHY (2012) A high-fat diet increases angiogenesis, solid tumor growth, and lung metastasis of CT26 colon cancer cells in obesity-resistant BALB/c mice. Mol Carcinog 51:869–880. https://doi.org/10.1002/mc.20856

    Article  CAS  PubMed  Google Scholar 

  207. Nagahashi M, Yamada A, Katsuta E, Aoyagi T, Huang W-C, Terracina KP, Hait NC, Allegood JC, Tsuchida J, Yuza K, Nakajima M, Abe M, Sakimura K, Milstien S, Wakai T, Spiegel S, Takabe K (2018) Targeting the SphK1/S1P/S1PR1 axis that links obesity, chronic inflammation, and breast cancer metastasis. Cancer Res 78:1713–1725. https://doi.org/10.1158/0008-5472.CAN-17-1423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Oh K, Lee O-Y, Shon SY, Nam O, Ryu PM, Seo MW, Lee D-S (2013) A mutual activation loop between breast cancer cells and myeloid-derived suppressor cells facilitates spontaneous metastasis through IL-6 trans-signaling in a murine model. Breast Cancer Res 15:R79. https://doi.org/10.1186/bcr3473

    Article  PubMed  PubMed Central  Google Scholar 

  209. Chang Q, Bournazou E, Sansone P, Berishaj M, Gao SP, Daly L, Wels J, Theilen T, Granitto S, Zhang X, Cotari J, Alpaugh ML, de Stanchina E, Manova K, Li M, Bonafe M, Ceccarelli C, Taffurelli M, Santini D, Altan-Bonnet G, Kaplan R, Norton L, Nishimoto N, Huszar D, Lyden D, Bromberg J (2013) The IL-6/JAK/Stat3 feed-forward loop drives tumorigenesis and metastasis. Neoplasia 15:848–862. https://doi.org/10.1593/neo.13706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Baek AE, Yu Y-RA, He S, Wardell SE, Chang C-Y, Kwon S, Pillai RV, McDowell HB, Thompson JW, Dubois LG, Sullivan PM, Kemper JK, Gunn MD, McDonnell DP, Nelson ER (2017) The cholesterol metabolite 27 hydroxycholesterol facilitates breast cancer metastasis through its actions on immune cells. Nat Commun 8:864. https://doi.org/10.1038/s41467-017-00910-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Desmedt C, Fornili M, Clatot F, Demicheli R, De Bortoli D, Di Leo A, Viale G, de Azambuja E, Crown J, Francis PA, Sotiriou C, Piccart M, Biganzoli E (2020) Differential benefit of adjuvant docetaxel-based chemotherapy in patients with early breast cancer according to baseline body mass index. J Clin Oncol 38:2883–2891. https://doi.org/10.1200/JCO.19.01771

    Article  CAS  PubMed  Google Scholar 

  212. Vaysse C, Muller C, Fallone F (2019) Obesity: an heavyweight player in breast cancer’s chemoresistance. Oncotarget 10:3207–3208. https://doi.org/10.18632/oncotarget.26905

    Article  PubMed  PubMed Central  Google Scholar 

  213. Omarini C, Palumbo P, Pecchi A, Draisci S, Balduzzi S, Nasso C, Barbolini M, Isca C, Bocconi A, Moscetti L, Galetti S, Tazzioli G, Torricelli P, Cascinu S, Piacentini F (2019) Predictive role of body composition parameters in operable breast cancer patients treated with neoadjuvant chemotherapy. Cancer Manag Res 11:9563–9569. https://doi.org/10.2147/CMAR.S216034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Iwase T, Sangai T, Fujimoto H, Sawabe Y, Matsushita K, Nagashima K, Sato Y, Nakagawa A, Masuda T, Nagashima T, Ohtsuka M (2020) Quality and quantity of visceral fat tissue are associated with insulin resistance and survival outcomes after chemotherapy in patients with breast cancer. Breast Cancer Res Treat 179:435–443. https://doi.org/10.1007/s10549-019-05467-7

    Article  CAS  PubMed  Google Scholar 

  215. Su F, Ahn S, Saha A, DiGiovanni J, Kolonin MG (2019) Adipose stromal cell targeting suppresses prostate cancer epithelial-mesenchymal transition and chemoresistance. Oncogene 38:1979–1988. https://doi.org/10.1038/s41388-018-0558-8

    Article  CAS  PubMed  Google Scholar 

  216. Cardenas C, Montagna MK, Pitruzzello M, Lima E, Mor G, Alvero AB (2017) Adipocyte microenvironment promotes Bclxl expression and confers chemoresistance in ovarian cancer cells. Apoptosis 22:558–569. https://doi.org/10.1007/s10495-016-1339-x

    Article  CAS  PubMed  Google Scholar 

  217. Wang T, Fahrmann JF, Lee H, Li Y-J, Tripathi SC, Yue C, Zhang C, Lifshitz V, Song J, Yuan Y, Somlo G, Jandial R, Ann D, Hanash S, Jove R, Yu H (2018) JAK/STAT3-regulated fatty acid β-oxidation is critical for breast cancer stem cell self-renewal and chemoresistance. Cell Metab 27:136-150.e5. https://doi.org/10.1016/j.cmet.2017.11.001

    Article  CAS  PubMed  Google Scholar 

  218. Sheng X, Parmentier J-H, Tucci J, Pei H, Cortez-Toledo O, Dieli-Conwright CM, Oberley MJ, Neely M, Orgel E, Louie SG, Mittelman SD (2017) Adipocytes sequester and metabolize the chemotherapeutic daunorubicin. Mol Cancer Res 15:1704–1713. https://doi.org/10.1158/1541-7786.MCR-17-0338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Lehuédé C, Li X, Dauvillier S, Vaysse C, Franchet C, Clement E, Esteve D, Longué M, Chaltiel L, Le Gonidec S, Lazar I, Geneste A, Dumontet C, Valet P, Nieto L, Fallone F, Muller C (2019) Adipocytes promote breast cancer resistance to chemotherapy, a process amplified by obesity: role of the major vault protein (MVP). Breast Cancer Res 21:7. https://doi.org/10.1186/s13058-018-1088-6

    Article  PubMed  PubMed Central  Google Scholar 

  220. Pandey V, Vijayakumar MV, Ajay AK, Malvi P, Bhat MK (2012) Diet-induced obesity increases melanoma progression: involvement of Cav-1 and FASN. Int J Cancer 130:497–508. https://doi.org/10.1002/ijc.26048

    Article  CAS  PubMed  Google Scholar 

  221. Mayi TH, Daoudi M, Derudas B, Gross B, Bories G, Wouters K, Brozek J, Caiazzo R, Raverdi V, Pigeyre M, Allavena P, Mantovani A, Pattou F, Staels B, Chinetti-Gbaguidi G (2012) Human adipose tissue macrophages display activation of cancer-related pathways. J Biol Chem 287:21904–21913. https://doi.org/10.1074/jbc.M111.315200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Al-Bahlani S, Al-Lawati H, Al-Adawi M, Al-Abri N, Al-Dhahli B, Al-Adawi K (2017) Fatty acid synthase regulates the chemosensitivity of breast cancer cells to cisplatin-induced apoptosis. Apoptosis 22:865–876. https://doi.org/10.1007/s10495-017-1366-2

    Article  CAS  PubMed  Google Scholar 

  223. Bauerschlag DO, Maass N, Leonhardt P, Verburg FA, Pecks U, Zeppernick F, Morgenroth A, Mottaghy FM, Tolba R, Meinhold-Heerlein I, Bräutigam K (2015) Fatty acid synthase overexpression: target for therapy and reversal of chemoresistance in ovarian cancer. J Transl Med 13:146. https://doi.org/10.1186/s12967-015-0511-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Albiges L, Hakimi AA, Xie W, McKay RR, Simantov R, Lin X, Lee J-L, Rini BI, Srinivas S, Bjarnason GA, Ernst S, Wood LA, Vaishamayan UN, Rha S-Y, Agarwal N, Yuasa T, Pal SK, Bamias A, Zabor EC, Skanderup AJ, Furberg H, Fay AP, de Velasco G, Preston MA, Wilson KM, Cho E, McDermott DF, Signoretti S, Heng DYC, Choueiri TK (2016) Body mass index and metastatic renal cell carcinoma: clinical and biological correlations. J Clin Oncol 34:3655–3663. https://doi.org/10.1200/JCO.2016.66.7311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Griggs JJ, Mangu PB, Anderson H, Balaban EP, Dignam JJ, Hryniuk WM, Morrison VA, Pini TM, Runowicz CD, Rosner GL, Shayne M, Sparreboom A, Sucheston LE, Lyman GH (2012) Appropriate chemotherapy dosing for obese adult patients with cancer: American Society of Clinical Oncology clinical practice guideline. J Clin Oncol 30:1553–1561. https://doi.org/10.1200/JCO.2011.39.9436

    Article  PubMed  Google Scholar 

  226. Goodwin PJ (2013) Obesity and endocrine therapy: Host factors and breast cancer outcome. Breast 22:S44–S47. https://doi.org/10.1016/j.breast.2013.07.008

    Article  PubMed  Google Scholar 

  227. Heetun A, Cutress RI, Copson ER (2018) Early breast cancer: why does obesity affect prognosis? Proc Nutr Soc 77:369–381. https://doi.org/10.1017/S0029665118000447

    Article  CAS  PubMed  Google Scholar 

  228. Bouchlaka MN, Sckisel GD, Chen M, Mirsoian A, Zamora AE, Maverakis E, Wilkins DEC, Alderson KL, Hsiao H-H, Weiss JM, Monjazeb AM, Hesdorffer C, Ferrucci L, Longo DL, Blazar BR, Wiltrout RH, Redelman D, Taub DD, Murphy WJ (2013) Aging predisposes to acute inflammatory induced pathology after tumor immunotherapy. J Exp Med 210:2223–2237. https://doi.org/10.1084/jem.20131219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Mirsoian A, Bouchlaka MN, Sckisel GD, Chen M, Pai C-CS, Maverakis E, Spencer RG, Fishbein KW, Siddiqui S, Monjazeb AM, Martin B, Maudsley S, Hesdorffer C, Ferrucci L, Longo DL, Blazar BR, Wiltrout RH, Taub DD, Murphy WJ (2014) Adiposity induces lethal cytokine storm after systemic administration of stimulatory immunotherapy regimens in aged mice. J Exp Med 211:2373–2383. https://doi.org/10.1084/jem.20140116

    Article  PubMed  PubMed Central  Google Scholar 

  230. Hendrikx JJMA, Haanen JBAG, Voest EE, Schellens JHM, Huitema ADR, Beijnen JH (2017) Fixed dosing of monoclonal antibodies in oncology. Oncologist 22:1212–1221. https://doi.org/10.1634/theoncologist.2017-0167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Heinhuis KM, Beijnen JH, Hendrikx JJMA (2020) Follow up survey for implementation of fixed-dosing of monoclonal antibodies. Int J Clin Pharm 42:3–6. https://doi.org/10.1007/s11096-020-00971-z

    Article  PubMed  Google Scholar 

  232. Cortellini A, Bersanelli M, Buti S, Cannita K, Santini D, Perrone F, Giusti R, Tiseo M, Michiara M, Di Marino P, Tinari N, De Tursi M, Zoratto F, Veltri E, Marconcini R, Malorgio F, Russano M, Anesi C, Zeppola T, Filetti M, Marchetti P, Botticelli A, Antonini Cappellini GC, De Galitiis F, Vitale MG, Rastelli F, Pergolesi F, Berardi R, Rinaldi S, Tudini M, Silva RR, Pireddu A, Atzori F, Chiari R, Ricciuti B, De Giglio A, Iacono D, Gelibter A, Occhipinti MA, Parisi A, Porzio G, Fargnoli MC, Ascierto PA, Ficorella C, Natoli C (2019) A multicenter study of body mass index in cancer patients treated with anti-PD-1/PD-L1 immune checkpoint inhibitors: when overweight becomes favorable. J Immunother Cancer 7:57. https://doi.org/10.1186/s40425-019-0527-y

    Article  PubMed  PubMed Central  Google Scholar 

  233. Rogado J, Romero-Laorden N, Sanchez-Torres JM, Ramos-Levi AM, Pacheco-Barcia V, Ballesteros AI, Arranz R, Lorenzo A, Gullon P, Garrido A, Serra López-Matencio JM, Donnay O, Adrados M, Costas P, Aspa J, Alfranca A, Mondejar R, Colomer R (2020) Effect of excess weight and immune-related adverse events on the efficacy of cancer immunotherapy with anti-PD-1 antibodies. Oncoimmunology 9:1751548. https://doi.org/10.1080/2162402X.2020.1751548

    Article  PubMed  PubMed Central  Google Scholar 

  234. Xu H, Cao D, He A, Ge W (2019) The prognostic role of obesity is independent of sex in cancer patients treated with immune checkpoint inhibitors: a pooled analysis of 4090 cancer patients. Int Immunopharmacol 74:105745. https://doi.org/10.1016/j.intimp.2019.105745

    Article  CAS  PubMed  Google Scholar 

  235. McQuade JL, Daniel CR, Hess KR, Mak C, Wang DY, Rai RR, Park JJ, Haydu LE, Spencer C, Wongchenko M, Lane S, Lee D-Y, Kaper M, McKean M, Beckermann KE, Rubinstein SM, Rooney I, Musib L, Budha N, Hsu J, Nowicki TS, Avila A, Haas T, Puligandla M, Lee S, Fang S, Wargo JA, Gershenwald JE, Lee JE, Hwu P, Chapman PB, Sosman JA, Schadendorf D, Grob J-J, Flaherty KT, Walker D, Yan Y, McKenna E, Legos JJ, Carlino MS, Ribas A, Kirkwood JM, Long GV, Johnson DB, Menzies AM, Davies MA (2018) Association of body-mass index and outcomes in patients with metastatic melanoma treated with targeted therapy, immunotherapy, or chemotherapy: a retrospective, multicohort analysis. Lancet Oncol 19:310–322. https://doi.org/10.1016/S1470-2045(18)30078-0

    Article  PubMed  PubMed Central  Google Scholar 

  236. Deshpande RP, Sharma S, Watabe K (2020) The confounders of cancer immunotherapy: roles of lifestyle, metabolic disorders and sociological factors. Cancers (Basel) 12(10):2983. https://doi.org/10.3390/cancers12102983

    Article  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

AK performed the literature review and wrote the manuscript; LB supervised the review and writing process and edited the manuscript.

Corresponding author

Correspondence to Laura W. Bowers.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest or competing interests.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kulkarni, A., Bowers, L.W. The role of immune dysfunction in obesity-associated cancer risk, progression, and metastasis. Cell. Mol. Life Sci. 78, 3423–3442 (2021). https://doi.org/10.1007/s00018-020-03752-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-020-03752-z

Keywords

Navigation