Skip to main content
Log in

Multicopper oxidases: a workshop on copper coordination chemistry, electron transfer, and metallophysiology

  • Minireview
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Multicopper oxidases (MCOs) are unique among copper proteins in that they contain at least one each of the three types of biologic copper sites, type 1, type 2, and the binuclear type 3. MCOs are descended from the family of small blue copper proteins (cupredoxins) that likely arose as a complement to the heme-iron-based cytochromes involved in electron transport; this event corresponded to the aerobiosis of the biosphere that resulted in the conversion of Fe(II) to Fe(III) as the predominant redox state of this essential metal and the solubilization of copper from Cu2S to Cu(H2O) n 2+. MCOs are encoded in genomes in all three kingdoms and play essential roles in the physiology of essentially all aerobes. With four redox-active copper centers, MCOs share with terminal copper-heme oxidases the ability to catalyze the four-electron reduction of O2 to two molecules of water. The electron transfers associated with this reaction are both outer and inner sphere in nature and their mechanisms have been fairly well established. A subset of MCO proteins exhibit specificity for Fe2+, Cu+, and/or Mn2+ as reducing substrates and have been designated as metallooxidases. These enzymes, in particular the ferroxidases found in all fungi and metazoans, play critical roles in the metal metabolism of the expressing organism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

Cp:

Ceruloplasmin

hCp:

Human ceruloplasmin

Hp:

Hephaestin

LUMO:

Lowest unoccupied molecular orbital

MCO:

Multicopper oxidase

NiR:

Nitrite reductase

SLAC:

Small laccase

T1:

Type 1

T2:

Type 2

T3:

Type 3

TNC:

Trinuclear cluster

References

  1. Murphy ME, Lindley PF, Adman ET (1997) Protein Sci 6:761–770

    Article  PubMed  CAS  Google Scholar 

  2. Nakamura K, Kawabata T, Yura K, Go N (2003) FEBS Lett 553:239–244

    Article  PubMed  CAS  Google Scholar 

  3. Nakamura K, Go N (2005) Cell Mol Life Sci 62:2050–2066

    Article  PubMed  CAS  Google Scholar 

  4. Hoegger PJ, Kilaru S, James TY, Thacker JR, Kues U (2006) FEBS J 273:2308–2326

    Article  PubMed  CAS  Google Scholar 

  5. Ellis MJ, Grossmann JG, Eady RR, Hasnain SS (2007) J Biol Inorg Chem 12:1119–1127

    Article  PubMed  CAS  Google Scholar 

  6. Solomon EI, Penfield KW, Gewirth AA, Lowery MD, Shadle SE, Guckert JA, LaCroix LB (1996) Inorg Chim Acta 243:67–78

    Article  CAS  Google Scholar 

  7. Palmer AE, Randall DW, Feng X, Solomon EI (1999) J Am Chem Soc 121:7138–7149

    Article  CAS  Google Scholar 

  8. Szilagyi RK, Solomon EI (2002) Curr Opin Chem Biol 6:250–258

    Article  PubMed  CAS  Google Scholar 

  9. Solomon EI, Szilagyi RK, DeBeer George S, Basumallick L (2004) Chem Rev 104:419–458

    Article  PubMed  CAS  Google Scholar 

  10. Sakurai T, Kataoka K (2007) Cell Mol Life Sci 64:2642–2656. doi:10.1007/s00018-007-7183-y

    Article  PubMed  CAS  Google Scholar 

  11. Malmstrom BG, Reinhammar B, Vanngard T (1968) Biochim Biophys Acta 156:67–76

    PubMed  CAS  Google Scholar 

  12. Malkin R, Malmstrom BG (1970) Adv Enzymol Relat Areas Mol Biol 33:177–244

    Article  PubMed  CAS  Google Scholar 

  13. Marcus RA, Sutin N (1985) Biochim Biophys Acta 811:265–322

    CAS  Google Scholar 

  14. Stoj CS, Augustine AJ, Zeigler L, Solomon EI, Kosman DJ (2006) Biochemistry 45:12741–12749

    Article  PubMed  CAS  Google Scholar 

  15. Quintanar L, Stoj C, Taylor AB, Hart PJ, Kosman DJ, Solomon EI (2007) Acc Chem Res 40:445–452. doi:10.1021/ar600051a

    Article  PubMed  CAS  Google Scholar 

  16. Kosman DJ (2008) Inorg Chim Acta 361:844–849. doi:10.1016/j.ica.2007.10.013

    Article  CAS  Google Scholar 

  17. Solomon EI, Augustine AJ, Yoon J (2008) Dalton Trans 3921–3932. doi:10.1039/b800799c

  18. Tadesse MA, D’Annibale A, Galli C, Gentili P, Sergi F (2008) Org Biomol Chem 6:868–878. doi:10.1039/b716002j

    Article  PubMed  CAS  Google Scholar 

  19. Terzulli AJ, Kosman DJ (2009) J Biol Inorg Chem 14:315–325. doi:10.1007/s00775-008-0450-z

    Article  PubMed  CAS  Google Scholar 

  20. Rosenzweig AC, Sazinsky MH (2006) Curr Opin Struct Biol 16:729–735. doi:10.1016/j.sbi.2006.09.005

    Article  PubMed  CAS  Google Scholar 

  21. Yoon J, Solomon EI (2007) J Am Chem Soc 129:13127–13136. doi:10.1021/ja073947a

    Article  PubMed  CAS  Google Scholar 

  22. Quintanar L, Stoj C, Wang TP, Kosman DJ, Solomon EI (2005) Biochemistry 44:6081–6091

    Article  PubMed  CAS  Google Scholar 

  23. Yoon J, Solomon EI (2005) Inorg Chem 44:8076–8086. doi:10.1021/ic0507870

    Article  PubMed  CAS  Google Scholar 

  24. Augustine AJ, Quintanar L, Stoj CS, Kosman DJ, Solomon EI (2007) J Am Chem Soc 129:13118–13126. doi:10.1021/ja073905m

    Article  PubMed  CAS  Google Scholar 

  25. Kataoka K, Sugiyama R, Hirota S, Inoue M, Urata K, Minagawa Y, Seo D, Sakurai T (2009) J Biol Chem 284:14405–14413. doi:10.1074/jbc.M808468200

    Article  PubMed  CAS  Google Scholar 

  26. Ghosh S, Dey A, Sun Y, Scholes CP, Solomon EI (2009) J Am Chem Soc 131:277–288. doi:10.1021/ja806873e

    Article  PubMed  CAS  Google Scholar 

  27. Stoj CS, Kosman DJ (2005) In: King RB (ed) Encyclopedia of inorganic chemistry. Wiley, New York, pp 1134–1159

    Google Scholar 

  28. Taylor AB, Stoj CS, Ziegler L, Kosman DJ, Hart PJ (2005) Proc Natl Acad Sci USA 102:15459–15464

    Article  PubMed  CAS  Google Scholar 

  29. Thompson IA, Huber DM, Schulze DG (2006) Phytopathology 96:130–136. doi:10.1094/PHYTO-96-0130

    Article  PubMed  CAS  Google Scholar 

  30. Miyata N, Tani Y, Sakata M, Iwahori K (2007) J Biosci Bioeng 104:1–8. doi:10.1263/jbb.104.1

    Article  PubMed  CAS  Google Scholar 

  31. Ridge JP, Lin M, Larsen EI, Fegan M, McEwan AG, Sly LI (2007) Environ Microbiol 9:944–953

    Article  PubMed  CAS  Google Scholar 

  32. Dick GJ, Torpey JW, Beveridge TJ, Tebo BM (2008) Appl Environ Microbiol 74:1527–1534. doi:10.1128/AEM.01240-07

    Article  PubMed  CAS  Google Scholar 

  33. Djoko KY, Xiao Z, Wedd AG (2008) Chembiochem 9:1579–1582. doi:10.1002/cbic.200800100

    Article  PubMed  CAS  Google Scholar 

  34. Hall SJ, Hitchcock A, Butler CS, Kelly DJ (2008) J Bacteriol 190:8075–8085. doi:10.1128/JB.00821-08

    Article  PubMed  CAS  Google Scholar 

  35. Hellman NE, Gitlin JD (2002) Annu Rev Nutr 22:439–458

    Article  PubMed  CAS  Google Scholar 

  36. Miyajima H (2002) Intern Med 41:762–769

    Article  PubMed  CAS  Google Scholar 

  37. Petrak J, Vyoral D (2005) Int J Biochem Cell Biol 37:1173–1178. doi:10.1016/j.biocel.2004.12.007

    Article  PubMed  CAS  Google Scholar 

  38. Xu X, Pin S, Gathinji M, Fuchs R, Harris ZL (2004) Ann N Y Acad Sci 1012:299–305

    Article  PubMed  CAS  Google Scholar 

  39. Torsdottir G, Sveinbjornsdottir S, Kristinsson J, Snaedal J, Johannesson T (2006) J Neurol Sci 241:53–58. doi:10.1016/j.jns.2005.10.015

    Article  PubMed  CAS  Google Scholar 

  40. Madsen E, Gitlin JD (2007) Annu Rev Neurosci 30:317–337. doi:10.1146/annurev.neuro.30.051606.094232

    Article  PubMed  CAS  Google Scholar 

  41. Barnham KJ, Bush AI (2008) Curr Opin Chem Biol 12:222–228. doi:10.1016/j.cbpa.2008.02.019

    Article  PubMed  CAS  Google Scholar 

  42. di Patti MC, Maio N, Rizzo G, De Francesco G, Persichini T, Colasanti M, Polticelli F, Musci G (2009) J Biol Chem 284:4545–4554. doi:10.1074/jbc.M805688200

    Article  PubMed  CAS  Google Scholar 

  43. Jeong SY, Rathore KI, Schulz K, Ponka P, Arosio P, David S (2009) J Neurosci 29:610–619. doi:10.1523/JNEUROSCI.5443-08.2009

    Article  PubMed  CAS  Google Scholar 

  44. Adman ET (1991) Adv Protein Chem 42:145–197

    Article  PubMed  CAS  Google Scholar 

  45. DiSpirito AA, Taaffe LR, Lipscombe JD, Hooper AB (1985) Biochim Biophys Acta 827:320–326

    CAS  Google Scholar 

  46. Boulanger MJ, Murphy ME (2002) J Mol Biol 315:1111–1127. doi:10.1006/jmbi.2001.5251S0022283601952519

    Article  PubMed  CAS  Google Scholar 

  47. Machczynski MC, Vijgenboom E, Samyn B, Canters GW (2004) Protein Sci 13:2388–2397

    Article  PubMed  CAS  Google Scholar 

  48. Lawton TJ, Sayavedra-Soto LA, Arp DJ, Rosenzweig AC (2009) J Biol Chem 284:10174–10180. doi:10.1074/jbc.M900179200

    Article  PubMed  CAS  Google Scholar 

  49. Skalova T, Dohnalek J, Ostergaard LH, Ostergaard PR, Kolenko P, Duskova J, Stepankova A, Hasek J (2009) J Mol Biol 385:1165–1178. doi:10.1016/j.jmb.2008.11.024

    Article  PubMed  CAS  Google Scholar 

  50. Lindley PF, Card G, Zaitseva I, Zaitsev V, Reinhammar B, Selin-Lindgren E, Yoshida K (1997) J Biol Inorg Chem 2:454–463

    Article  CAS  Google Scholar 

  51. Zaitsev VN, Zaitseva I, Papiz M, Lindley PF (1999) J Biol Inorg Chem 4:579–587

    Article  PubMed  CAS  Google Scholar 

  52. Machonkin TE, Solomon EI (2000) J Am Chem Soc 122:12547–12560

    Article  CAS  Google Scholar 

  53. La Fontaine S, Quinn JM, Nakamoto SS, Page MD, Gohre V, Moseley JL, Kropat J, Merchant S (2002) Eukaryot Cell 1:736–757

    Article  PubMed  CAS  Google Scholar 

  54. Barrett ML, Harvey I, Sundararajan M, Surendran R, Hall JF, Ellis MJ, Hough MA, Strange RW, Hillier IH, Hasnain SS (2006) Biochemistry 45:2927–2939. doi:10.1021/bi052372w

    Article  PubMed  CAS  Google Scholar 

  55. Piontek K, Antorini M, Choinowski T (2002) J Biol Chem 277:37663–37669

    Article  PubMed  CAS  Google Scholar 

  56. Zaitseva I, Zaitsev V, Card G, Moshkov K, Bax B, Ralph A, Lindley P (1996) J Biol Inorg Chem 1:15–23

    Article  CAS  Google Scholar 

  57. Solomon EI (2006) Inorg Chem 45:8012–8025. doi:10.1021/ic060450d

    Article  PubMed  CAS  Google Scholar 

  58. Vallee BL, Williams RJ (1968) Proc Natl Acad Sci USA 59:498–505

    Article  PubMed  CAS  Google Scholar 

  59. Gray HB, Malmstrom BG, Williams RJ (2000) J Biol Inorg Chem 5:551–559

    Article  PubMed  CAS  Google Scholar 

  60. Betts JN, Beratan DN, Onuchic JN (1992) J Am Chem Soc 114:4043–4046

    Article  CAS  Google Scholar 

  61. Balaban IA, Onuchic JN (1996) J Chem Phys 100:11573–11580

    Article  Google Scholar 

  62. Bertrand T, Jolivalt C, Briozzo P, Caminade E, Joly N, Madzak C, Mougin C (2002) Biochemistry 41:7325–7333

    Article  PubMed  CAS  Google Scholar 

  63. Quintanar L, Gebhard M, Wang TP, Kosman DJ, Solomon EI (2004) J Am Chem Soc 126:6579–6589

    Article  PubMed  CAS  Google Scholar 

  64. Onuchic JN, Beratan DN, Winkler JR, Gray HB (1992) Annu Rev Biophys Biomol Struct 21:349–377

    Article  PubMed  CAS  Google Scholar 

  65. Augustine AJ, Kragh ME, Sarangi R, Fujii S, Liboiron BD, Stoj CS, Kosman DJ, Hodgson KO, Hedman B, Solomon EI (2008) Biochemistry 47:2036–2045. doi:10.1021/bi7020052

    Article  PubMed  CAS  Google Scholar 

  66. Rulisek L, Solomon EI, Ryde U (2005) Inorg Chem 44:5612–5628

    Article  PubMed  CAS  Google Scholar 

  67. Solomon EI, Chen P, Metz M, Lee SK, Palmer AE (2001) Angew Chem Int Ed 40:4570–4590

    Article  CAS  Google Scholar 

  68. Yoon J, Liboiron BD, Sarangi R, Hodgson KO, Hedman B, Solomon EI (2007) Proc Natl Acad Sci USA 104:13609–13614. doi:10.1073/pnas.0705137104

    Article  PubMed  CAS  Google Scholar 

  69. Francis CA, Tebo BM (2002) Appl Environ Microbiol 68:874–880

    Article  PubMed  CAS  Google Scholar 

  70. Grass G, Rensing C (2001) Biochem Biophys Res Commun 286:902–908

    Article  PubMed  CAS  Google Scholar 

  71. Lee SM, Grass G, Rensing C, Barrett SR, Yates CJ, Stoyanov JV, Brown NL (2002) Biochem Biophys Res Commun 295:616–620

    Article  PubMed  CAS  Google Scholar 

  72. Shi X, Stoj C, Romeo A, Kosman DJ, Zhu Z (2003) J Biol Chem 278:50309–50315

    Article  PubMed  CAS  Google Scholar 

  73. Stoj C, Kosman DJ (2003) FEBS Lett 554:422–426

    Article  PubMed  CAS  Google Scholar 

  74. Stoj CS, Augustine AJ, Solomon EI, Kosman DJ (2007) J Biol Chem 282:7862–7868. doi:10.1074/jbc.M609766200

    Article  PubMed  CAS  Google Scholar 

  75. Roberts SA, Weichsel A, Grass G, Thakali K, Hazzard JT, Tollin G, Rensing C, Montfort WR (2002) Proc Natl Acad Sci USA 99:2766–2771

    Article  PubMed  CAS  Google Scholar 

  76. Roberts SA, Wildner GF, Grass G, Weichsel A, Ambrus A, Rensing C, Montfort WR (2003) J Biol Chem 278:31958–31963

    Article  PubMed  CAS  Google Scholar 

  77. Singh SK, Grass G, Rensing C, Montfort WR (2004) J Bacteriol 186:7815–7817. doi:10.1128/JB.186.22.7815-7817.2004

    Article  PubMed  CAS  Google Scholar 

  78. Kataoka K, Komori H, Ueki Y, Konno Y, Kamitaka Y, Kurose S, Tsujimura S, Higuchi Y, Kano K, Seo D, Sakurai T (2007) J Mol Biol 373:141–152. doi:10.1016/j.jmb.2007.07.041

    Article  PubMed  CAS  Google Scholar 

  79. Jung WH, Sham A, White R, Kronstad JW (2006) PLoS Biol 4:e410. doi:10.1371/journal.pbio.0040410

    Article  PubMed  CAS  Google Scholar 

  80. Jung WH, Kronstad JW (2008) Cell Microbiol 10:277–284. doi:10.1111/j.1462-5822.2007.01077.x

    PubMed  CAS  Google Scholar 

  81. Jung WH, Sham A, Lian T, Singh A, Kosman DJ, Kronstad JW (2008) PLoS Pathog 4:e45. doi:10.1371/journal.ppat.0040045

    Article  PubMed  CAS  Google Scholar 

  82. Kwok EY, Kosman DJ (2006) Top Curr Genet 14:59–99

    Article  CAS  Google Scholar 

  83. Kwok EY, Severance S, Kosman DJ (2006) Biochemistry 45:6317–6327. doi:10.1021/bi052173c

    Article  PubMed  CAS  Google Scholar 

  84. Singh A, Severance S, Kaur N, Wiltsie W, Kosman DJ (2006) J Biol Chem 281:13355–13564

    Article  PubMed  CAS  Google Scholar 

  85. Tree JJ, Kidd SP, Jennings MP, McEwan AG (2005) Biochem Biophys Res Commun 328:1205–1210. doi:10.1016/j.bbrc.2005.01.084

    Article  PubMed  CAS  Google Scholar 

  86. Chidambaram MV, Barnes G, Frieden E (1983) FEBS Lett 159:137–140

    Article  PubMed  CAS  Google Scholar 

  87. Griffiths TA, Mauk AG, MacGillivray RT (2005) Biochemistry 44:14725–14731. doi:10.1021/bi051559k

    Article  PubMed  CAS  Google Scholar 

  88. Paz Y, Katz A, Pick U (2007) J Biol Chem 282:8658–8666. doi:10.1074/jbc.M609756200

    Article  PubMed  CAS  Google Scholar 

  89. Fisher M, Zamir A, Pick U (1998) J Biol Chem 273:17553–17558

    Article  PubMed  CAS  Google Scholar 

  90. Ganz T (2005) Cell Metab 1:155–157. doi:10.1016/j.cmet.2005.02.005

    Article  PubMed  CAS  Google Scholar 

  91. De Domenico I, Ward DM, di Patti MC, Jeong SY, David S, Musci G, Kaplan J (2007) EMBO J 26:2823–2831. doi:10.1038/sj.emboj.7601735

    Article  PubMed  CAS  Google Scholar 

  92. Anderson GJ, Frazer DM, McKie AT, Vulpe CD (2002) Blood Cells Mol Dis 29:367–375

    Article  PubMed  CAS  Google Scholar 

  93. Chen H, Attieh ZK, Su T, Syed BA, Gao H, Alaeddine RM, Fox TC, Usta J, Naylor CE, Evans RW, McKie AT, Anderson GJ, Vulpe CD (2004) Blood 103:3933–3939. doi:10.1182/blood-2003-09-31392003-09-3139

    Article  PubMed  CAS  Google Scholar 

  94. Crichton RR, Pierre JL (2001) Biometals 14:99–112

    Article  PubMed  CAS  Google Scholar 

  95. Pierre JL, Fontecave M, Crichton RR (2002) Biometals 15:341–346

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The author gratefully acknowledges the several members of his laboratory and his collaborators Edward Solomon and P. John Hart who have together assembled the experimental data that form the basis of our understanding of MCO proteins and their role in metal metabolism. The work in the Kosman laboratory was supported by NIH RO1 DK053820.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel J. Kosman.

Additional information

This article will be printed in the upcoming Journal of Biological Inorganic Chemistry special issue Cell Biology of Copper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kosman, D.J. Multicopper oxidases: a workshop on copper coordination chemistry, electron transfer, and metallophysiology. J Biol Inorg Chem 15, 15–28 (2010). https://doi.org/10.1007/s00775-009-0590-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-009-0590-9

Keywords

Navigation