Skip to main content

Advertisement

Log in

Biological functions of mesenchymal stem cells and clinical implications

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Mesenchymal stem cells (MSCs) are isolated from multiple biological tissues—adult bone marrow and adipose tissues and neonatal tissues such as umbilical cord and placenta. In vitro, MSCs show biological features of extensive proliferation ability and multipotency. Moreover, MSCs have trophic, homing/migration and immunosuppression functions that have been demonstrated both in vitro and in vivo. A number of clinical trials are using MSCs for therapeutic interventions in severe degenerative and/or inflammatory diseases, including Crohn’s disease and graft-versus-host disease, alone or in combination with other drugs. MSCs are promising for therapeutic applications given the ease in obtaining them, their genetic stability, their poor immunogenicity and their curative properties for tissue repair and immunomodulation. The success of MSC therapy in degenerative and/or inflammatory diseases might depend on the robustness of the biological functions of MSCs, which should be linked to their therapeutic potency. Here, we outline the fundamental and advanced concepts of MSC biological features and underline the biological functions of MSCs in their basic and translational aspects in therapy for degenerative and/or inflammatory diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Squillaro T, Peluso G, Galderisi U (2016) Clinical trials with mesenchymal stem cells: an update. Cell Transplant 25:829–848. https://doi.org/10.3727/096368915X689622

    Article  PubMed  Google Scholar 

  2. Galipeau J, Sensebe L (2018) Mesenchymal stromal cells: clinical challenges and therapeutic opportunities. Cell Stem Cell 22:824–833. https://doi.org/10.1016/j.stem.2018.05.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Trounson A, McDonald C (2015) Stem cell therapies in clinical trials: progress and challenges. Cell Stem Cell 17:11–22. https://doi.org/10.1016/j.stem.2015.06.007

    Article  CAS  PubMed  Google Scholar 

  4. Naji A et al (2013) Concise review: combining human leukocyte antigen G and mesenchymal stem cells for immunosuppressant biotherapy. Stem Cells 31:2296–2303. https://doi.org/10.1002/stem.1494

    Article  CAS  PubMed  Google Scholar 

  5. Wei X et al (2013) Mesenchymal stem cells: a new trend for cell therapy. Acta Pharmacol Sin 34:747–754. https://doi.org/10.1038/aps.2013.50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Naji A et al (2017) Rationale for determining the functional potency of mesenchymal stem cells in preventing regulated cell death for therapeutic use. Stem Cells Transl Med 6:713–719. https://doi.org/10.5966/sctm.2016-0289

    Article  CAS  PubMed  Google Scholar 

  7. Chinnadurai R et al (2016) Cryopreserved mesenchymal stromal cells are susceptible to T-cell mediated apoptosis which is partly rescued by IFNgamma licensing. Stem Cells 34:2429–2442. https://doi.org/10.1002/stem.2415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Galipeau J (2013) The mesenchymal stromal cells dilemma: does a negative phase III trial of random donor mesenchymal stromal cells in steroid-resistant graft-versus-host disease represent a death knell or a bump in the road? Cytotherapy 15:2–8. https://doi.org/10.1016/j.jcyt.2012.10.002

    Article  PubMed  Google Scholar 

  9. Galipeau J, Krampera M (2015) The challenge of defining mesenchymal stromal cell potency assays and their potential use as release criteria. Cytotherapy 17:125–127. https://doi.org/10.1016/j.jcyt.2014.12.008

    Article  PubMed  Google Scholar 

  10. Galipeau J et al (2016) International Society for Cellular Therapy perspective on immune functional assays for mesenchymal stromal cells as potency release criterion for advanced phase clinical trials. Cytotherapy 18:151–159. https://doi.org/10.1016/j.jcyt.2015.11.008

    Article  CAS  PubMed  Google Scholar 

  11. Phinney DG et al (2013) MSCs: science and trials. Nat Med 19:812. https://doi.org/10.1038/nm.3220

    Article  CAS  PubMed  Google Scholar 

  12. Sheridan C (2018) First off-the-shelf mesenchymal stem cell therapy nears European approval. Nat Biotechnol 36:212–214. https://doi.org/10.1038/nbt0318-212a

    Article  CAS  PubMed  Google Scholar 

  13. Bianco P, Robey PG, Simmons PJ (2008) Mesenchymal stem cells: revisiting history, concepts, and assays. Cell Stem Cell 2:313–319. https://doi.org/10.1016/j.stem.2008.03.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ma S et al (2014) Immunobiology of mesenchymal stem cells. Cell Death Differ 21:216–225. https://doi.org/10.1038/cdd.2013.158

    Article  CAS  PubMed  Google Scholar 

  15. Nombela-Arrieta C, Ritz J, Silberstein LE (2011) The elusive nature and function of mesenchymal stem cells. Nat Rev Mol Cell Biol 12:126–131. https://doi.org/10.1038/nrm3049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sacchetti B et al (2016) No identical “mesenchymal stem cells” at different times and sites: human committed progenitors of distinct origin and differentiation potential are incorporated as adventitial cells in microvessels. Stem Cell Rep 6:897–913. https://doi.org/10.1016/j.stemcr.2016.05.011

    Article  CAS  Google Scholar 

  17. Spees JL, Lee RH, Gregory CA (2016) Mechanisms of mesenchymal stem/stromal cell function. Stem Cell Res Ther 7:125. https://doi.org/10.1186/s13287-016-0363-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Friedenstein AJ, Chailakhjan RK, Lalykina KS (1970) The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Tissue Kinet 3:393–403

    CAS  PubMed  Google Scholar 

  19. Friedenstein AJ, Chailakhyan RK, Latsinik NV, Panasyuk AF, Keiliss-Borok IV (1974) Stromal cells responsible for transferring the microenvironment of the hemopoietic tissues. Cloning in vitro and retransplantation in vivo. Transplantation 17:331–340

    Article  CAS  Google Scholar 

  20. Friedenstein AJ et al (1974) Precursors for fibroblasts in different populations of hematopoietic cells as detected by the in vitro colony assay method. Exp Hematol 2:83–92

    CAS  PubMed  Google Scholar 

  21. Friedenstein AJ, Gorskaja JF, Kulagina NN (1976) Fibroblast precursors in normal and irradiated mouse hematopoietic organs. Exp Hematol 4:267–274

    CAS  PubMed  Google Scholar 

  22. Friedenstein AJ, Petrakova KV, Kurolesova AI, Frolova GP (1968) Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues. Transplantation 6:230–247

    Article  CAS  Google Scholar 

  23. Friedenstein AJ, Piatetzky S II, Petrakova KV (1966) Osteogenesis in transplants of bone marrow cells. J Embryol Exp Morphol 16:381–390

    CAS  PubMed  Google Scholar 

  24. Castro-Malaspina H et al (1980) Characterization of human bone marrow fibroblast colony-forming cells (CFU-F) and their progeny. Blood 56:289–301

    CAS  PubMed  Google Scholar 

  25. Jinnai I, Bessho M, Murohashi I, Nara N, Hirashima K (1984) Relationship between fibroblastoid colony-forming units (CFU-f) and hemopoietic precursor cells in normal human bone marrow. Int J Cell Cloning 2:341–347. https://doi.org/10.1002/stem.5530020602

    Article  CAS  PubMed  Google Scholar 

  26. Nara N, Jinnai I, Imai Y, Bessho M, Hirashima K (1984) Reduction of granulocyte-macrophage progenitor cells (CFU-C) and fibroblastoid colony-forming units (CFU-F) by leukemic cells in human and murine leukemia. Acta Haematol 72:171–180. https://doi.org/10.1159/000206383

    Article  CAS  PubMed  Google Scholar 

  27. Dennis JE, Haynesworth SE, Young RG, Caplan AI (1992) Osteogenesis in marrow-derived mesenchymal cell porous ceramic composites transplanted subcutaneously: effect of fibronectin and laminin on cell retention and rate of osteogenic expression. Cell Transplant 1:23–32

    Article  CAS  Google Scholar 

  28. Owen M (1988) Marrow stromal stem cells. J Cell Sci Suppl 10:63–76

    Article  CAS  Google Scholar 

  29. Owen M, Friedenstein AJ (1988) Stromal stem cells: marrow-derived osteogenic precursors. Ciba Found Symp 136:42–60

    CAS  PubMed  Google Scholar 

  30. Chang J, Allen TD, Dexter TM (1989) Long-term bone marrow cultures: their use in autologous marrow transplantation. Cancer Cells 1:17–24

    CAS  PubMed  Google Scholar 

  31. Dexter TM (1982) Stromal cell associated haemopoiesis. J Cell Physiol Suppl 1:87–94

    Article  CAS  Google Scholar 

  32. Dexter TM, Spooncer E (1987) Growth and differentiation in the hemopoietic system. Annu Rev Cell Biol 3:423–441. https://doi.org/10.1146/annurev.cb.03.110187.002231

    Article  CAS  PubMed  Google Scholar 

  33. Dexter TM, Whetton AD, Spooncer E, Heyworth C, Simmons P (1985) The role of stromal cells and growth factors in haemopoiesis and modulation of their effects by the src oncogene. J Cell Sci Suppl 3:83–95

    Article  CAS  Google Scholar 

  34. Beresford JN (1989) Osteogenic stem cells and the stromal system of bone and marrow. Clin Orthop Relat Res 240:270–280

    Google Scholar 

  35. Castro-Malaspina H et al (1982) Characteristics of bone marrow fibroblast colony-forming cells (CFU-F) and their progeny in patients with myeloproliferative disorders. Blood 59:1046–1054

    CAS  PubMed  Google Scholar 

  36. Castro-Malaspina H, Ebell W, Wang S (1984) Human bone marrow fibroblast colony-forming units (CFU-F). Prog Clin Biol Res 154:209–236

    CAS  PubMed  Google Scholar 

  37. Haynesworth SE, Baber MA, Caplan AI (1992) Cell surface antigens on human marrow-derived mesenchymal cells are detected by monoclonal antibodies. Bone 13:69–80

    Article  CAS  Google Scholar 

  38. Haynesworth SE, Baber MA, Caplan AI (1996) Cytokine expression by human marrow-derived mesenchymal progenitor cells in vitro: effects of dexamethasone and IL-1 alpha. J Cell Physiol 166:585–592. https://doi.org/10.1002/(SICI)1097-4652(199603)166:3%3c585:AID-JCP13%3e3.0.CO;2-6

    Article  CAS  PubMed  Google Scholar 

  39. Haynesworth SE, Goshima J, Goldberg VM, Caplan AI (1992) Characterization of cells with osteogenic potential from human marrow. Bone 13:81–88

    Article  CAS  Google Scholar 

  40. Jaiswal N, Haynesworth SE, Caplan AI, Bruder SP (1997) Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro. J Cell Biochem 64:295–312

    Article  CAS  Google Scholar 

  41. Vilamitjana-Amedee J, Bareille R, Rouais F, Caplan AI, Harmand MF (1993) Human bone marrow stromal cells express an osteoblastic phenotype in culture. Vitro Cell Dev Biol Anim 29A:699–707

    Article  CAS  Google Scholar 

  42. Caplan AI (1991) Mesenchymal stem cells. J Orthop Res 9:641–650. https://doi.org/10.1002/jor.1100090504

    Article  CAS  PubMed  Google Scholar 

  43. Bruder SP, Fink DJ, Caplan AI (1994) Mesenchymal stem cells in bone development, bone repair, and skeletal regeneration therapy. J Cell Biochem 56:283–294. https://doi.org/10.1002/jcb.240560303

    Article  CAS  PubMed  Google Scholar 

  44. Bianco P (2014) “Mesenchymal” stem cells. Annu Rev Cell Dev Biol 30:677–704. https://doi.org/10.1146/annurev-cellbio-100913-013132

    Article  CAS  PubMed  Google Scholar 

  45. Caplan AI (2017) Mesenchymal stem cells: time to change the name! Stem Cells Transl Med 6:1445–1451. https://doi.org/10.1002/sctm.17-0051

    Article  PubMed  PubMed Central  Google Scholar 

  46. Bhartiya D (2018) The need to revisit the definition of mesenchymal and adult stem cells based on their functional attributes. Stem Cell Res Ther 9:78. https://doi.org/10.1186/s13287-018-0833-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Caplan AI, Dennis JE (2006) Mesenchymal stem cells as trophic mediators. J Cell Biochem 98:1076–1084. https://doi.org/10.1002/jcb.20886

    Article  CAS  PubMed  Google Scholar 

  48. Lazarus HM, Haynesworth SE, Gerson SL, Rosenthal NS, Caplan AI (1995) Ex vivo expansion and subsequent infusion of human bone marrow-derived stromal progenitor cells (mesenchymal progenitor cells): implications for therapeutic use. Bone Marrow Transplant 16:557–564

    CAS  PubMed  Google Scholar 

  49. Horwitz EM et al (2005) Clarification of the nomenclature for MSC: the International Society for Cellular Therapy position statement. Cytotherapy 7:393–395. https://doi.org/10.1080/14653240500319234

    Article  CAS  PubMed  Google Scholar 

  50. Charbord P (2010) Bone marrow mesenchymal stem cells: historical overview and concepts. Hum Gene Ther 21:1045–1056. https://doi.org/10.1089/hum.2010.115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Delorme B, Chateauvieux S, Charbord P (2006) The concept of mesenchymal stem cells. Regen Med 1:497–509. https://doi.org/10.2217/17460751.1.4.497

    Article  CAS  PubMed  Google Scholar 

  52. Phinney DG, Sensebe L (2013) Mesenchymal stromal cells: misconceptions and evolving concepts. Cytotherapy 15:140–145. https://doi.org/10.1016/j.jcyt.2012.11.005

    Article  CAS  PubMed  Google Scholar 

  53. Bhakta S, Hong P, Koc O (2006) The surface adhesion molecule CXCR53 stimulates mesenchymal stem cell migration to stromal cell-derived factor-1 in vitro but does not decrease apoptosis under serum deprivation. Cardiovasc Revasc Med 7:19–24. https://doi.org/10.1016/j.carrev.2005.10.008

    Article  PubMed  Google Scholar 

  54. Chamberlain G, Fox J, Ashton B, Middleton J (2007) Concise review: mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells 25:2739–2749. https://doi.org/10.1634/stemcells.2007-0197

    Article  CAS  PubMed  Google Scholar 

  55. Cheng Z et al (2008) Targeted migration of mesenchymal stem cells modified with CXCR55 gene to infarcted myocardium improves cardiac performance. Mol Ther 16:571–579. https://doi.org/10.1038/sj.mt.6300374

    Article  CAS  PubMed  Google Scholar 

  56. De Becker A et al (2007) Migration of culture-expanded human mesenchymal stem cells through bone marrow endothelium is regulated by matrix metalloproteinase-2 and tissue inhibitor of metalloproteinase-3. Haematologica 92:440–449

    Article  Google Scholar 

  57. Henschler R, Deak E, Seifried E (2008) Homing of mesenchymal stem cells. Transfus Med Hemother 35:306–312. https://doi.org/10.1159/000143110

    Article  PubMed  PubMed Central  Google Scholar 

  58. Ji JF, He BP, Dheen ST, Tay SS (2004) Interactions of chemokines and chemokine receptors mediate the migration of mesenchymal stem cells to the impaired site in the brain after hypoglossal nerve injury. Stem Cells 22:415–427. https://doi.org/10.1634/stemcells.22-3-415

    Article  CAS  PubMed  Google Scholar 

  59. Sackstein R et al (2008) Ex vivo glycan engineering of CD44 programs human multipotent mesenchymal stromal cell trafficking to bone. Nat Med 14:181–187. https://doi.org/10.1038/nm1703

    Article  CAS  PubMed  Google Scholar 

  60. Son BR et al (2006) Migration of bone marrow and cord blood mesenchymal stem cells in vitro is regulated by stromal-derived factor-1-CXCR60 and hepatocyte growth factor-c-met axes and involves matrix metalloproteinases. Stem Cells 24:1254–1264. https://doi.org/10.1634/stemcells.2005-0271

    Article  CAS  PubMed  Google Scholar 

  61. Sordi V et al (2005) Bone marrow mesenchymal stem cells express a restricted set of functionally active chemokine receptors capable of promoting migration to pancreatic islets. Blood 106:419–427. https://doi.org/10.1182/blood-2004-09-3507

    Article  CAS  PubMed  Google Scholar 

  62. Wu GD et al (2003) Migration of mesenchymal stem cells to heart allografts during chronic rejection. Transplantation 75:679–685. https://doi.org/10.1097/01.TP.0000048488.35010.95

    Article  PubMed  Google Scholar 

  63. Devine SM, Peter S, Martin BJ, Barry F, McIntosh KR (2001) Mesenchymal stem cells: stealth and suppression. Cancer J 7(Suppl 2):S76–S82

    PubMed  Google Scholar 

  64. Djouad F et al (2003) Immunosuppressive effect of mesenchymal stem cells favors tumor growth in allogeneic animals. Blood 102:3837–3844. https://doi.org/10.1182/blood-2003-04-1193

    Article  CAS  PubMed  Google Scholar 

  65. Aggarwal S, Pittenger MF (2005) Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 105:1815–1822. https://doi.org/10.1182/blood-2004-04-1559

    Article  CAS  PubMed  Google Scholar 

  66. Le Blanc K (2003) Immunomodulatory effects of fetal and adult mesenchymal stem cells. Cytotherapy 5:485–489. https://doi.org/10.1080/14653240310003611

    Article  PubMed  Google Scholar 

  67. Maitra B et al (2004) Human mesenchymal stem cells support unrelated donor hematopoietic stem cells and suppress T-cell activation. Bone Marrow Transplant 33:597–604. https://doi.org/10.1038/sj.bmt.1704400

    Article  CAS  PubMed  Google Scholar 

  68. Tse WT, Pendleton JD, Beyer WM, Egalka MC, Guinan EC (2003) Suppression of allogeneic T-cell proliferation by human marrow stromal cells: implications in transplantation. Transplantation 75:389–397. https://doi.org/10.1097/01.TP.0000045055.63901.A9

    Article  CAS  PubMed  Google Scholar 

  69. Caplan AI (2009) Why are MSCs therapeutic? New data: new insight. J Pathol 217:318–324. https://doi.org/10.1002/path.2469

    Article  CAS  PubMed  Google Scholar 

  70. Hass R, Kasper C, Bohm S, Jacobs R (2011) Different populations and sources of human mesenchymal stem cells (MSC): a comparison of adult and neonatal tissue-derived MSC. Cell Commun Signal 9:12. https://doi.org/10.1186/1478-811X-9-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kolf CM, Cho E, Tuan RS (2007) Mesenchymal stromal cells. Biology of adult mesenchymal stem cells: regulation of niche, self-renewal and differentiation. Arthritis Res Ther 9:204. https://doi.org/10.1186/ar2116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Maria AT et al (2017) Adipose-derived mesenchymal stem cells in autoimmune disorders: state of the art and perspectives for systemic sclerosis. Clin Rev Allergy Immunol 52:234–259. https://doi.org/10.1007/s12016-016-8552-9

    Article  CAS  PubMed  Google Scholar 

  73. Pittenger MF et al (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147

    Article  CAS  Google Scholar 

  74. Beyer Nardi N, da Silva Meirelles L (2006) Mesenchymal stem cells: isolation, in vitro expansion and characterization. Handb Exp Pharmacol 174:249–282. https://doi.org/10.1007/978-3-540-77855-4_11

    Article  Google Scholar 

  75. da Silva Meirelles L, Chagastelles PC, Nardi NB (2006) Mesenchymal stem cells reside in virtually all post-natal organs and tissues. J Cell Sci 119:2204–2213. https://doi.org/10.1242/jcs.02932

    Article  CAS  PubMed  Google Scholar 

  76. Gronthos S et al (2003) Molecular and cellular characterisation of highly purified stromal stem cells derived from human bone marrow. J Cell Sci 116:1827–1835

    Article  CAS  Google Scholar 

  77. Shi S, Gronthos S (2003) Perivascular niche of postnatal mesenchymal stem cells in human bone marrow and dental pulp. J Bone Miner Res 18:696–704. https://doi.org/10.1359/jbmr.2003.18.4.696

    Article  PubMed  Google Scholar 

  78. Gronthos S, Zannettino AC (2008) A method to isolate and purify human bone marrow stromal stem cells. Methods Mol Biol 449:45–57. https://doi.org/10.1007/978-1-60327-169-1_3

    Article  CAS  PubMed  Google Scholar 

  79. Zannettino AC et al (2008) Multipotential human adipose-derived stromal stem cells exhibit a perivascular phenotype in vitro and in vivo. J Cell Physiol 214:413–421. https://doi.org/10.1002/jcp.21210

    Article  CAS  PubMed  Google Scholar 

  80. Kern S, Eichler H, Stoeve J, Kluter H, Bieback K (2006) Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells 24:1294–1301. https://doi.org/10.1634/stemcells.2005-0342

    Article  CAS  PubMed  Google Scholar 

  81. Lee RH et al (2004) Characterization and expression analysis of mesenchymal stem cells from human bone marrow and adipose tissue. Cell Physiol Biochem 14:311–324. https://doi.org/10.1159/000080341

    Article  CAS  PubMed  Google Scholar 

  82. Zuk PA et al (2002) Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 13:4279–4295. https://doi.org/10.1091/mbc.e02-02-0105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Yin JQ, Zhu J, Ankrum JA (2019) Manufacturing of primed mesenchymal stromal cells for therapy. Nat Biomed Eng 3:90–104. https://doi.org/10.1038/s41551-018-0325-8

    Article  CAS  PubMed  Google Scholar 

  84. Wang LT et al (2016) Human mesenchymal stem cells (MSCs) for treatment towards immune- and inflammation-mediated diseases: review of current clinical trials. J Biomed Sci 23:76. https://doi.org/10.1186/s12929-016-0289-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Lee HS et al (2003) Multipotential mesenchymal stem cells from femoral bone marrow near the site of osteonecrosis. Stem Cells 21:190–199. https://doi.org/10.1634/stemcells.21-2-190

    Article  CAS  PubMed  Google Scholar 

  86. Wagey R, Short B (2013) Isolation, enumeration, and expansion of human mesenchymal stem cells in culture. Methods Mol Biol 946:315–334. https://doi.org/10.1007/978-1-62703-128-8_20

    Article  CAS  PubMed  Google Scholar 

  87. Sensebe L (2008) Clinical grade production of mesenchymal stem cells. Biomed Mater Eng 18:S3–S10

    CAS  PubMed  Google Scholar 

  88. Varghese J, Griffin M, Mosahebi A, Butler P (2017) Systematic review of patient factors affecting adipose stem cell viability and function: implications for regenerative therapy. Stem Cell Res Ther 8:45. https://doi.org/10.1186/s13287-017-0483-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Zuk PA et al (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 7:211–228. https://doi.org/10.1089/107632701300062859

    Article  CAS  PubMed  Google Scholar 

  90. Nagamura-Inoue T, He H (2014) Umbilical cord-derived mesenchymal stem cells: their advantages and potential clinical utility. World J Stem Cells 6:195–202. https://doi.org/10.4252/wjsc.v6.i2.195

    Article  PubMed  PubMed Central  Google Scholar 

  91. Bieback K, Brinkmann I (2010) Mesenchymal stromal cells from human perinatal tissues: from biology to cell therapy. World J Stem Cells 2:81–92. https://doi.org/10.4252/wjsc.v2.i4.81

    Article  PubMed  PubMed Central  Google Scholar 

  92. Scheller EL, Cawthorn WP, Burr AA, Horowitz MC, MacDougald OA (2016) Marrow adipose tissue: trimming the fat. Trends Endocrinol Metab 27:392–403. https://doi.org/10.1016/j.tem.2016.03.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Corselli M, Chen CW, Crisan M, Lazzari L, Peault B (2010) Perivascular ancestors of adult multipotent stem cells. Arterioscler Thromb Vasc Biol 30:1104–1109. https://doi.org/10.1161/ATVBAHA.109.191643

    Article  CAS  PubMed  Google Scholar 

  94. Song N, Armstrong AD, Li F, Ouyang H, Niyibizi C (2014) Multipotent mesenchymal stem cells from human subacromial bursa: potential for cell based tendon tissue engineering. Tissue Eng Part A 20:239–249. https://doi.org/10.1089/ten.TEA.2013.0197

    Article  CAS  PubMed  Google Scholar 

  95. Vaculik C et al (2012) Human dermis harbors distinct mesenchymal stromal cell subsets. J Invest Dermatol 132:563–574. https://doi.org/10.1038/jid.2011.355

    Article  CAS  PubMed  Google Scholar 

  96. Fournier BP et al (2010) Multipotent progenitor cells in gingival connective tissue. Tissue Eng Part A 16:2891–2899. https://doi.org/10.1089/ten.TEA.2009.0796

    Article  PubMed  Google Scholar 

  97. Cheng MT, Yang HW, Chen TH, Lee OK (2009) Isolation and characterization of multipotent stem cells from human cruciate ligaments. Cell Prolif 42:448–460. https://doi.org/10.1111/j.1365-2184.2009.00611.x

    Article  CAS  PubMed  Google Scholar 

  98. Chong PP, Selvaratnam L, Abbas AA, Kamarul T (2012) Human peripheral blood derived mesenchymal stem cells demonstrate similar characteristics and chondrogenic differentiation potential to bone marrow derived mesenchymal stem cells. J Orthop Res 30:634–642. https://doi.org/10.1002/jor.21556

    Article  CAS  PubMed  Google Scholar 

  99. Fan J, Varshney RR, Ren L, Cai D, Wang DA (2009) Synovium-derived mesenchymal stem cells: a new cell source for musculoskeletal regeneration. Tissue Eng Part B Rev 15:75–86. https://doi.org/10.1089/ten.teb.2008.0586

    Article  CAS  PubMed  Google Scholar 

  100. Miao Z et al (2006) Isolation of mesenchymal stem cells from human placenta: comparison with human bone marrow mesenchymal stem cells. Cell Biol Int 30:681–687. https://doi.org/10.1016/j.cellbi.2006.03.009

    Article  CAS  PubMed  Google Scholar 

  101. Wang LT et al (2018) Differentiation of mesenchymal stem cells from human induced pluripotent stem cells results in downregulation of c-Myc and DNA replication pathways with immunomodulation toward CD4 and CD8 cells. Stem Cells 36:903–914. https://doi.org/10.1002/stem.2795

    Article  CAS  PubMed  Google Scholar 

  102. Lennon DP, Haynesworth SE, Bruder SP, Jaiswal N, Caplan AI (1996) Human and animal mesenchymal progenitor cells from bone marrow: identification of serum for optimal selection and proliferation. Vitro Cell Dev Biol Anim 32:602–611

    Article  Google Scholar 

  103. Rojewski MT et al (2013) GMP-compliant isolation and expansion of bone marrow-derived MSCs in the closed, automated device quantum cell expansion system. Cell Transplant 22:1981–2000. https://doi.org/10.3727/096368912X657990

    Article  PubMed  Google Scholar 

  104. Corotchi MC et al (2013) Isolation method and xeno-free culture conditions influence multipotent differentiation capacity of human Wharton’s jelly-derived mesenchymal stem cells. Stem Cell Res Ther 4:81. https://doi.org/10.1186/scrt232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Dos Santos F et al (2014) A xenogeneic-free bioreactor system for the clinical-scale expansion of human mesenchymal stem/stromal cells. Biotechnol Bioeng 111:1116–1127. https://doi.org/10.1002/bit.25187

    Article  CAS  PubMed  Google Scholar 

  106. Sensebe L, Gadelorge M, Fleury-Cappellesso S (2013) Production of mesenchymal stromal/stem cells according to good manufacturing practices: a review. Stem Cell Res Ther 4:66. https://doi.org/10.1186/scrt217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Dos Santos F et al (2010) Ex vivo expansion of human mesenchymal stem cells: a more effective cell proliferation kinetics and metabolism under hypoxia. J Cell Physiol 223:27–35. https://doi.org/10.1002/jcp.21987

    Article  CAS  PubMed  Google Scholar 

  108. Fotia C, Massa A, Boriani F, Baldini N, Granchi D (2015) Hypoxia enhances proliferation and stemness of human adipose-derived mesenchymal stem cells. Cytotechnology 67:1073–1084. https://doi.org/10.1007/s10616-014-9731-2

    Article  CAS  PubMed  Google Scholar 

  109. Eaker S et al (2013) Concise review: guidance in developing commercializable autologous/patient-specific cell therapy manufacturing. Stem Cells Transl Med 2:871–883. https://doi.org/10.5966/sctm.2013-0050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Blazquez-Prunera A, Almeida CR, Barbosa MA (2017) Human bone marrow mesenchymal stem/stromal cells preserve their immunomodulatory and chemotactic properties when expanded in a human plasma derived xeno-free medium. Stem Cells Int 2017:2185351. https://doi.org/10.1155/2017/2185351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Blazquez-Prunera A, Diez JM, Gajardo R, Grancha S (2017) Human mesenchymal stem cells maintain their phenotype, multipotentiality, and genetic stability when cultured using a defined xeno-free human plasma fraction. Stem Cell Res Ther 8:103. https://doi.org/10.1186/s13287-017-0552-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Rafiq QA, Brosnan KM, Coopman K, Nienow AW, Hewitt CJ (2013) Culture of human mesenchymal stem cells on microcarriers in a 5 l stirred-tank bioreactor. Biotechnol Lett 35:1233–1245. https://doi.org/10.1007/s10529-013-1211-9

    Article  CAS  PubMed  Google Scholar 

  113. Marquez-Curtis LA, Janowska-Wieczorek A, McGann LE, Elliott JA (2015) Mesenchymal stromal cells derived from various tissues: biological, clinical and cryopreservation aspects. Cryobiology 71:181–197. https://doi.org/10.1016/j.cryobiol.2015.07.003

    Article  CAS  PubMed  Google Scholar 

  114. Moll G et al (2014) Do cryopreserved mesenchymal stromal cells display impaired immunomodulatory and therapeutic properties? Stem Cells 32:2430–2442. https://doi.org/10.1002/stem.1729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Lechanteur C et al (2016) Clinical-scale expansion of mesenchymal stromal cells: a large banking experience. J Transl Med 14:145. https://doi.org/10.1186/s12967-016-0892-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Wagner W et al (2006) The heterogeneity of human mesenchymal stem cell preparations—evidence from simultaneous analysis of proteomes and transcriptomes. Exp Hematol 34:536–548. https://doi.org/10.1016/j.exphem.2006.01.002

    Article  CAS  PubMed  Google Scholar 

  117. Pevsner-Fischer M, Levin S, Zipori D (2011) The origins of mesenchymal stromal cell heterogeneity. Stem Cell Rev 7:560–568. https://doi.org/10.1007/s12015-011-9229-7

    Article  CAS  Google Scholar 

  118. Han ZC, Du WJ, Han ZB, Liang L (2017) New insights into the heterogeneity and functional diversity of human mesenchymal stem cells. Biomed Mater Eng 28:S29–S45. https://doi.org/10.3233/BME-171622

    Article  CAS  PubMed  Google Scholar 

  119. Phinney DG (2012) Functional heterogeneity of mesenchymal stem cells: implications for cell therapy. J Cell Biochem 113:2806–2812. https://doi.org/10.1002/jcb.24166

    Article  CAS  PubMed  Google Scholar 

  120. Mindaye ST, Lo Surdo J, Bauer SR, Alterman MA (2015) The proteomic dataset for bone marrow derived human mesenchymal stromal cells: effect of in vitro passaging. Data Brief 5:864–870. https://doi.org/10.1016/j.dib.2015.10.020

    Article  PubMed  PubMed Central  Google Scholar 

  121. Mindaye ST, Ra M, Lo Surdo J, Bauer SR, Alterman MA (2013) Improved proteomic profiling of the cell surface of culture-expanded human bone marrow multipotent stromal cells. J Proteomics 78:1–14. https://doi.org/10.1016/j.jprot.2012.10.028

    Article  CAS  PubMed  Google Scholar 

  122. Mindaye ST, Ra M, Lo Surdo JL, Bauer SR, Alterman MA (2013) Global proteomic signature of undifferentiated human bone marrow stromal cells: evidence for donor-to-donor proteome heterogeneity. Stem Cell Res 11:793–805. https://doi.org/10.1016/j.scr.2013.05.006

    Article  CAS  PubMed  Google Scholar 

  123. Mindaye ST, Surdo JL, Bauer SR, Alterman MA (2015) System-wide survey of proteomic responses of human bone marrow stromal cells (hBMSCs) to in vitro cultivation. Stem Cell Res 15:655–664. https://doi.org/10.1016/j.scr.2015.09.013

    Article  CAS  PubMed  Google Scholar 

  124. Dominici M et al (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8:315–317. https://doi.org/10.1080/14653240600855905

    Article  CAS  PubMed  Google Scholar 

  125. Samsonraj RM et al (2015) Establishing criteria for human mesenchymal stem cell potency. Stem Cells 33:1878–1891. https://doi.org/10.1002/stem.1982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Lv FJ, Tuan RS, Cheung KM, Leung VY (2014) Concise review: the surface markers and identity of human mesenchymal stem cells. Stem Cells 32:1408–1419. https://doi.org/10.1002/stem.1681

    Article  CAS  PubMed  Google Scholar 

  127. Rennerfeldt DA, Van Vliet KJ (2016) Concise review: when colonies are not clones: evidence and implications of intracolony heterogeneity in mesenchymal stem cells. Stem Cells 34:1135–1141. https://doi.org/10.1002/stem.2296

    Article  PubMed  Google Scholar 

  128. Cai J, Weiss ML, Rao MS (2004) In search of “stemness”. Exp Hematol 32:585–598. https://doi.org/10.1016/j.exphem.2004.03.013

    Article  PubMed  PubMed Central  Google Scholar 

  129. De Boer J, Wang HJ, Van Blitterswijk C (2004) Effects of Wnt signaling on proliferation and differentiation of human mesenchymal stem cells. Tissue Eng 10:393–401. https://doi.org/10.1089/107632704323061753

    Article  CAS  PubMed  Google Scholar 

  130. Fehrer C et al (2007) Reduced oxygen tension attenuates differentiation capacity of human mesenchymal stem cells and prolongs their lifespan. Aging Cell 6:745–757. https://doi.org/10.1111/j.1474-9726.2007.00336.x

    Article  CAS  PubMed  Google Scholar 

  131. Estrada JC et al (2012) Culture of human mesenchymal stem cells at low oxygen tension improves growth and genetic stability by activating glycolysis. Cell Death Differ 19:743–755. https://doi.org/10.1038/cdd.2011.172

    Article  CAS  PubMed  Google Scholar 

  132. Zimmermann S et al (2003) Lack of telomerase activity in human mesenchymal stem cells. Leukemia 17:1146–1149. https://doi.org/10.1038/sj.leu.2402962

    Article  CAS  PubMed  Google Scholar 

  133. Bernardo ME et al (2007) Human bone marrow derived mesenchymal stem cells do not undergo transformation after long-term in vitro culture and do not exhibit telomere maintenance mechanisms. Cancer Res 67:9142–9149. https://doi.org/10.1158/0008-5472.CAN-06-4690

    Article  CAS  PubMed  Google Scholar 

  134. Wagner W et al (2008) Replicative senescence of mesenchymal stem cells: a continuous and organized process. PLoS One 3:e2213. https://doi.org/10.1371/journal.pone.0002213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Bork S et al (2010) DNA methylation pattern changes upon long-term culture and aging of human mesenchymal stromal cells. Aging Cell 9:54–63. https://doi.org/10.1111/j.1474-9726.2009.00535.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Turinetto V, Vitale E, Giachino C (2016) Senescence in human mesenchymal stem cells: functional changes and implications in stem cell-based therapy. Int J Mol Sci 17:1164. https://doi.org/10.3390/ijms17071164

    Article  CAS  PubMed Central  Google Scholar 

  137. Jaiswal RK et al (2000) Adult human mesenchymal stem cell differentiation to the osteogenic or adipogenic lineage is regulated by mitogen-activated protein kinase. J Biol Chem 275:9645–9652

    Article  CAS  Google Scholar 

  138. Li WJ, Tuli R, Huang X, Laquerriere P, Tuan RS (2005) Multilineage differentiation of human mesenchymal stem cells in a three-dimensional nanofibrous scaffold. Biomaterials 26:5158–5166. https://doi.org/10.1016/j.biomaterials.2005.01.002

    Article  CAS  PubMed  Google Scholar 

  139. Chen Q et al (2016) Fate decision of mesenchymal stem cells: adipocytes or osteoblasts? Cell Death Differ 23:1128–1139. https://doi.org/10.1038/cdd.2015.168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Cristancho AG, Lazar MA (2011) Forming functional fat: a growing understanding of adipocyte differentiation. Nat Rev Mol Cell Biol 12:722–734. https://doi.org/10.1038/nrm3198

    Article  CAS  PubMed  Google Scholar 

  141. Pelttari K, Steck E, Richter W (2008) The use of mesenchymal stem cells for chondrogenesis. Injury 39(Suppl 1):S58–S65. https://doi.org/10.1016/j.injury.2008.01.038

    Article  PubMed  Google Scholar 

  142. Tuli R et al (2003) Transforming growth factor-beta-mediated chondrogenesis of human mesenchymal progenitor cells involves N-cadherin and mitogen-activated protein kinase and Wnt signaling cross-talk. J Biol Chem 278:41227–41236. https://doi.org/10.1074/jbc.M305312200

    Article  CAS  PubMed  Google Scholar 

  143. Chiou M, Xu Y, Longaker MT (2006) Mitogenic and chondrogenic effects of fibroblast growth factor-2 in adipose-derived mesenchymal cells. Biochem Biophys Res Commun 343:644–652. https://doi.org/10.1016/j.bbrc.2006.02.171

    Article  CAS  PubMed  Google Scholar 

  144. Longobardi L et al (2006) Effect of IGF-I in the chondrogenesis of bone marrow mesenchymal stem cells in the presence or absence of TGF-beta signaling. J Bone Miner Res 21:626–636. https://doi.org/10.1359/jbmr.051213

    Article  CAS  PubMed  Google Scholar 

  145. Schmitt B et al (2003) BMP2 initiates chondrogenic lineage development of adult human mesenchymal stem cells in high-density culture. Differentiation 71:567–577. https://doi.org/10.1111/j.1432-0436.2003.07109003.x

    Article  CAS  PubMed  Google Scholar 

  146. Leung VY et al (2011) SOX9 governs differentiation stage-specific gene expression in growth plate chondrocytes via direct concomitant transactivation and repression. PLoS Genet 7:e1002356. https://doi.org/10.1371/journal.pgen.1002356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Furumatsu T, Tsuda M, Taniguchi N, Tajima Y, Asahara H (2005) Smad3 induces chondrogenesis through the activation of SOX9 via CREB-binding protein/p300 recruitment. J Biol Chem 280:8343–8350. https://doi.org/10.1074/jbc.M413913200

    Article  CAS  PubMed  Google Scholar 

  148. Indrawattana N et al (2004) Growth factor combination for chondrogenic induction from human mesenchymal stem cell. Biochem Biophys Res Commun 320:914–919. https://doi.org/10.1016/j.bbrc.2004.06.029

    Article  CAS  PubMed  Google Scholar 

  149. Friedman MS, Long MW, Hankenson KD (2006) Osteogenic differentiation of human mesenchymal stem cells is regulated by bone morphogenetic protein-6. J Cell Biochem 98:538–554. https://doi.org/10.1002/jcb.20719

    Article  CAS  PubMed  Google Scholar 

  150. Marupanthorn K, Tantrawatpan C, Kheolamai P, Tantikanlayaporn D, Manochantr S (2017) Bone morphogenetic protein-2 enhances the osteogenic differentiation capacity of mesenchymal stromal cells derived from human bone marrow and umbilical cord. Int J Mol Med 39:654–662. https://doi.org/10.3892/ijmm.2017.2872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Sekiya I, Larson BL, Vuoristo JT, Reger RL, Prockop DJ (2005) Comparison of effect of BMP-2, -4, and -6 on in vitro cartilage formation of human adult stem cells from bone marrow stroma. Cell Tissue Res 320:269–276. https://doi.org/10.1007/s00441-004-1075-3

    Article  CAS  PubMed  Google Scholar 

  152. Celil AB, Campbell PG (2005) BMP-2 and insulin-like growth factor-I mediate Osterix (Osx) expression in human mesenchymal stem cells via the MAPK and protein kinase D signaling pathways. J Biol Chem 280:31353–31359

    Article  CAS  Google Scholar 

  153. Nakashima K et al (2002) The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell 108:17–29

    Article  CAS  Google Scholar 

  154. Nishio Y et al (2006) Runx2-mediated regulation of the zinc finger Osterix/Sp7 gene. Gene 372:62–70

    Article  CAS  Google Scholar 

  155. Lin GL, Hankenson KD (2011) Integration of BMP, Wnt, and notch signaling pathways in osteoblast differentiation. J Cell Biochem 112:3491–3501

    Article  CAS  Google Scholar 

  156. Fontaine C, Cousin W, Plaisant M, Dani C, Peraldi P (2008) Hedgehog signaling alters adipocyte maturation of human mesenchymal stem cells. Stem Cells 26:1037–1046. https://doi.org/10.1634/stemcells.2007-0974

    Article  CAS  PubMed  Google Scholar 

  157. Oldershaw RA et al (2008) Notch signaling through Jagged-1 is necessary to initiate chondrogenesis in human bone marrow stromal cells but must be switched off to complete chondrogenesis. Stem Cells 26:666–674. https://doi.org/10.1634/stemcells.2007-0806

    Article  CAS  PubMed  Google Scholar 

  158. Janeczek Portalska K et al (2012) Endothelial differentiation of mesenchymal stromal cells. PLoS One 7:e46842. https://doi.org/10.1371/journal.pone.0046842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Ullah I, Subbarao RB, Rho GJ (2015) Human mesenchymal stem cells—current trends and future prospective. Biosci Rep 35:e00191. https://doi.org/10.1042/bsr20150025

    Article  PubMed  PubMed Central  Google Scholar 

  160. Beier JP et al (2011) Myogenic differentiation of mesenchymal stem cells co-cultured with primary myoblasts. Cell Biol Int 35:397–406. https://doi.org/10.1042/CBI20100417

    Article  CAS  PubMed  Google Scholar 

  161. Song L, Tuan RS (2004) Transdifferentiation potential of human mesenchymal stem cells derived from bone marrow. FASEB J 18:980–982. https://doi.org/10.1096/fj.03-1100fje

    Article  CAS  PubMed  Google Scholar 

  162. Parekkadan B, Milwid JM (2010) Mesenchymal stem cells as therapeutics. Annu Rev Biomed Eng 12:87–117. https://doi.org/10.1146/annurev-bioeng-070909-105309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Horwitz EM et al (2002) Isolated allogeneic bone marrow-derived mesenchymal cells engraft and stimulate growth in children with osteogenesis imperfecta: implications for cell therapy of bone. Proc Natl Acad Sci USA 99:8932–8937. https://doi.org/10.1073/pnas.132252399

    Article  CAS  PubMed  Google Scholar 

  164. Kean TJ, Lin P, Caplan AI, Dennis JE (2013) MSCs: delivery routes and engraftment, cell-targeting strategies, and immune modulation. Stem Cells Int 2013:732742. https://doi.org/10.1155/2013/732742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Tomita M et al (2002) Bone marrow-derived stem cells can differentiate into retinal cells in injured rat retina. Stem Cells 20:279–283. https://doi.org/10.1634/stemcells.20-4-279

    Article  CAS  PubMed  Google Scholar 

  166. Inoue Y et al (2007) Subretinal transplantation of bone marrow mesenchymal stem cells delays retinal degeneration in the RCS rat model of retinal degeneration. Exp Eye Res 85:234–241. https://doi.org/10.1016/j.exer.2007.04.007

    Article  CAS  PubMed  Google Scholar 

  167. Oner A, Gonen ZB, Sinim N, Cetin M, Ozkul Y (2016) Subretinal adipose tissue-derived mesenchymal stem cell implantation in advanced stage retinitis pigmentosa: a phase I clinical safety study. Stem Cell Res Ther 7:178. https://doi.org/10.1186/s13287-016-0432-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Satarian L et al (2017) Intravitreal injection of bone marrow mesenchymal stem cells in patients with advanced retinitis pigmentosa; a safety study. J Ophthalmic Vis Res 12:58–64. https://doi.org/10.4103/2008-322X.200164

    Article  PubMed  PubMed Central  Google Scholar 

  169. Limoli PG, Limoli C, Vingolo EM, Scalinci SZ, Nebbioso M (2016) Cell surgery and growth factors in dry age-related macular degeneration: visual prognosis and morphological study. Oncotarget 7:46913–46923. https://doi.org/10.18632/oncotarget.10442

    Article  PubMed  PubMed Central  Google Scholar 

  170. Uccelli A, Laroni A, Freedman MS (2011) Mesenchymal stem cells for the treatment of multiple sclerosis and other neurological diseases. Lancet Neurol 10:649–656. https://doi.org/10.1016/S1474-4422(11)70121-1

    Article  CAS  PubMed  Google Scholar 

  171. Connick P et al (2012) Autologous mesenchymal stem cells for the treatment of secondary progressive multiple sclerosis: an open-label phase 2a proof-of-concept study. Lancet Neurol 11:150–156. https://doi.org/10.1016/S1474-4422(11)70305-2

    Article  PubMed  PubMed Central  Google Scholar 

  172. Humphreys BD, Bonventre JV (2008) Mesenchymal stem cells in acute kidney injury. Annu Rev Med 59:311–325. https://doi.org/10.1146/annurev.med.59.061506.154239

    Article  CAS  PubMed  Google Scholar 

  173. Karantalis V, Hare JM (2015) Use of mesenchymal stem cells for therapy of cardiac disease. Circ Res 116:1413–1430. https://doi.org/10.1161/CIRCRESAHA.116.303614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Volarevic V, Arsenijevic N, Lukic ML, Stojkovic M (2011) Concise review: mesenchymal stem cell treatment of the complications of diabetes mellitus. Stem Cells 29:5–10. https://doi.org/10.1002/stem.556

    Article  CAS  PubMed  Google Scholar 

  175. Kuo TK et al (2008) Stem cell therapy for liver disease: parameters governing the success of using bone marrow mesenchymal stem cells. Gastroenterology 134:2111–2121. https://doi.org/10.1053/j.gastro.2008.03.015 (2121 e2111–2113)

    Article  PubMed  PubMed Central  Google Scholar 

  176. Muller I, Lymperi S, Dazzi F (2008) Mesenchymal stem cell therapy for degenerative inflammatory disorders. Curr Opin Organ Transplant 13:639–644. https://doi.org/10.1097/MOT.0b013e328317a462

    Article  PubMed  Google Scholar 

  177. von Bahr L et al (2012) Analysis of tissues following mesenchymal stromal cell therapy in humans indicates limited long-term engraftment and no ectopic tissue formation. Stem Cells 30:1575–1578. https://doi.org/10.1002/stem.1118

    Article  CAS  Google Scholar 

  178. Kurtz A (2008) Mesenchymal stem cell delivery routes and fate. Int J Stem Cells 1:1–7

    Article  Google Scholar 

  179. Caplan AI (2007) Adult mesenchymal stem cells for tissue engineering versus regenerative medicine. J Cell Physiol 213:341–347. https://doi.org/10.1002/jcp.21200

    Article  CAS  PubMed  Google Scholar 

  180. Tuan RS, Boland G, Tuli R (2003) Adult mesenchymal stem cells and cell-based tissue engineering. Arthritis Res Ther 5:32–45

    Article  CAS  Google Scholar 

  181. Leach JK, Whitehead J (2018) Materials-directed differentiation of mesenchymal stem cells for tissue engineering and regeneration. ACS Biomater Sci Eng 4:1115–1127. https://doi.org/10.1021/acsbiomaterials.6b00741

    Article  CAS  PubMed  Google Scholar 

  182. Loh QL, Choong C (2013) Three-dimensional scaffolds for tissue engineering applications: role of porosity and pore size. Tissue Eng Part B Rev 19:485–502. https://doi.org/10.1089/ten.TEB.2012.0437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Sheikh Z et al (2015) Biodegradable materials for bone repair and tissue engineering applications. Materials (Basel) 8:5744–5794. https://doi.org/10.3390/ma8095273

    Article  CAS  Google Scholar 

  184. Costantini M et al (2016) 3D bioprinting of BM-MSCs-loaded ECM biomimetic hydrogels for in vitro neocartilage formation. Biofabrication 8:035002. https://doi.org/10.1088/1758-5090/8/3/035002

    Article  CAS  PubMed  Google Scholar 

  185. Aoyama T et al (2014) An exploratory clinical trial for idiopathic osteonecrosis of femoral head by cultured autologous multipotent mesenchymal stromal cells augmented with vascularized bone grafts. Tissue Eng Part B Rev 20:233–242. https://doi.org/10.1089/ten.TEB.2014.0090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Gjerde C et al (2018) Cell therapy induced regeneration of severely atrophied mandibular bone in a clinical trial. Stem Cell Res Ther 9:213. https://doi.org/10.1186/s13287-018-0951-9

    Article  PubMed  PubMed Central  Google Scholar 

  187. Benvenuto F et al (2007) Human mesenchymal stem cells promote survival of T cells in a quiescent state. Stem Cells 25:1753–1760. https://doi.org/10.1634/stemcells.2007-0068

    Article  CAS  PubMed  Google Scholar 

  188. Morrison SJ, Scadden DT (2014) The bone marrow niche for haematopoietic stem cells. Nature 505:327–334. https://doi.org/10.1038/nature12984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Majumdar MK, Thiede MA, Haynesworth SE, Bruder SP, Gerson SL (2000) Human marrow-derived mesenchymal stem cells (MSCs) express hematopoietic cytokines and support long-term hematopoiesis when differentiated toward stromal and osteogenic lineages. J Hematother Stem Cell Res 9:841–848. https://doi.org/10.1089/152581600750062264

    Article  CAS  PubMed  Google Scholar 

  190. Hofer HR, Tuan RS (2016) Secreted trophic factors of mesenchymal stem cells support neurovascular and musculoskeletal therapies. Stem Cell Res Ther 7:131. https://doi.org/10.1186/s13287-016-0394-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Greenbaum A et al (2013) CXCL12 in early mesenchymal progenitors is required for haematopoietic stem-cell maintenance. Nature 495:227–230. https://doi.org/10.1038/nature11926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Koc ON et al (2000) Rapid hematopoietic recovery after coinfusion of autologous-blood stem cells and culture-expanded marrow mesenchymal stem cells in advanced breast cancer patients receiving high-dose chemotherapy. J Clin Oncol 18:307–316. https://doi.org/10.1200/JCO.2000.18.2.307

    Article  CAS  PubMed  Google Scholar 

  193. Watt SM et al (2013) The angiogenic properties of mesenchymal stem/stromal cells and their therapeutic potential. Br Med Bull 108:25–53. https://doi.org/10.1093/bmb/ldt031

    Article  PubMed  PubMed Central  Google Scholar 

  194. Sacchetti B et al (2007) Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment. Cell 131:324–336. https://doi.org/10.1016/j.cell.2007.08.025

    Article  CAS  PubMed  Google Scholar 

  195. Pollock K et al (2016) Human mesenchymal stem cells genetically engineered to overexpress brain-derived neurotrophic factor improve outcomes in huntington’s disease mouse models. Mol Ther 24:965–977. https://doi.org/10.1038/mt.2016.12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Munoz JR, Stoutenger BR, Robinson AP, Spees JL, Prockop DJ (2005) Human stem/progenitor cells from bone marrow promote neurogenesis of endogenous neural stem cells in the hippocampus of mice. Proc Natl Acad Sci USA 102:18171–18176. https://doi.org/10.1073/pnas.0508945102

    Article  CAS  PubMed  Google Scholar 

  197. Joyce N et al (2010) Mesenchymal stem cells for the treatment of neurodegenerative disease. Regen Med 5:933–946. https://doi.org/10.2217/rme.10.72

    Article  PubMed  PubMed Central  Google Scholar 

  198. Crigler L, Robey RC, Asawachaicharn A, Gaupp D, Phinney DG (2006) Human mesenchymal stem cell subpopulations express a variety of neuro-regulatory molecules and promote neuronal cell survival and neuritogenesis. Exp Neurol 198:54–64. https://doi.org/10.1016/j.expneurol.2005.10.029

    Article  CAS  PubMed  Google Scholar 

  199. McCoy MK et al (2008) Autologous transplants of Adipose-Derived Adult Stromal (ADAS) cells afford dopaminergic neuroprotection in a model of Parkinson’s disease. Exp Neurol 210:14–29. https://doi.org/10.1016/j.expneurol.2007.10.011

    Article  CAS  PubMed  Google Scholar 

  200. Lin YT et al (2011) Human mesenchymal stem cells prolong survival and ameliorate motor deficit through trophic support in Huntington’s disease mouse models. PLoS One 6:e22924. https://doi.org/10.1371/journal.pone.0022924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Wakabayashi K et al (2010) Transplantation of human mesenchymal stem cells promotes functional improvement and increased expression of neurotrophic factors in a rat focal cerebral ischemia model. J Neurosci Res 88:1017–1025. https://doi.org/10.1002/jnr.22279

    Article  CAS  PubMed  Google Scholar 

  202. Wilkins A et al (2009) Human bone marrow-derived mesenchymal stem cells secrete brain-derived neurotrophic factor which promotes neuronal survival in vitro. Stem Cell Res 3:63–70. https://doi.org/10.1016/j.scr.2009.02.006

    Article  CAS  PubMed  Google Scholar 

  203. Kim KS et al (2014) Transplantation of human adipose tissue-derived stem cells delays clinical onset and prolongs life span in ALS mouse model. Cell Transplant 23:1585–1597. https://doi.org/10.3727/096368913X673450

    Article  PubMed  Google Scholar 

  204. Kim HY et al (2014) Biological markers of mesenchymal stromal cells as predictors of response to autologous stem cell transplantation in patients with amyotrophic lateral sclerosis: an investigator-initiated trial and in vivo study. Stem Cells 32:2724–2731. https://doi.org/10.1002/stem.1770

    Article  CAS  PubMed  Google Scholar 

  205. Petrou P et al (2016) Safety and clinical effects of mesenchymal stem cells secreting neurotrophic factor transplantation in patients with amyotrophic lateral sclerosis: results of phase 1/2 and 2a clinical trials. JAMA Neurol 73:337–344. https://doi.org/10.1001/jamaneurol.2015.4321

    Article  PubMed  Google Scholar 

  206. Volarevic V, Nurkovic J, Arsenijevic N, Stojkovic M (2014) Concise review: therapeutic potential of mesenchymal stem cells for the treatment of acute liver failure and cirrhosis. Stem Cells 32:2818–2823. https://doi.org/10.1002/stem.1818

    Article  CAS  PubMed  Google Scholar 

  207. Lee RH et al (2006) Multipotent stromal cells from human marrow home to and promote repair of pancreatic islets and renal glomeruli in diabetic NOD/scid mice. Proc Natl Acad Sci USA 103:17438–17443. https://doi.org/10.1073/pnas.0608249103

    Article  CAS  PubMed  Google Scholar 

  208. Morigi M, Benigni A (2013) Mesenchymal stem cells and kidney repair. Nephrol Dial Transplant 28:788–793. https://doi.org/10.1093/ndt/gfs556

    Article  CAS  PubMed  Google Scholar 

  209. Morigi M, Rota C, Remuzzi G (2016) Mesenchymal stem cells in kidney repair. Methods Mol Biol 1416:89–107. https://doi.org/10.1007/978-1-4939-3584-0_5

    Article  CAS  PubMed  Google Scholar 

  210. Zhang Y, Li Y, Zhang L, Li J, Zhu C (2018) Mesenchymal stem cells: potential application for the treatment of hepatic cirrhosis. Stem Cell Res Ther 9:59. https://doi.org/10.1186/s13287-018-0814-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Yeung TY et al (2012) Human mesenchymal stem cells protect human islets from pro-inflammatory cytokines. PLoS One 7:e38189. https://doi.org/10.1371/journal.pone.0038189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Park KS et al (2010) Trophic molecules derived from human mesenchymal stem cells enhance survival, function, and angiogenesis of isolated islets after transplantation. Transplantation 89:509–517. https://doi.org/10.1097/TP.0b013e3181c7dc99

    Article  CAS  PubMed  Google Scholar 

  213. Chen L, Tredget EE, Wu PY, Wu Y (2008) Paracrine factors of mesenchymal stem cells recruit macrophages and endothelial lineage cells and enhance wound healing. PLoS One 3:e1886. https://doi.org/10.1371/journal.pone.0001886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Chen SL et al (2004) Effect on left ventricular function of intracoronary transplantation of autologous bone marrow mesenchymal stem cell in patients with acute myocardial infarction. Am J Cardiol 94:92–95. https://doi.org/10.1016/j.amjcard.2004.03.034

    Article  PubMed  Google Scholar 

  215. Amado LC et al (2005) Cardiac repair with intramyocardial injection of allogeneic mesenchymal stem cells after myocardial infarction. Proc Natl Acad Sci USA 102:11474–11479. https://doi.org/10.1073/pnas.0504388102

    Article  CAS  PubMed  Google Scholar 

  216. Kinnaird T et al (2004) Marrow-derived stromal cells express genes encoding a broad spectrum of arteriogenic cytokines and promote in vitro and in vivo arteriogenesis through paracrine mechanisms. Circ Res 94:678–685. https://doi.org/10.1161/01.RES.0000118601.37875.AC

    Article  CAS  PubMed  Google Scholar 

  217. Kinnaird T et al (2004) Local delivery of marrow-derived stromal cells augments collateral perfusion through paracrine mechanisms. Circulation 109:1543–1549. https://doi.org/10.1161/01.CIR.0000124062.31102.57

    Article  CAS  PubMed  Google Scholar 

  218. Ranganath SH, Levy O, Inamdar MS, Karp JM (2012) Harnessing the mesenchymal stem cell secretome for the treatment of cardiovascular disease. Cell Stem Cell 10:244–258. https://doi.org/10.1016/j.stem.2012.02.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Guan XJ et al (2013) Mesenchymal stem cells protect cigarette smoke-damaged lung and pulmonary function partly via VEGF-VEGF receptors. J Cell Biochem 114:323–335. https://doi.org/10.1002/jcb.24377

    Article  CAS  PubMed  Google Scholar 

  220. Kennelly H, Mahon BP, English K (2016) Human mesenchymal stromal cells exert HGF dependent cytoprotective effects in a human relevant pre-clinical model of COPD. Sci Rep 6:38207. https://doi.org/10.1038/srep38207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Stessuk T et al (2013) Phase I clinical trial of cell therapy in patients with advanced chronic obstructive pulmonary disease: follow-up of up to 3 years. Rev Bras Hematol Hemoter 35:352–357. https://doi.org/10.5581/1516-8484.20130113

    Article  PubMed  PubMed Central  Google Scholar 

  222. de Oliveira HG et al (2017) Combined bone marrow-derived mesenchymal stromal cell therapy and one-way endobronchial valve placement in patients with pulmonary emphysema: a phase I clinical trial. Stem Cells Transl Med 6:962–969. https://doi.org/10.1002/sctm.16-0315

    Article  PubMed  Google Scholar 

  223. Simonson OE et al (2016) In vivo effects of mesenchymal stromal cells in two patients with severe acute respiratory distress syndrome. Stem Cells Transl Med 5:845. https://doi.org/10.5966/sctm.2015-0021erratum

    Article  PubMed  Google Scholar 

  224. Karp JM, Leng Teo GS (2009) Mesenchymal stem cell homing: the devil is in the details. Cell Stem Cell 4:206–216. https://doi.org/10.1016/j.stem.2009.02.001

    Article  CAS  PubMed  Google Scholar 

  225. Eggenhofer E, Luk F, Dahlke MH, Hoogduijn MJ (2014) The life and fate of mesenchymal stem cells. Front Immunol 5:148. https://doi.org/10.3389/fimmu.2014.00148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Li M et al (2016) In vivo human adipose-derived mesenchymal stem cell tracking after intra-articular delivery in a rat osteoarthritis model. Stem Cell Res Ther 7:160. https://doi.org/10.1186/s13287-016-0420-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Brooks A et al (2018) Concise review: quantitative detection and modeling the in vivo kinetics of therapeutic mesenchymal stem/stromal cells. Stem Cells Transl Med 7:78–86. https://doi.org/10.1002/sctm.17-0209

    Article  PubMed  Google Scholar 

  228. Sohni A, Verfaillie CM (2013) Mesenchymal stem cells migration homing and tracking. Stem Cells Int 2013:130763. https://doi.org/10.1155/2013/130763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Ruster B et al (2006) Mesenchymal stem cells display coordinated rolling and adhesion behavior on endothelial cells. Blood 108:3938–3944. https://doi.org/10.1182/blood-2006-05-025098

    Article  CAS  PubMed  Google Scholar 

  230. Thankamony SP, Sackstein R (2011) Enforced hematopoietic cell E- and L-selectin ligand (HCELL) expression primes transendothelial migration of human mesenchymal stem cells. Proc Natl Acad Sci USA 108:2258–2263. https://doi.org/10.1073/pnas.1018064108

    Article  PubMed  Google Scholar 

  231. Nitzsche F et al (2017) Concise review: MSC adhesion cascade-insights into homing and transendothelial migration. Stem Cells 35:1446–1460. https://doi.org/10.1002/stem.2614

    Article  PubMed  Google Scholar 

  232. Fox JM, Chamberlain G, Ashton BA, Middleton J (2007) Recent advances into the understanding of mesenchymal stem cell trafficking. Br J Haematol 137:491–502. https://doi.org/10.1111/j.1365-2141.2007.06610.x

    Article  CAS  PubMed  Google Scholar 

  233. Laird DJ, von Andrian UH, Wagers AJ (2008) Stem cell trafficking in tissue development, growth, and disease. Cell 132:612–630. https://doi.org/10.1016/j.cell.2008.01.041

    Article  CAS  PubMed  Google Scholar 

  234. Leibacher J, Henschler R (2016) Biodistribution, migration and homing of systemically applied mesenchymal stem/stromal cells. Stem Cell Res Ther 7:7. https://doi.org/10.1186/s13287-015-0271-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Aldridge V et al (2012) Human mesenchymal stem cells are recruited to injured liver in a beta1-integrin and CD44 dependent manner. Hepatology 56:1063–1073. https://doi.org/10.1002/hep.25716

    Article  CAS  PubMed  Google Scholar 

  236. Kumar S, Ponnazhagan S (2007) Bone homing of mesenchymal stem cells by ectopic alpha 4 integrin expression. FASEB J 21:3917–3927. https://doi.org/10.1096/fj.07-8275com

    Article  CAS  PubMed  Google Scholar 

  237. Semon JA et al (2010) Integrin expression and integrin-mediated adhesion in vitro of human multipotent stromal cells (MSCs) to endothelial cells from various blood vessels. Cell Tissue Res 341:147–158. https://doi.org/10.1007/s00441-010-0994-4

    Article  CAS  PubMed  Google Scholar 

  238. Ringe J et al (2007) Towards in situ tissue repair: human mesenchymal stem cells express chemokine receptors CXCR238, CXCR238 and CCR238, and migrate upon stimulation with CXCL8 but not CCL2. J Cell Biochem 101:135–146. https://doi.org/10.1002/jcb.21172

    Article  CAS  PubMed  Google Scholar 

  239. Ponte AL et al (2007) The in vitro migration capacity of human bone marrow mesenchymal stem cells: comparison of chemokine and growth factor chemotactic activities. Stem Cells 25:1737–1745. https://doi.org/10.1634/stemcells.2007-0054

    Article  CAS  PubMed  Google Scholar 

  240. Wynn RF et al (2004) A small proportion of mesenchymal stem cells strongly expresses functionally active CXCR240 receptor capable of promoting migration to bone marrow. Blood 104:2643–2645. https://doi.org/10.1182/blood-2004-02-0526

    Article  CAS  PubMed  Google Scholar 

  241. Ziaei R, Ayatollahi M, Yaghobi R, Sahraeian Z, Zarghami N (2014) Involvement of TNF-alpha in differential gene expression pattern of CXCR241 on human marrow-derived mesenchymal stem cells. Mol Biol Rep 41:1059–1066. https://doi.org/10.1007/s11033-013-2951-2

    Article  CAS  PubMed  Google Scholar 

  242. Fan H et al (2012) Pre-treatment with IL-1beta enhances the efficacy of MSC transplantation in DSS-induced colitis. Cell Mol Immunol 9:473–481. https://doi.org/10.1038/cmi.2012.40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Park SA et al (2011) CXCR243-transfected human umbilical cord blood-derived mesenchymal stem cells exhibit enhanced migratory capacity toward gliomas. Int J Oncol 38:97–103

    CAS  PubMed  Google Scholar 

  244. Ries C et al (2007) MMP-2, MT1-MMP, and TIMP-2 are essential for the invasive capacity of human mesenchymal stem cells: differential regulation by inflammatory cytokines. Blood 109:4055–4063. https://doi.org/10.1182/blood-2006-10-051060

    Article  CAS  PubMed  Google Scholar 

  245. Ho IA et al (2009) Matrix metalloproteinase 1 is necessary for the migration of human bone marrow-derived mesenchymal stem cells toward human glioma. Stem Cells 27:1366–1375. https://doi.org/10.1002/stem.50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Kim Y et al (2007) Direct comparison of human mesenchymal stem cells derived from adipose tissues and bone marrow in mediating neovascularization in response to vascular ischemia. Cell Physiol Biochem 20:867–876. https://doi.org/10.1159/000110447

    Article  CAS  PubMed  Google Scholar 

  247. Gholamrezanezhad A et al (2011) In vivo tracking of 111In-oxine labeled mesenchymal stem cells following infusion in patients with advanced cirrhosis. Nucl Med Biol 38:961–967. https://doi.org/10.1016/j.nucmedbio.2011.03.008

    Article  CAS  PubMed  Google Scholar 

  248. Fischer UM et al (2009) Pulmonary passage is a major obstacle for intravenous stem cell delivery: the pulmonary first-pass effect. Stem Cells Dev 18:683–692. https://doi.org/10.1089/scd.2008.0253

    Article  CAS  PubMed  Google Scholar 

  249. Argibay B et al (2017) Intraarterial route increases the risk of cerebral lesions after mesenchymal cell administration in animal model of ischemia. Sci Rep 7:40758. https://doi.org/10.1038/srep40758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Di Nicola M et al (2002) Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood 99:3838–3843

    Article  Google Scholar 

  251. Chinnadurai R, Copland IB, Patel SR, Galipeau J (2014) IDO-independent suppression of T cell effector function by IFN-gamma-licensed human mesenchymal stromal cells. J Immunol 192:1491–1501. https://doi.org/10.4049/jimmunol.1301828

    Article  CAS  PubMed  Google Scholar 

  252. Glennie S, Soeiro I, Dyson PJ, Lam EW, Dazzi F (2005) Bone marrow mesenchymal stem cells induce division arrest anergy of activated T cells. Blood 105:2821–2827. https://doi.org/10.1182/blood-2004-09-3696

    Article  CAS  PubMed  Google Scholar 

  253. Ryan JM, Barry F, Murphy JM, Mahon BP (2007) Interferon-gamma does not break, but promotes the immunosuppressive capacity of adult human mesenchymal stem cells. Clin Exp Immunol 149:353–363. https://doi.org/10.1111/j.1365-2249.2007.03422.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Boland L et al (2018) IFN-gamma and TNF-alpha pre-licensing protects mesenchymal stromal cells from the pro-inflammatory effects of palmitate. Mol Ther 26:860–873. https://doi.org/10.1016/j.ymthe.2017.12.013

    Article  CAS  PubMed  Google Scholar 

  255. Krampera M (2011) Mesenchymal stromal cell ‘licensing’: a multistep process. Leukemia 25:1408–1414. https://doi.org/10.1038/leu.2011.108

    Article  CAS  PubMed  Google Scholar 

  256. Gao F et al (2016) Mesenchymal stem cells and immunomodulation: current status and future prospects. Cell Death Dis 7:e2062. https://doi.org/10.1038/cddis.2015.327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Corcione A et al (2006) Human mesenchymal stem cells modulate B-cell functions. Blood 107:367–372. https://doi.org/10.1182/blood-2005-07-2657

    Article  CAS  PubMed  Google Scholar 

  258. Selmani Z et al (2008) Human leukocyte antigen-G5 secretion by human mesenchymal stem cells is required to suppress T lymphocyte and natural killer function and to induce CD4+ CD25highFOXP3+ regulatory T cells. Stem Cells 26:212–222. https://doi.org/10.1634/stemcells.2007-0554

    Article  CAS  PubMed  Google Scholar 

  259. Spaggiari GM et al (2008) Mesenchymal stem cells inhibit natural killer-cell proliferation, cytotoxicity, and cytokine production: role of indoleamine 2,3-dioxygenase and prostaglandin E2. Blood 111:1327–1333. https://doi.org/10.1182/blood-2007-02-074997

    Article  CAS  PubMed  Google Scholar 

  260. Jiang XX et al (2005) Human mesenchymal stem cells inhibit differentiation and function of monocyte-derived dendritic cells. Blood 105:4120–4126. https://doi.org/10.1182/blood-2004-02-0586

    Article  CAS  PubMed  Google Scholar 

  261. Ramasamy R et al (2007) Mesenchymal stem cells inhibit dendritic cell differentiation and function by preventing entry into the cell cycle. Transplantation 83:71–76. https://doi.org/10.1097/01.tp.0000244572.24780.54

    Article  PubMed  Google Scholar 

  262. Ylostalo JH, Bartosh TJ, Coble K, Prockop DJ (2012) Human mesenchymal stem/stromal cells cultured as spheroids are self-activated to produce prostaglandin E2 that directs stimulated macrophages into an anti-inflammatory phenotype. Stem Cells 30:2283–2296. https://doi.org/10.1002/stem.1191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Ghannam S, Pene J, Moquet-Torcy G, Jorgensen C, Yssel H (2010) Mesenchymal stem cells inhibit human Th17 cell differentiation and function and induce a T regulatory cell phenotype. J Immunol 185:302–312. https://doi.org/10.4049/jimmunol.0902007

    Article  CAS  PubMed  Google Scholar 

  264. Rozenberg A et al (2016) Human mesenchymal stem cells impact Th17 and Th1 responses through a prostaglandin E2 and myeloid-dependent mechanism. Stem Cells Transl Med 5:1506–1514. https://doi.org/10.5966/sctm.2015-0243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  265. Bai L et al (2009) Human bone marrow-derived mesenchymal stem cells induce Th2-polarized immune response and promote endogenous repair in animal models of multiple sclerosis. Glia 57:1192–1203. https://doi.org/10.1002/glia.20841

    Article  PubMed  PubMed Central  Google Scholar 

  266. Nauta AJ, Kruisselbrink AB, Lurvink E, Willemze R, Fibbe WE (2006) Mesenchymal stem cells inhibit generation and function of both CD34+-derived and monocyte-derived dendritic cells. J Immunol 177:2080–2087

    Article  CAS  Google Scholar 

  267. Luz-Crawford P et al (2013) Mesenchymal stem cells generate a CD4+ CD25+ Foxp3+ regulatory T cell population during the differentiation process of Th1 and Th17 cells. Stem Cell Res Ther 4:65. https://doi.org/10.1186/scrt216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  268. Liu Q et al (2015) Human mesenchymal stromal cells enhance the immunomodulatory function of CD8(+)CD28(−) regulatory T cells. Cell Mol Immunol 12:708–718. https://doi.org/10.1038/cmi.2014.118

    Article  CAS  PubMed  Google Scholar 

  269. Cho KA et al (2017) Mesenchymal stem cells ameliorate B-cell-mediated immune responses and increase IL-10-expressing regulatory B cells in an EBI3-dependent manner. Cell Mol Immunol 14:895. https://doi.org/10.1038/cmi.2016.59

    Article  CAS  PubMed Central  Google Scholar 

  270. Liu X et al (2012) Mesenchymal stem/stromal cells induce the generation of novel IL-10-dependent regulatory dendritic cells by SOCS3 activation. J Immunol 189:1182–1192. https://doi.org/10.4049/jimmunol.1102996

    Article  CAS  PubMed  Google Scholar 

  271. Kim J, Hematti P (2009) Mesenchymal stem cell-educated macrophages: a novel type of alternatively activated macrophages. Exp Hematol 37:1445–1453. https://doi.org/10.1016/j.exphem.2009.09.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  272. Uccelli A, Moretta L, Pistoia V (2008) Mesenchymal stem cells in health and disease. Nat Rev Immunol 8:726–736. https://doi.org/10.1038/nri2395

    Article  CAS  PubMed  Google Scholar 

  273. Le Blanc K, Ringden O (2005) Immunobiology of human mesenchymal stem cells and future use in hematopoietic stem cell transplantation. Biol Blood Marrow Transplant 11:321–334. https://doi.org/10.1016/j.bbmt.2005.01.005

    Article  CAS  PubMed  Google Scholar 

  274. Nauta AJ, Fibbe WE (2007) Immunomodulatory properties of mesenchymal stromal cells. Blood 110:3499–3506. https://doi.org/10.1182/blood-2007-02-069716

    Article  CAS  PubMed  Google Scholar 

  275. Le Blanc K et al (2008) Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: a phase II study. Lancet 371:1579–1586. https://doi.org/10.1016/S0140-6736(08)60690-X

    Article  CAS  PubMed  Google Scholar 

  276. Le Blanc K et al (2004) Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet 363:1439–1441. https://doi.org/10.1016/S0140-6736(04)16104-7

    Article  PubMed  Google Scholar 

  277. Tan J et al (2012) Induction therapy with autologous mesenchymal stem cells in living-related kidney transplants: a randomized controlled trial. JAMA 307:1169–1177. https://doi.org/10.1001/jama.2012.316

    Article  CAS  PubMed  Google Scholar 

  278. Peng Y et al (2013) Donor-derived mesenchymal stem cells combined with low-dose tacrolimus prevent acute rejection after renal transplantation: a clinical pilot study. Transplantation 95:161–168. https://doi.org/10.1097/TP.0b013e3182754c53

    Article  CAS  PubMed  Google Scholar 

  279. Hartleif S et al (2017) Safety and tolerance of donor-derived mesenchymal stem cells in pediatric living-donor liver transplantation: the MYSTEP1 study. Stem Cells Int 2017:2352954. https://doi.org/10.1155/2017/2352954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  280. Perico N et al (2011) Autologous mesenchymal stromal cells and kidney transplantation: a pilot study of safety and clinical feasibility. Clin J Am Soc Nephrol 6:412–422. https://doi.org/10.2215/CJN.04950610

    Article  PubMed  PubMed Central  Google Scholar 

  281. Reinders ME et al (2013) Autologous bone marrow-derived mesenchymal stromal cells for the treatment of allograft rejection after renal transplantation: results of a phase I study. Stem Cells Transl Med 2:107–111. https://doi.org/10.5966/sctm.2012-0114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  282. Pan GH et al (2016) Low-dose tacrolimus combined with donor-derived mesenchymal stem cells after renal transplantation: a prospective, non-randomized study. Oncotarget 7:12089–12101. https://doi.org/10.18632/oncotarget.7725

    Article  PubMed  PubMed Central  Google Scholar 

  283. Detry O et al (2017) Infusion of mesenchymal stromal cells after deceased liver transplantation: a phase I–II, open-label, clinical study. J Hepatol 67:47–55. https://doi.org/10.1016/j.jhep.2017.03.001

    Article  PubMed  Google Scholar 

  284. Soeder Y et al (2015) First-in-human case study: multipotent adult progenitor cells for immunomodulation after liver transplantation. Stem Cells Transl Med 4:899–904. https://doi.org/10.5966/sctm.2015-0002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  285. Mao F et al (2017) Mesenchymal stem cells and their therapeutic applications in inflammatory bowel disease. Oncotarget 8:38008–38021. https://doi.org/10.18632/oncotarget.16682

    Article  PubMed  PubMed Central  Google Scholar 

  286. Duijvestein M et al (2010) Autologous bone marrow-derived mesenchymal stromal cell treatment for refractory luminal Crohn’s disease: results of a phase I study. Gut 59:1662–1669. https://doi.org/10.1136/gut.2010.215152

    Article  PubMed  Google Scholar 

  287. Ciccocioppo R et al (2011) Autologous bone marrow-derived mesenchymal stromal cells in the treatment of fistulising Crohn’s disease. Gut 60:788–798. https://doi.org/10.1136/gut.2010.214841

    Article  PubMed  Google Scholar 

  288. Forbes GM et al (2014) A phase 2 study of allogeneic mesenchymal stromal cells for luminal Crohn’s disease refractory to biologic therapy. Clin Gastroenterol Hepatol 12:64–71. https://doi.org/10.1016/j.cgh.2013.06.021

    Article  PubMed  Google Scholar 

  289. Alvaro-Gracia JM et al (2017) Intravenous administration of expanded allogeneic adipose-derived mesenchymal stem cells in refractory rheumatoid arthritis (Cx611): results of a multicentre, dose escalation, randomised, single-blind, placebo-controlled phase Ib/IIa clinical trial. Ann Rheum Dis 76:196–202. https://doi.org/10.1136/annrheumdis-2015-208918

    Article  CAS  PubMed  Google Scholar 

  290. Djouad F, Bouffi C, Ghannam S, Noel D, Jorgensen C (2009) Mesenchymal stem cells: innovative therapeutic tools for rheumatic diseases. Nat Rev Rheumatol 5:392–399. https://doi.org/10.1038/nrrheum.2009.104

    Article  CAS  PubMed  Google Scholar 

  291. Gonzalez-Rey E et al (2010) Human adipose-derived mesenchymal stem cells reduce inflammatory and T cell responses and induce regulatory T cells in vitro in rheumatoid arthritis. Ann Rheum Dis 69:241–248. https://doi.org/10.1136/ard.2008.101881

    Article  CAS  PubMed  Google Scholar 

  292. Panes J et al (2018) Long-term efficacy and safety of stem cell therapy (Cx601) for complex perianal fistulas in patients with Crohn’s disease. Gastroenterology 154:1334–1342 e1334. https://doi.org/10.1053/j.gastro.2017.12.020

    Article  PubMed  Google Scholar 

  293. Wang D et al (2018) A long-term follow-up study of allogeneic mesenchymal stem/stromal cell transplantation in patients with drug-resistant systemic lupus erythematosus. Stem Cell Rep 10:933–941. https://doi.org/10.1016/j.stemcr.2018.01.029

    Article  CAS  Google Scholar 

  294. Roddy GW et al (2011) Action at a distance: systemically administered adult stem/progenitor cells (MSCs) reduce inflammatory damage to the cornea without engraftment and primarily by secretion of TNF-alpha stimulated gene/protein 6. Stem Cells 29:1572–1579. https://doi.org/10.1002/stem.708

    Article  CAS  PubMed  Google Scholar 

  295. De Becker A, Riet IV (2016) Homing and migration of mesenchymal stromal cells: how to improve the efficacy of cell therapy? World J Stem Cells 8:73–87. https://doi.org/10.4252/wjsc.v8.i3.73

    Article  PubMed  PubMed Central  Google Scholar 

  296. Cselenyak A, Pankotai E, Horvath EM, Kiss L, Lacza Z (2010) Mesenchymal stem cells rescue cardiomyoblasts from cell death in an in vitro ischemia model via direct cell-to-cell connections. BMC Cell Biol 11:29. https://doi.org/10.1186/1471-2121-11-29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  297. Kong D et al (2017) Mesenchymal stem cells protect neurons against hypoxic-ischemic injury via inhibiting parthanatos, necroptosis, and apoptosis, but not autophagy. Cell Mol Neurobiol 37:303–313. https://doi.org/10.1007/s10571-016-0370-3

    Article  CAS  PubMed  Google Scholar 

  298. Mahrouf-Yorgov M et al (2017) Mesenchymal stem cells sense mitochondria released from damaged cells as danger signals to activate their rescue properties. Cell Death Differ 24:1224–1238. https://doi.org/10.1038/cdd.2017.51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  299. Naji A et al (2016) Endocytosis of indium-tin-oxide nanoparticles by macrophages provokes pyroptosis requiring NLRP3-ASC-Caspase1 axis that can be prevented by mesenchymal stem cells. Sci Rep 6:26162. https://doi.org/10.1038/srep26162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  300. Scheibe F, Klein O, Klose J, Priller J (2012) Mesenchymal stromal cells rescue cortical neurons from apoptotic cell death in an in vitro model of cerebral ischemia. Cell Mol Neurobiol 32:567–576. https://doi.org/10.1007/s10571-012-9798-2

    Article  CAS  PubMed  Google Scholar 

  301. Zhao K et al (2015) Bone marrow-derived mesenchymal stem cells ameliorate chronic high glucose-induced beta-cell injury through modulation of autophagy. Cell Death Dis 6:e1885. https://doi.org/10.1038/cddis.2015.230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  302. Zilka N et al (2011) Mesenchymal stem cells rescue the Alzheimer’s disease cell model from cell death induced by misfolded truncated tau. Neuroscience 193:330–337. https://doi.org/10.1016/j.neuroscience.2011.06.088

    Article  CAS  PubMed  Google Scholar 

  303. Kratchmarova I, Blagoev B, Haack-Sorensen M, Kassem M, Mann M (2005) Mechanism of divergent growth factor effects in mesenchymal stem cell differentiation. Science 308:1472–1477. https://doi.org/10.1126/science.1107627

    Article  CAS  PubMed  Google Scholar 

  304. Platt MO, Roman AJ, Wells A, Lauffenburger DA, Griffith LG (2009) Sustained epidermal growth factor receptor levels and activation by tethered ligand binding enhances osteogenic differentiation of multi-potent marrow stromal cells. J Cell Physiol 221:306–317. https://doi.org/10.1002/jcp.21854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  305. Miraoui H et al (2009) Fibroblast growth factor receptor 2 promotes osteogenic differentiation in mesenchymal cells via ERK1/2 and protein kinase C signaling. J Biol Chem 284:4897–4904. https://doi.org/10.1074/jbc.M805432200

    Article  CAS  PubMed  Google Scholar 

  306. Scavo LM, Karas M, Murray M, Leroith D (2004) Insulin-like growth factor-I stimulates both cell growth and lipogenesis during differentiation of human mesenchymal stem cells into adipocytes. J Clin Endocrinol Metab 89:3543–3553. https://doi.org/10.1210/jc.2003-031682

    Article  CAS  PubMed  Google Scholar 

  307. Roelen BA, Dijke P (2003) Controlling mesenchymal stem cell differentiation by TGFBeta family members. J Orthop Sci 8:740–748. https://doi.org/10.1007/s00776-003-0702-2

    Article  PubMed  Google Scholar 

  308. Maeda S, Hayashi M, Komiya S, Imamura T, Miyazono K (2004) Endogenous TGF-beta signaling suppresses maturation of osteoblastic mesenchymal cells. EMBO J 23:552–563. https://doi.org/10.1038/sj.emboj.7600067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  309. Oliveira FS et al (2012) Hedgehog signaling and osteoblast gene expression are regulated by purmorphamine in human mesenchymal stem cells. J Cell Biochem 113:204–208. https://doi.org/10.1002/jcb.23345

    Article  CAS  PubMed  Google Scholar 

  310. Chang J et al (2007) Noncanonical Wnt-4 signaling enhances bone regeneration of mesenchymal stem cells in craniofacial defects through activation of p38 MAPK. J Biol Chem 282:30938–30948. https://doi.org/10.1074/jbc.M702391200

    Article  CAS  PubMed  Google Scholar 

  311. Ugarte F et al (2009) Notch signaling enhances osteogenic differentiation while inhibiting adipogenesis in primary human bone marrow stromal cells. Exp Hematol 37:867–875 e861. https://doi.org/10.1016/j.exphem.2009.03.007

    Article  CAS  PubMed  Google Scholar 

  312. Zhou S (2011) TGF-beta regulates beta-catenin signaling and osteoblast differentiation in human mesenchymal stem cells. J Cell Biochem 112:1651–1660. https://doi.org/10.1002/jcb.23079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  313. Qian SW et al (2010) Characterization of adipocyte differentiation from human mesenchymal stem cells in bone marrow. BMC Dev Biol 10:47. https://doi.org/10.1186/1471-213X-10-47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  314. Thiagarajan L, Abu-Awwad HAM, Dixon JE (2017) Osteogenic programming of human mesenchymal stem cells with highly efficient intracellular delivery of RUNX2. Stem Cells Transl Med 6:2146–2159. https://doi.org/10.1002/sctm.17-0137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  315. Xu J, Li Z, Hou Y, Fang W (2015) Potential mechanisms underlying the Runx2 induced osteogenesis of bone marrow mesenchymal stem cells. Am J Transl Res 7:2527–2535

    CAS  PubMed  PubMed Central  Google Scholar 

  316. Yu WH et al (2012) PPARgamma suppression inhibits adipogenesis but does not promote osteogenesis of human mesenchymal stem cells. Int J Biochem Cell Biol 44:377–384. https://doi.org/10.1016/j.biocel.2011.11.013

    Article  CAS  PubMed  Google Scholar 

  317. Zhu F, Friedman MS, Luo W, Woolf P, Hankenson KD (2012) The transcription factor osterix (SP7) regulates BMP6-induced human osteoblast differentiation. J Cell Physiol 227:2677–2685. https://doi.org/10.1002/jcp.23010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  318. Pedersen TO et al (2014) Mesenchymal stem cells induce endothelial cell quiescence and promote capillary formation. Stem Cell Res Ther 5:23. https://doi.org/10.1186/scrt412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  319. Kingham PJ, Kolar MK, Novikova LN, Novikov LN, Wiberg M (2014) Stimulating the neurotrophic and angiogenic properties of human adipose-derived stem cells enhances nerve repair. Stem Cells Dev 23:741–754. https://doi.org/10.1089/scd.2013.0396

    Article  CAS  PubMed  Google Scholar 

  320. Li D et al (2013) Mesenchymal stem cells protect podocytes from apoptosis induced by high glucose via secretion of epithelial growth factor. Stem Cell Res Ther 4:103. https://doi.org/10.1186/scrt314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  321. Ding C et al (2018) Human amniotic mesenchymal stem cells improve ovarian function in natural aging through secreting hepatocyte growth factor and epidermal growth factor. Stem Cell Res Ther 9:55. https://doi.org/10.1186/s13287-018-0781-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  322. Zwezdaryk KJ et al (2007) Erythropoietin, a hypoxia-regulated factor, elicits a pro-angiogenic program in human mesenchymal stem cells. Exp Hematol 35:640–652

    Article  CAS  Google Scholar 

  323. Hu X et al (2008) Transplantation of hypoxia-preconditioned mesenchymal stem cells improves infarcted heart function via enhanced survival of implanted cells and angiogenesis. J Thorac Cardiovasc Surg 135:799–808

    Article  CAS  Google Scholar 

  324. Wu L, Leijten J, van Blitterswijk CA, Karperien M (2013) Fibroblast growth factor-1 is a mesenchymal stromal cell-secreted factor stimulating proliferation of osteoarthritic chondrocytes in co-culture. Stem Cells Dev 22:2356–2367. https://doi.org/10.1089/scd.2013.0118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  325. Zhang Z, Wang Y, Li M, Li J, Wu J (2014) Fibroblast growth factor 18 increases the trophic effects of bone marrow mesenchymal stem cells on chondrocytes isolated from late stage osteoarthritic patients. Stem Cells Int 2014:125643. https://doi.org/10.1155/2014/125683

    Article  Google Scholar 

  326. Horita Y et al (2006) Intravenous administration of glial cell line-derived neurotrophic factor gene-modified human mesenchymal stem cells protects against injury in a cerebral ischemia model in the adult rat. J Neurosci Res 84:1495–1504

    Article  CAS  Google Scholar 

  327. Ding D-C et al (2007) Enhancement of neuroplasticity through upregulation of β1-integrin in human umbilical cord-derived stromal cell implanted stroke model. Neurobiol Dis 27:339–353

    Article  CAS  Google Scholar 

  328. Jeong CH et al (2014) Mesenchymal stem cells expressing brain-derived neurotrophic factor enhance endogenous neurogenesis in an ischemic stroke model. Biomed Res Int 2014:129145. https://doi.org/10.1155/2014/129145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  329. Neuss S, Becher E, Woltje M, Tietze L, Jahnen-Dechent W (2004) Functional expression of HGF and HGF receptor/c-met in adult human mesenchymal stem cells suggests a role in cell mobilization, tissue repair, and wound healing. Stem Cells 22:405–414. https://doi.org/10.1634/stemcells.22-3-405

    Article  CAS  PubMed  Google Scholar 

  330. Zhang J et al (2004) Expression of insulin-like growth factor 1 and receptor in ischemic rats treated with human marrow stromal cells. Brain Res 1030:19–27

    Article  CAS  Google Scholar 

  331. Tfilin M et al (2010) Mesenchymal stem cells increase hippocampal neurogenesis and counteract depressive-like behavior. Mol Psychiatry 15:1164–1175. https://doi.org/10.1038/mp.2009.110

    Article  CAS  PubMed  Google Scholar 

  332. Casey ML, MacDonald PC (1997) Keratinocyte growth factor expression in the mesenchymal cells of human amnion. J Clin Endocrinol Metab 82:3319–3323. https://doi.org/10.1210/jcem.82.10.4294

    Article  CAS  PubMed  Google Scholar 

  333. Zhu YG et al (2014) Human mesenchymal stem cell microvesicles for treatment of Escherichia coli endotoxin-induced acute lung injury in mice. Stem cells 32:116–125

    Article  CAS  Google Scholar 

  334. Ding W et al (2010) Platelet-derived growth factor (PDGF)–PDGF receptor interaction activates bone marrow–derived mesenchymal stromal cells derived from chronic lymphocytic leukemia: implications for an angiogenic switch. Blood 116:2984–2993

    Article  CAS  Google Scholar 

  335. Osborne A, Sanderson J, Martin KR (2018) Neuroprotective effects of human mesenchymal stem cells and platelet-derived growth factor on human retinal ganglion cells. Stem Cells 36:65–78

    Article  CAS  Google Scholar 

  336. Mishra PJ et al (2008) Carcinoma-associated fibroblast–like differentiation of human mesenchymal stem cells. Can Res 68:4331–4339

    Article  CAS  Google Scholar 

  337. Mayer H et al (2005) Vascular endothelial growth factor (VEGF-A) expression in human mesenchymal stem cells: autocrine and paracrine role on osteoblastic and endothelial differentiation. J Cell Biochem 95:827–839. https://doi.org/10.1002/jcb.20462

    Article  CAS  PubMed  Google Scholar 

  338. Beckermann BM et al (2008) VEGF expression by mesenchymal stem cells contributes to angiogenesis in pancreatic carcinoma. Br J Cancer 99:622–631. https://doi.org/10.1038/sj.bjc.6604508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  339. Herrera MB et al (2007) Exogenous mesenchymal stem cells localize to the kidney by means of CD44 following acute tubular injury. Kidney Int 72:430–441. https://doi.org/10.1038/sj.ki.5002334

    Article  CAS  PubMed  Google Scholar 

  340. Popov C et al (2011) Integrins alpha2beta1 and alpha11beta1 regulate the survival of mesenchymal stem cells on collagen I. Cell Death Dis 2:e186. https://doi.org/10.1038/cddis.2011.71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  341. Frith JE, Mills RJ, Hudson JE, Cooper-White JJ (2012) Tailored integrin–extracellular matrix interactions to direct human mesenchymal stem cell differentiation. Stem Cells Dev 21:2442–2456

    Article  CAS  Google Scholar 

  342. Veevers-Lowe J, Ball SG, Shuttleworth A, Kielty CM (2011) Mesenchymal stem cell migration is regulated by fibronectin through α5β1-integrin-mediated activation of PDGFR-β and potentiation of growth factor signals. J Cell Sci 124:1288–1300

    Article  CAS  Google Scholar 

  343. Lüttichau IV et al (2005) Human adult CD34 progenitor cells functionally express the chemokine receptors CCR344, CCR344, CCR344, CXCR344, and CCR344 but not CXCR344. Stem cells and development 14:329–336

    Article  Google Scholar 

  344. Baek SJ, Kang SK, Ra JC (2011) In vitro migration capacity of human adipose tissue-derived mesenchymal stem cells reflects their expression of receptors for chemokines and growth factors. Exp Mol Med 43:596

    Article  CAS  Google Scholar 

  345. Jung Y et al (2013) Recruitment of mesenchymal stem cells into prostate tumours promotes metastasis. Nat Commun 4:1795

    Article  Google Scholar 

  346. Lu C, Li X-Y, Hu Y, Rowe RG, Weiss SJ (2010) MT1-MMP controls human mesenchymal stem cell trafficking and differentiation. Blood 115:221–229

    Article  CAS  Google Scholar 

  347. Egea V et al (2012) Tissue inhibitor of metalloproteinase-1 (TIMP-1) regulates mesenchymal stem cells through let-7f microRNA and Wnt/β-catenin signaling. Proc Natl Acad Sci 109:E309–E316

    Article  CAS  Google Scholar 

  348. Chelluboina B et al (2017) Mesenchymal stem cell treatment prevents post-stroke dysregulation of matrix metalloproteinases and tissue inhibitors of metalloproteinases. Cell Physiol Biochem 44:1360–1369

    Article  CAS  Google Scholar 

  349. Najar M et al (2009) Mesenchymal stromal cells promote or suppress the proliferation of T lymphocytes from cord blood and peripheral blood: the importance of low cell ratio and role of interleukin-6. Cytotherapy 11:570–583. https://doi.org/10.1080/14653240903079377

    Article  CAS  PubMed  Google Scholar 

  350. Beyth S et al (2005) Human mesenchymal stem cells alter antigen-presenting cell maturation and induce T-cell unresponsiveness. Blood 105:2214–2219. https://doi.org/10.1182/blood-2004-07-2921

    Article  CAS  PubMed  Google Scholar 

  351. Rasmusson I, Ringden O, Sundberg B, Le Blanc K (2005) Mesenchymal stem cells inhibit lymphocyte proliferation by mitogens and alloantigens by different mechanisms. Exp Cell Res 305:33–41. https://doi.org/10.1016/j.yexcr.2004.12.013

    Article  CAS  PubMed  Google Scholar 

  352. Nasef A et al (2008) Leukemia inhibitory factor: role in human mesenchymal stem cells mediated immunosuppression. Cell Immunol 253:16–22. https://doi.org/10.1016/j.cellimm.2008.06.002

    Article  CAS  PubMed  Google Scholar 

  353. Sotiropoulou PA, Perez SA, Gritzapis AD, Baxevanis CN, Papamichail M (2006) Interactions between human mesenchymal stem cells and natural killer cells. Stem cells 24:74–85

    Article  Google Scholar 

  354. Patel SA et al (2010) Mesenchymal stem cells protect breast cancer cells through regulatory T cells: role of mesenchymal stem cell-derived TGF-β. J Immunol 184:5885–5894

    Article  CAS  Google Scholar 

  355. Choi H, Lee RH, Bazhanov N, Oh JY, Prockop DJ (2011) Anti-inflammatory protein TSG-6 secreted by activated MSCs attenuates zymosan-induced mouse peritonitis by decreasing TLR2/NF-kappaB signaling in resident macrophages. Blood 118:330–338. https://doi.org/10.1182/blood-2010-12-327353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  356. Mougiakakos D et al (2011) The impact of inflammatory licensing on heme oxygenase-1-mediated induction of regulatory T cells by human mesenchymal stem cells. Blood 117:4826–4835. https://doi.org/10.1182/blood-2010-12-324038

    Article  CAS  PubMed  Google Scholar 

  357. Francois M, Romieu-Mourez R, Li M, Galipeau J (2012) Human MSC suppression correlates with cytokine induction of indoleamine 2,3-dioxygenase and bystander M2 macrophage differentiation. Mol Ther 20:187–195. https://doi.org/10.1038/mt.2011.189

    Article  CAS  PubMed  Google Scholar 

  358. Ren G et al (2009) Species variation in the mechanisms of mesenchymal stem cell-mediated immunosuppression. Stem Cells 27:1954–1962. https://doi.org/10.1002/stem.118

    Article  CAS  PubMed  Google Scholar 

  359. Spaggiari GM, Abdelrazik H, Becchetti F, Moretta L (2009) MSCs inhibit monocyte-derived DC maturation and function by selectively interfering with the generation of immature DCs: central role of MSC-derived prostaglandin E2. Blood 113:6576–6583. https://doi.org/10.1182/blood-2009-02-203943

    Article  CAS  PubMed  Google Scholar 

  360. Gieseke F et al (2010) Human multipotent mesenchymal stromal cells use galectin-1 to inhibit immune effector cells. Blood 116:3770–3779. https://doi.org/10.1182/blood-2010-02-270777

    Article  CAS  PubMed  Google Scholar 

  361. Lepelletier Y et al (2010) Galectin-1 and semaphorin-3A are two soluble factors conferring T-cell immunosuppression to bone marrow mesenchymal stem cell. Stem Cells Dev 19:1075–1079. https://doi.org/10.1089/scd.2009.0212

    Article  CAS  PubMed  Google Scholar 

  362. Espagnolle N, Balguerie A, Arnaud E, Sensebe L, Varin A (2017) CD54-mediated interaction with pro-inflammatory macrophages increases the immunosuppressive function of human mesenchymal stromal cells. Stem Cell Reports 8:961–976. https://doi.org/10.1016/j.stemcr.2017.02.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  363. Yang ZX et al (2013) CD106 identifies a subpopulation of mesenchymal stem cells with unique immunomodulatory properties. PLoS One 8:e59354. https://doi.org/10.1371/journal.pone.0059354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  364. Davies LC, Heldring N, Kadri N, Le Blanc K (2017) Mesenchymal stromal cell secretion of programmed death-1 ligands regulates T cell mediated immunosuppression. Stem Cells 35:766–776. https://doi.org/10.1002/stem.2509

    Article  CAS  PubMed  Google Scholar 

  365. Tipnis S, Viswanathan C, Majumdar AS (2010) Immunosuppressive properties of human umbilical cord-derived mesenchymal stem cells: role of B7-H1 and IDO. Immunol Cell Biol 88:795–806. https://doi.org/10.1038/icb.2010.47

    Article  PubMed  Google Scholar 

  366. Xue Q et al (2010) The negative co-signaling molecule b7-h4 is expressed by human bone marrow-derived mesenchymal stem cells and mediates its T-cell modulatory activity. Stem Cells Dev 19:27–38. https://doi.org/10.1089/scd.2009.0076

    Article  CAS  PubMed  Google Scholar 

  367. Gu YZ et al (2013) Different roles of PD-L1 and FasL in immunomodulation mediated by human placenta-derived mesenchymal stem cells. Hum Immunol 74:267–276. https://doi.org/10.1016/j.humimm.2012.12.011

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Support for research was provided by Suzuken Memorial Foundation (Japan) and the Japanese Society for the Promotion of Science (JSPS), Young B KAKENHI (Grant No. 17K15729) to A.N.

Author information

Authors and Affiliations

Authors

Contributions

AN and NS contributed to establishing the concept convoyed in the manuscript. AN wrote the manuscript and designed figures and tables. ME, BF, FD, NRF and NS contributed to the writing and editing of the manuscript. All authors reviewed the manuscript.

Corresponding author

Correspondence to Abderrahim Naji.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naji, A., Eitoku, M., Favier, B. et al. Biological functions of mesenchymal stem cells and clinical implications. Cell. Mol. Life Sci. 76, 3323–3348 (2019). https://doi.org/10.1007/s00018-019-03125-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-019-03125-1

Keywords

Navigation