Skip to main content
Log in

Spectroscopic and computational characterization of laccases and their substrate radical intermediates

  • Multi-author review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Laccases are multicopper oxidases which oxidize a wide variety of aromatic compounds with the concomitant reduction of oxygen to water as by-product. Due to their high stability and biochemical versatility, laccases are key enzymes to be used as eco-friendly biocatalyst in biotechnological applications. The presence of copper paramagnetic species in the catalytic site paired with the substrate radical species produced in the catalytic cycle makes laccases particularly attractive to be studied by spectroscopic approaches. In this review, the potentiality of a combined multifrequency electron paramagnetic spectroscopy /computational approach to gain information on the nature of the catalytic site and radical species is presented. The knowledge at molecular level of the enzyme oxidative process can be of great help to model new enzymes with increased efficiency and robustness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Yoshida H (1883) Chemistry of lacquer (urushi). Part I. J Chem Soc 43:472–486

    Article  CAS  Google Scholar 

  2. Mayer AM, Staples RC (2002) Laccase: new Functions for an old enzyme. Phytochemistry 60:551–565

    Article  CAS  PubMed  Google Scholar 

  3. Shumacovich G, Streltsov A, Gorshina E, Rusinova T, Kurova V, Vasil’eva I, Otrokhov G, Morozova O, Yaropolov A (2009) Laccase-catalyzed oxidative polymerization of aniline dimer (N-phenyl-1,4-phenylendiamine) in aqueous micellar solution of sodium dodecylbenzenesulfonate. J Mol Cat B Enzym 69:83–88

    Article  Google Scholar 

  4. Yaropolov AI, Skorobogat’ko OV, Vartanov SS, Varfolomeev SD (1994) Laccase: properties, catalytic mechanism and applicability. Appl Biochem Biotechnol 49:257–280

    Article  CAS  Google Scholar 

  5. Xu F (1996) Oxidation of phenols, anilines, and benzenethiols by fungal laccases: correlation between activity and redox potentials as well as halide inhibition. Biochemistry 35:7608–7614

    Article  CAS  PubMed  Google Scholar 

  6. Messerschmidt A (ed) (1997) Multi-copper oxidases. World Scientific Singapore, Singapore

  7. Gianfreda L, Xu F, Bollag JM (1999) Laccases: a useful group of oxidoreductive enzymes. Bioremediat J 3:1–26

    Article  CAS  Google Scholar 

  8. Marcus RA, Sutin N (1985) Electron transfer in chemistry and biology. Biochim Biophys Acta 811:265–322

    Article  CAS  Google Scholar 

  9. Xu F, Kulys JJ, Duke K, Li K, Krikstopaitis K, Deusse HJW, Abbate E, Galinyte V, Schneider P (2000) Redox chemistry in laccase-catalyzed oxidation of N-Hydroxy compounds. Appl Environ Microbiol 66:2052–2056

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Xu F, Shin W, Brown SH, Wahleithner JA, Sundaram UM, Solomon EI (1996) A study of a series of recombinant fungal laccases and bilirubin oxidase that exhibit significant differences in redox potential, substrate specificity and stability. Biochim Biophys Acta 1292:303–311

    Article  PubMed  Google Scholar 

  11. Mikolasch A, Schauer F (2009) Fungal laccases as tools for the synthesis of new hybrid molecules and biomaterials. Appl Microbiol Biotechnol 82:605–624

    Article  CAS  PubMed  Google Scholar 

  12. Baldrian P (2006) Fungal laccases—occurrence and properties. FEMS Microbial rev 30:215–224

    Article  CAS  Google Scholar 

  13. Piscitelli A, Del Vecchio C, Faraco V, Giardina P, Macellaro G, Miele A, Pezzella C, Sannia G (2011) Fungal laccases: versatile tools for lignocellulose transformation. C R Biol 334:789–794

    Article  CAS  PubMed  Google Scholar 

  14. Bourbonnais R, Paice MG (1990) Oxidation of non-phenolic substrates. An expanded role for laccase in lignin biodegradation. FEBS 267:99–102

    Article  CAS  Google Scholar 

  15. Polak J, Jarosz-Wilkolazka A (2012) Fungal Laccases as green catalysts for dye synthesis. Process Biochem 47:1295–1307

    Article  CAS  Google Scholar 

  16. Forte S, Polak J, Valensin D, Taddei M, Basosi R, Vanhulle S, Jarosz-Wilkolazka A, Pogni R (2010) Synthesis and structural characterization of a novel phenoxazinone dye by use of a fungal laccase. J Mol Catal B Enzym 63:116–120

    Article  CAS  Google Scholar 

  17. Bruyneel F, Basosi R, Bols CM, Enaud E, Hercher C, Jager IJ, Marchand-Brynaert J, Pogni R, Polak J, Jarosz A, Wilkolaska A, Vanhulle S, Phenoxazine dyes. US Patent 61/078670 (2008) and 12/498,666 (2009) and PCT PCT/EP2009/058640 (2009)

  18. Monti D, Ottolina G, Carrea G, Riva S (2011) Redox Chemistry catalyzed by isolated enzymes. Chem Rev 111:4111–4140

    Article  CAS  PubMed  Google Scholar 

  19. Wong DMS (2009) Structure and action mechanism of ligninolytic enzymes. Appl Biochem Biotechnol 157:174–209

    Article  CAS  PubMed  Google Scholar 

  20. Kosman DJJ (2010) Multicopper oxidases: a workshop on copper coordination chemistry, electron transfer, and metallophysiology. J Biol Inorg Chem 15:15–28

    Article  CAS  PubMed  Google Scholar 

  21. Reinhammar B (1984) In: Lontie R (ed) Copper proteins and copper enzymes. CRC Press, Boca Raton, p 1

    Google Scholar 

  22. Solomon EI, Sundaram UM, Machonkin TE (1996) Multicopper oxidases and oxygenases. Chem Rev 96:2563–2606

    Article  CAS  PubMed  Google Scholar 

  23. Solomon EI, Baldwin MJ, Lowery MD (1992) Electronic structures of active sites in copper proteins: contributions to reactivity. Chem Rev 92:521–542

    Article  CAS  Google Scholar 

  24. Piontek K, Antorini M, Choinowski T (2002) Crystal structure of a laccase from the fungus Trametes versicolor at 1.90-Å resolution containing a full complement of coppers. J Biol Chem 277:37663–37669

    Article  CAS  PubMed  Google Scholar 

  25. Cambria MT, Gullotto D, Garavaglia S, Cambria A (2012) In silico study of structural determinants modulating the redox potential of Rigidoporus lignosus and other fungal laccases. J Biomol Struct Dyn 30:89–101

    Article  CAS  PubMed  Google Scholar 

  26. Yoon J, Liboiron BD, Sarangi R, Hodgson KO, Hedman B, Solomon EI (2007) The two oxidized forms of the trinuclear Cu cluster in the multicopper oxidases and mechanism for the decay of the native intermediate. Proc Natl Acad Sci USA 104:13609–13614

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Ryde U, Hsiao Y-W, Rulíšek L, Solomon EI (2007) Identification of the peroxy adduct in multicopper oxidases by a combination of computational chemistry and extended x-ray absorption fine-structure measurements. J Am Chem Soc 129:726–727

    Article  CAS  PubMed  Google Scholar 

  28. Macellaro G, Baratto MC, Piscitelli A, Pezzella C, Fabrizi de Biani F, Palmese A, Piumi F, Record E, Basosi R, Sannia G (2014) Effective mutations in a high redox potential laccase from Pleurotus ostreatus. Appl Microbiol Biotechnol 98:4949–4961

    Article  CAS  PubMed  Google Scholar 

  29. Vänngård T (1972) In: Bolton JR, Swartz HM, Borg DC (eds) Biological applications of electron spin resonance. Wiley, New York, p 411

    Google Scholar 

  30. Hyde JS, Froncisz W (1982) Ann Rev Biophys Bioeng 11:391

    Article  CAS  Google Scholar 

  31. Basosi R, Antholine WE, Hyde JS (2004) Multifrequency ESR of copper: biophysical applications. In: Berliner LJ, Reuben J (eds) Biological magnetic resonance. Plenum Press, New York, pp 103–150

  32. Pogni R, Brogioni B, Baratto MC, Sinicropi A, Giardina P, Pezzella C, Sannia G, Basosi R (2007) Evidence for a radical mechanism in biocatalytic degradation of synthetic dyes by fungal laccases mediated by violuric acid. Biocatal Biotransform 25:269–275

    Article  CAS  Google Scholar 

  33. Martorana A, Vazquez-Duhalt R, Auila SA, Basosi R, Baratto MC (2014) Spectroscopic characterization of 2,6-dimethoxyphenol radical intermediates in the Coriolopsis gallica laccase-mediator system. J Mol Catal B Enzym 107:100–105

    Article  CAS  Google Scholar 

  34. Froncisz W, Hyde JS (1980) Broadening by strains of lines in the g-parallel region of Cu2+ EPR spectra. J Chem Phys 73:3123–3131

    Article  CAS  Google Scholar 

  35. Basosi R, Della Lunga G, Pogni R (2004) Copper biomolecules in solution. In: Eaton SS, Eaton GR, Berliner LJ (eds) Biomedical EPR-part A: free radicals, metals, medicine and physiology. Kluwer Academic/Plenum Publishers, New York, pp 385–416

  36. Antholine WE (2004) Low frequency EPR of Cu2+. In: Eaton SS, Eaton GR, Berliner LJ (eds) Biomedical EPR-part A: free radicals, metals, medicine and physiology. Kluwer Academic/Plenum Publishers, New York, pp 417–454

  37. De la Mora E, Lovett JE, Blanford CF, Garman EF, Valderrama B, Rudino-Pinera E (2012) Structural changes caused by radiation-induced reduction and radiolysis: the effect of X-ray absorbed dose in a fungal multicopper oxidase. Acta Cryst D68:564–577

    Google Scholar 

  38. Fernandes AT, Damas JM, Todorovic S, Huber R, Baratto MC, Pogni R, Soares CM, Martins LO (2010) The multicopper oxidase from the archaeon Pyrobaculum aerophilum shows nitrous oxide reductase activity. FEBS J 277:3176–3189

    Article  CAS  PubMed  Google Scholar 

  39. Baiocco P, Barreca AM, Fabbrini M, Galli C, Gentili P (2003) Promoting laccase activity towards non-phenolic substrates: a mechanistic investigation with some laccase-mediator systems. Org Biomol Chem 1:191–197

    Article  CAS  PubMed  Google Scholar 

  40. Fabbrini M, Galli C, Gentili P (2002) Radical or electron-transfer mechanism of oxidation with some laccase/mediator systems. J Mol Cat B Enzym 18:169–171

    Article  CAS  Google Scholar 

  41. Camarero S, Canas AI, Nousiainen P, Record E, Lomascolo A, Martinez MJ, Martinez AT (2008) p-Hydroxycinnamic acids as natural mediators for laccase oxidation of recalcitrant compounds. Environ Sci Technol 42:6703–6709

    Article  CAS  PubMed  Google Scholar 

  42. Torres Duarte C, Roman R, Tinoco R, Vazquez-Duhalt R (2009) Halogenated pesticide transformation by a laccase-mediator system. Chemosphere 77:687–692

    Article  CAS  PubMed  Google Scholar 

  43. Majcherczyk A, Johannes C, Hüttermann A (1998) Oxidation of polycyclic aromatic hydrocarbons (PAH) by laccase of Trametes versicolor. Enzyme Microbial Technol 22:335–341

    Article  CAS  Google Scholar 

  44. Johannes C, Majcherczyk A (2000) Natural mediators in the oxidation of polycyclic aromatic hydrocarbons by laccase mediator systems. Appl Environ Microbiol 66:524–528

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Camarero S, Ibarra D, Martinez MJ, Martinez AT (2005) Lignin-derived compounds as efficient laccase mediators for decolorization of different types of recalcitrant dyes. Appl Environ Microbiol 71:1775–1784

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Morozova OV, Shumakovich GP, Shleev SV, Yaropolov YI (2007) Laccase-mediator systems and their applications: a review. Appl Biochem Microbiol 43:523–535

    Article  CAS  Google Scholar 

  47. Brogioni B, Biglino D, Sinicropi A, Reijerse EJ, Giardina P, Sannia G, Lubitz W, Basosi R, Pogni R (2008) Characterization of radical intermediates in laccase-mediator systems. A multifrequency EPR, ENDOR and DFT/PCM investigation. Phys Chem Chem Phys 10:7284–7292

    Article  CAS  PubMed  Google Scholar 

  48. Martorana A, Bernini C, Valensin D, Sinicropi A, Pogni R, Basosi R (2011) Baratto MC (2011) Insights into the homocoupling reaction of 4-methylamino benzoic acid mediated by Trametes versicolor laccase. Mol Biosyst 7:2967–2969

    Article  CAS  PubMed  Google Scholar 

  49. Lopez J, Yamauchi J, Okada K, Deguchi Y (1984) ENDOR study of benzothiazolone azine cation radicals by means of a TM110 Mode Cavity. Bull Chem Soc Jpn 57:673–677

    Article  CAS  Google Scholar 

  50. Scott SL, Chen WJ, Bakac A, Espenson JH (1993) Spectroscopic parameters electrode potentials, acid ionization constants, and electron exchange rates of the 2,2′-azinobis(3-ethylbenzothiazolone-6-sulfonate) radicals and ions. J Phys Chem 97:6710–6714

  51. Kim HC, Mickel M, Hampp N (2003) Molecular origin of the stability of violuric acid radicals at high pH-values. Chem Phys Lett 371:410–416

    Article  CAS  Google Scholar 

  52. Schaftenaar G, Noordik JH (2000) Molden: a pre- and post-processing program for molecular and electronic structures. J Comput Aided Mol Des 14:123–134

    Article  CAS  PubMed  Google Scholar 

  53. Enguita FJ, Marcal D, Martins LO, Grenha R, Henriques AO, Lindley PF, Carrondo MA (2004) Substrate and dioxygen binding to the endospore coat laccase from Bacillus subtilis. J Biol Chem 279:23472–23476

    Article  CAS  PubMed  Google Scholar 

  54. D’Acunzo F, Galli C, Masci B (2003) First evidence of catalytic mediation by phenolic compounds in the laccase-induced oxidation of lignin models. Eur J Biochem 270:3634–3640

    Article  PubMed  Google Scholar 

  55. Gutiérrez A, Rencoret J, Ibarra D, Camarero S, Del Rio JC, Martinez AT (2007) Removal of lipophilic extractives from paper pulp by laccase and lignin-derived phenols as natural mediators. Environ Sci Technol 41:4124–4129

    Article  PubMed  Google Scholar 

  56. Cañas AI, Camarero S (2010) Laccases and their natural mediators: biotechnological tools for sustainable eco-friendly processes. Biotechnol Adv 28:694–705

    Article  PubMed  Google Scholar 

  57. Khlifi-Slama R, Mechichi T, Sayadi S, Dhouib A (2012) Effect of natural mediators on the stability of Trametes trogii laccase during the decolourization of textile wastewaters. J Microbiol 50:226–234

    Article  CAS  PubMed  Google Scholar 

  58. Torres-Duarte C, Aguila S, Vazquez-Duhalt R (2011) Syringaldehyde a true laccase mediator. Comments on the Letter to the Editor from Jeon, J-R., Kim, E-J. and Chang, Y-S. Chemosphere 85:1761–1762

  59. Pokhodenko VD, Khizhnyi VA, Bidzilya VA (1968) Stable Phenoxy-radicals. Russ Chem Rev 37:435–448

    Article  Google Scholar 

  60. Martorana A, Sorace L, Boer H, Vazquez-Duhalt R, Basosi R, Baratto MC (2013) A spectroscopic characterization of a phenolic natural mediator in the laccase biocatalytic reaction. J Mol Catal B 97:203–208

    Article  CAS  Google Scholar 

  61. Medina F, Aguila SA, Baratto MC, Martorana A, Basosi R, Alderete JB, Vazquez-Duhalt R (2013) Prediction model based on decision tree analysis for laccase mediators. Enzym Microbial Technol 52:68–76

    Article  CAS  Google Scholar 

  62. Marjasvaara A, Torvinen M, Kinnunen H, Vainiotalo P (2006) Laccase-catalyzed polymerization of two phenolic compounds studied by matrix-assisted laser desorption/ionization time-of-flight and electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry with collision-induced dissociation experiments. Biomacromolecules 7:1604–1609

    Article  CAS  PubMed  Google Scholar 

  63. Denisov ET, Khudyakov IV (1987) Mechanism of action and reactivities of the free radicals of inhibitors. Chem Rev 87:1313–1357

    Article  CAS  Google Scholar 

  64. Rochester CH, Rossall B (1967) Steric hindrance and acidity. Part I. The effect of 2,6-di-t-butyl substitution on the acidity of phenols in methanol. J Chem Soc B Phys Org 743–748

Download references

Acknowledgments

This work was supported by the PRIN 2009-STNWX3 project of the Italian Ministry of Education, Universities and Research (MIUR) and by the Eco-Innovation European Project BISCOL (ECO/09/256112). Careful reading and revising of the manuscript by Les Brooks, Chemistry Professor Emeritus, Sonoma State University, is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Riccardo Basosi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pogni, R., Baratto, M.C., Sinicropi, A. et al. Spectroscopic and computational characterization of laccases and their substrate radical intermediates. Cell. Mol. Life Sci. 72, 885–896 (2015). https://doi.org/10.1007/s00018-014-1825-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-014-1825-7

Keywords

Navigation