Skip to main content

Advances in Deep Learning for the Detection of Alzheimer’s Disease Using MRI—A Review

  • Chapter
  • First Online:
Computational Intelligence in Healthcare Informatics

Part of the book series: Studies in Computational Intelligence ((SCI,volume 1132))

  • 88 Accesses

Abstract

Magnetic Resonance Imaging (MRI) has played a vital role in comprehending brain functionalities and is a clinical tool in diagnosing neuro disorders like Alzheimer’s Disease (AD), Parkinson’s disease, and schizophrenia. Concurrently, massive amounts of data are generated beyond the capability of traditional data processing techniques. Analyzing these complex, high-dimensional data needs intelligent algorithms. Deep Learning technology has demonstrated high capability accuracy in image processing, natural language processing, object detection, and drug discovery. It learns features from data using backpropagation and changes its internal parameters to finally segment and classify an object. Similarly, it depends on the dataset for constructing the model. Several datasets exist to cater to the neuroimaging community for research advancements. fMRI is a subset of MRI technology that holds much promise in identifying neuro disorders, and deep learning technology has assisted in solving these complicated systems. This chapter discusses the latest works in the field of deep learning-assisted MRI identification of AD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ol, O.: Canadian study of health and aging: study methods and prevalence of dementia. Can. Med. Assoc. J. 150(6), 899–913 (1994)

    Google Scholar 

  2. Braak, H., Braak, E.: Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 82(4), 239–259 (1991)

    Article  Google Scholar 

  3. Letham, B., Rudin, C., McCormick, T.H., Madigan, D.: Interpretable classifiers using rules and bayesian analysis: building a better stroke prediction model. Ann. Appl. Stat. 9(3), 1350–1371 (2015)

    Article  MathSciNet  Google Scholar 

  4. Guillozet, A.L., Mesulam, M.M., Smiley, J.F., Mash, D.C.: Butyrylcholinesterase in the life cycle of amyloid plaques. Ann. Neurol.: Official J. Am. Neurol. Assoc. Child Neurol. Soc. 42(6), 909–918 (1997)

    Google Scholar 

  5. Tanzi, R.E.: The genetics of Alzheimer disease. Cold Spring Harb. Perspect. Med. 2(10), 1–11 (2012)

    Article  Google Scholar 

  6. Munoz, D.G., Feldman, H.: Causes of Alzheimer’s disease. Can. Med. Assoc. J. 162(1), 65–72 (2000)

    Google Scholar 

  7. Drevets, W.C.: Neuroimaging studies of mood disorders. Biol. Psychiat. 48(8), 813–829 (2000)

    Article  Google Scholar 

  8. Blamire, A.M.: The technology of MRI-the next 10 years? Br. J. Radiol. 81(968), 601–617 (2008)

    Article  Google Scholar 

  9. Heeger, D.J., Ress, D.: What does fMRI tell us about neuronal activity? Nat. Rev. Neurosci. 3(2), 142–151 (2002)

    Article  Google Scholar 

  10. Kumari, N., Acharjya, D.P.: Data classification using rough set and bioinspired computing in healthcare applications-an extensive review. Multimedia Tools Appl. 82(9), 13479–13505 (2023)

    Article  Google Scholar 

  11. Acharjya, D.P., Ahmed, P.K.: A hybridized rough set and bat-inspired algorithm for knowledge inferencing in the diagnosis of chronic liver disease. Multimedia Tools Appl. 81(10), 13489–13512 (2022)

    Article  Google Scholar 

  12. Acharjya, D.P., Anitha, A.: A comparative study of statistical and rough computing models in predictive data analysis. Int. J. Ambient Comput. Intell. 8(2), 32–51 (2017)

    Article  Google Scholar 

  13. Acharjya, D.P., Rathi, R.: An extensive study of statistical, rough, and hybridized rough computing in bankruptcy prediction. Multimedia Tools Appl. 80(28–29), 35387–35413 (2021)

    Article  Google Scholar 

  14. Acharjya, D.P., Ahmed, N.S.S.: Tracing of online assaults in 5G networks using dominance based rough set and formal concept analysis. Peer-to-Peer Netw. Appl. 14(1), 349–374 (2021)

    Article  Google Scholar 

  15. Ahmed, N.S.S., Acharjya, D.P., Sanyal, S.: A framework for phishing attack identification using rough set and formal concept analysis. Int. J. Commun. Netw. Distrib. Syst. 18(2), 186–212 (2017)

    Google Scholar 

  16. Feldkamp, L.A., Puskorius, G.V.: A signal processing framework based on dynamic neural networks with application to problems in adaptation, filtering, and classification. Proc. IEEE 86(11), 2259–2277 (1998)

    Article  Google Scholar 

  17. Petrosian, A.A., Prokhorov, D.V., Lajara-Nanson, W., Schiffer, R.B.: Recurrent neural network-based approach for early recognition of Alzheimer’s disease in EEG. Clin. Neurophysiol. 112(8), 1378–1387 (2001)

    Article  Google Scholar 

  18. Sankari, Z., Adeli, H.: Probabilistic neural networks for diagnosis of Alzheimer’s disease using conventional and wavelet coherence. J. Neurosci. Methods 197(1), 165–170 (2011)

    Article  Google Scholar 

  19. Duraisamy, B., Shanmugam, J.V., Annamalai, J.: Alzheimer disease detection from structural MR images using FCM based weighted probabilistic neural network. Brain Imaging Behav. 13(1), 87–110 (2019)

    Article  Google Scholar 

  20. Mathew, N.A., Vivek, R.S., Anurenjan, P.R.: Early diagnosis of Alzheimer’s disease from MRI images using PNN. In: Proceedings of the IEEE International CET Conference on Control, Communication, and Computing, pp. 161–164 (2018)

    Google Scholar 

  21. Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: Proceedings of the IEEE International Conference on Engineering and Technology, pp. 1–6 (2017)

    Google Scholar 

  22. Farooq, A., Anwar, S., Awais, M., & Rehman, S.: A deep CNN based multi-class classification of Alzheimer’s disease using MRI. In: Proceedings of the IEEE International Conference on Imaging Systems and Techniques, pp. 1–6 (2017)

    Google Scholar 

  23. Feng, W., Halm-Lutterodt, N.V., Tang, H., Mecum, A., Mesregah, M.K., Ma, Y., Li, H., Zhang, F., Wu, Z., Yao, E., Guo, X.: Automated MRI-based deep learning model for detection of Alzheimer’s disease process. Int. J. Neural Syst. 30(06), 2050032 (2020)

    Article  Google Scholar 

  24. Khagi, B., Lee, C.G., Kwon, G.R.: Alzheimer’s disease classification from brain MRI based on transfer learning from CNN. In: Proceedings of the 11th IEEE Biomedical Engineering International Conference, pp. 1–4 (2018)

    Google Scholar 

  25. Wang, H.Z., Wang, G.B., Li, G.Q., Peng, J.C., Liu, Y.T.: Deep belief network based deterministic and probabilistic wind speed forecasting approach. Appl. Energy 182, 80–93 (2016)

    Article  Google Scholar 

  26. Faturrahman, M., Wasito, I., Hanifah, N., Mufidah, R.: Structural MRI classification for Alzheimer’s disease detection using deep belief network. In: Proceedings of the 11th IEEE International Conference on Information and Communication Technology and System, pp. 37–42 (2017)

    Google Scholar 

  27. McKhann, G.M., Knopman, D.S., Chertkow, H., Hyman, B.T., Jack, C.R., Jr., Kawas, C.H., Klunk, W.E., Koroshetz, W.J., Manly, J.J., Mayeux, R., Mohs, R.C., Morris, J.C., Rossor, M.N., Scheltens, P., Carrillo, M.C., Thies, B., Weintraub, S., Phelps, C.H.: The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s Dementia 7(3), 263–269 (2011)

    Article  Google Scholar 

  28. Dubois, B., Feldman, H.H., Jacova, C., Hampel, H., Molinuevo, J.L., Blennow, K., DeKosky, S.T., Gauthier, S., Selkoe, D., Bateman, R., Cappa, S., Crutch, S., Engelborghs, S., Frisoni, G.B., Fox, N.C., Galasko, D., Habert, M.O., Jicha, G.A., Nordberg, A., Pasquier, F., Rabinovici, G., Robert, P., Rowe, C., Salloway, S., Sarazin, M., Epelbaum, S., De Souza, L.C., Vellas, B., Visser, P.J., Schneider, L., Stern, Y., Scheltens, P., Cummings, J.L.: Advancing research diagnostic criteria for Alzheimer’s disease: the IWG-2 criteria. Lancet Neurol. 13(6), 614–629 (2014)

    Article  Google Scholar 

  29. Noor, M.B.T., Zenia, N.Z., Kaiser, M.S., Mamun, S.A., Mahmud, M.: Application of deep learning in detecting neurological disorders from magnetic resonance images: a survey on the detection of Alzheimer’s disease. Parkinson’s disease and schizophrenia. Brain Inf. 7(1), 1–21 (2020)

    Google Scholar 

  30. Petrosian, A.A., Prokhorov, D.V., Lajara-Nanson, W., Schiffer, R.B.: Recurrent neural network-based approach for early recognition of Alzheimer’s disease in EEG. Clin. Neurophysiol. 112(8), 1378–1387 (2001)

    Article  Google Scholar 

  31. Malone, I.B., Cash, D., Ridgway, G.R., MacManus, D.G., Ourselin, S., Fox, N.C., Schott, J.M.: MIRIAD-Public release of a multiple time point Alzheimer’s MR imaging dataset. Neuroimage 70, 33–36 (2013)

    Article  Google Scholar 

  32. Silva, I.R., Silva, G.S., de Souza, R.G., dos Santos, W.P., Fagundes, R.A.D.A.: Model based on deep feature extraction for diagnosis of Alzheimer’s disease. In: Proceedings of the IEEE International Joint Conference on Neural Networks, pp. 1–7 (2019)

    Google Scholar 

  33. Imperatori, C., Fabbricatore, M., Innamorati, M., Farina, B., Quintiliani, M.I., Lamis, D.A., Mazzucchi, E., Contardi, A., Vollono, C., Marca, G.D.: Evaluation of EEG activity and EEG power spectra in the general and population of patients with eating disorders: an eLORETA study. Brain Behav. 9(4), 703–716 (2015)

    Google Scholar 

  34. Guan, H., Wang, C., Tao, D.: MRI-based Alzheimer’s disease prediction via distilling the knowledge in multi-modal data. Neuroimage 244, 118586 (2021)

    Article  Google Scholar 

  35. Li, Y., Haber, A., Preuss, C., John, C., Uyar, A., Yang, H.S., Logsdon, B.A., Philip, V., Karuturi, R.K.M., Carter, G.W.: Transfer learning trained convolutional neural networks identify novel MRI biomarkers of Alzheimer’s disease progression. Alzheimer’s Dementia: Diagn., Assess. Disease Monitor. 13(1), e12140 (2021)

    Google Scholar 

  36. Litvak, V., Mattout, J., Kiebel, S., Phillips, C., Henson, R., Kilner, J., Barnes, G., Oostenve, R., Daunizeau, J., Flandin, G., Penny, W., Friston, K.: EEG and MEG data analysis in SPM8. Comput. Intell. Neurosci. 2011, 852961 (2011)

    Article  Google Scholar 

  37. Cox, R.W., Jesmanowicz, A.: Realtime 3D image registration for functional MRI. Magnet. Reson. Med.: Official J. Int. Soc. Magnet. Reson. Med. 42(6), 1014–1018 (1999)

    Google Scholar 

  38. Tang, Y., Hojatkashani, C., Dinov, I.D., Sun, B., Fan, L., Lin, X., Qi, H., Hua, X., Liu, S., Toga, A.W.: The construction of a Chinese MRI brain atlas: a morphometric comparison study between Chinese and Caucasian cohorts. Neuroimage 51(1), 33–41 (2010)

    Article  Google Scholar 

  39. Goebel, R.: BrainVoyager-past, present, future. Neuroimage 62(2), 748–756 (2012)

    Article  Google Scholar 

  40. Subramanian, L., Hindle, J.V., Johnston, S., Roberts, M.V., Husain, M., Goebel, R., Linden, D.: Real-time functional magnetic resonance imaging neurofeedback for treatment of Parkinson’s disease. J. Neurosci. 31(45), 16309–16317 (2011)

    Article  Google Scholar 

  41. Smith, S.M.: Fast robust automated brain extraction. Hum. Brain Mapp. 17(3), 143–155 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rashi Agarwal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hariharan, S., Agarwal, R. (2024). Advances in Deep Learning for the Detection of Alzheimer’s Disease Using MRI—A Review. In: Acharjya, D.P., Ma, K. (eds) Computational Intelligence in Healthcare Informatics. Studies in Computational Intelligence, vol 1132. Springer, Singapore. https://doi.org/10.1007/978-981-99-8853-2_22

Download citation

Publish with us

Policies and ethics