Skip to main content

Advertisement

Log in

Alzheimer disease detection from structural MR images using FCM based weighted probabilistic neural network

  • ORIGINAL RESEARCH
  • Published:
Brain Imaging and Behavior Aims and scope Submit manuscript

Abstract

An early intervention of Alzheimer’s disease (AD) is highly essential due to the fact that this neuro degenerative disease generates major life-threatening issues, especially memory loss among patients in society. Moreover, categorizing NC (Normal Control), MCI (Mild Cognitive Impairment) and AD early in course allows the patients to experience benefits from new treatments. Therefore, it is important to construct a reliable classification technique to discriminate the patients with or without AD from the bio medical imaging modality. Hence, we developed a novel FCM based Weighted Probabilistic Neural Network (FWPNN) classification algorithm and analyzed the brain images related to structural MRI modality for better discrimination of class labels. Initially our proposed framework begins with brain image normalization stage. In this stage, ROI regions related to Hippo-Campus (HC) and Posterior Cingulate Cortex (PCC) from the brain images are extracted using Automated Anatomical Labeling (AAL) method. Subsequently, nineteen highly relevant AD related features are selected through Multiple-criterion feature selection method. At last, our novel FWPNN classification algorithm is imposed to remove suspicious samples from the training data with an end goal to enhance the classification performance. This newly developed classification algorithm combines both the goodness of supervised and unsupervised learning techniques. The experimental validation is carried out with the ADNI subset and then to the Bordex-3 city dataset. Our proposed classification approach achieves an accuracy of about 98.63%, 95.4%, 96.4% in terms of classification with AD vs NC, MCI vs NC and AD vs MCI. The experimental results suggest that the removal of noisy samples from the training data can enhance the decision generation process of the expert systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Akgül, C. B., Ünay, D., & Ekin, A. (2009). Automated diagnosis of Alzheimer’s disease using image similarity and user feedback. In Proceedings of the ACM International Conference on Image and Video Retrieval, 1–34). ACM.

  • Amadasun, M., & King, R. (1989). Textural features corresponding to textural properties. IEEE Transactions on Systems, Man, and Cybernetics, 19(5), 1264–1274.

    Article  Google Scholar 

  • Bay, H., Ess, A., Tuytelaars, T., & Van Gool, L. (2008). Speeded-up robust features (SURF). Computer vision and image understanding, 110(3), pp. 346–359.

  • Bezdek, J. C., Ehrlich, R., & Full, W. (1984). FCM: the fuzzy c-means clustering algorithm. Computers & Geosciences, 10(2–3), 191–203.

    Article  Google Scholar 

  • Chandrashekar, G., & Sahin, F. (2014). A survey on feature selection methods. Computers & Electrical Engineering, 40(1), 16–28.

    Article  Google Scholar 

  • Chételat, G., Desgranges, B., Landeau, B., Mezenge, F., Poline, J. B., de La Sayette, V., … & Baron, J. C. (2007). Direct voxel-based comparison between grey matter hypometabolism and atrophy in Alzheimer’s disease. Brain, 131(1), 60–71.

    Article  PubMed  Google Scholar 

  • Chu, A., Sehgal, C. M., & Greenleaf, J. F. (1990). Use of gray value distribution of run lengths for texture analysis. Pattern Recognition Letters, 11(6), 415–419.

    Article  Google Scholar 

  • Chupin, M., Gérardin, E., Cuingnet, R., Boutet, C., Lemieux, L., Lehéricy, S., … & Colliot, O. (2009). Fully automatic hippocampus segmentation and classification in Alzheimer’s disease and mild cognitive impairment applied on data from ADNI. Hippocampus, 19(6), 579–587.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cocosco, C. A., Zijdenbos, A. P., & Evans, A. C. (2003). A fully automatic and robust brain MRI tissue classification method. Medical Image Analysis, 7(4), 513–527.

    Article  PubMed  Google Scholar 

  • Colliot, O., Chételat, G., Chupin, M., Desgranges, B., Magnin, B., Benali, H., … & Lehéricy, S. (2008). Discrimination between Alzheimer disease, mild cognitive impairment, and normal aging by using automated segmentation of the hippocampus. Radiology, 248(1), 194–201.

    Article  PubMed  Google Scholar 

  • Cuingnet, R., Gerardin, E., Tessieras, J., Auzias, G., Lehéricy, S., & Habert, M. O. … & Alzheimer’s Disease Neuroimaging Initiative. (2011). Automatic classification of patients with Alzheimer’s disease from structural MRI: a comparison of ten methods using the ADNI database. Neuroimage, 56(2), 766–781.

  • Dasarathy, B. V., & Holder, E. B. (1991). Image characterizations based on joint gray level—run length distributions. Pattern Recognition Letters, 12(8), 497–502.

    Article  Google Scholar 

  • Davatzikos, C., Fan, Y., Wu, X., Shen, D., & Resnick, S. M. (2008). Detection of prodromal Alzheimer’s disease via pattern classification of magnetic resonance imaging. Neurobiology of Aging, 29(4), 514–523.

    Article  PubMed  Google Scholar 

  • Dyer, C. R., & Rosenfeld, A. (1976). Fourier texture features- Suppression of aperture effects(Landsat geological terrain image power spectra). IEEE Transactions on Systems, Man, and Cybernetics, 6, 703–705.

    Google Scholar 

  • El-Dahshan, E. A., Salem, A. B. M., & Younis, T. H. (2009). A hybrid technique for automatic MRI brain images classification. Studia Univ. Babes-Bolyai, Informatica, 54(1), 55–67.

    Google Scholar 

  • El-Dahshan, E. S. A., Hosny, T., & Salem, A. B. M. (2010). Hybrid intelligent techniques for MRI brain images classification. Digital Signal Processing, 20(2), 433–441.

    Article  Google Scholar 

  • Fan, Y., Batmanghelich, N., Clark, C. M., & Davatzikos, C. & Alzheimer’s Disease Neuroimaging Initiative. (2008). Spatial patterns of brain atrophy in MCI patients, identified via high-dimensional pattern classification, predict subsequent cognitive decline. Neuroimage, 39(4), 1731–1743.

  • Frisoni, G. B., Testa, C., Sabattoli, F., Beltramello, A., Soininen, H., & Laakso, M. P. (2005). Structural correlates of early and late onset Alzheimer’s disease: voxel based morphometric study. Journal of Neurology, Neurosurgery & Psychiatry, 76(1), 112–114.

    Article  CAS  Google Scholar 

  • Galloway, M. M. (1975). Texture classification using gray level run length. Comput. Graph. Image Process, 4(2), 172–179.

    Article  Google Scholar 

  • Gerardin, E., Chételat, G., Chupin, M., Cuingnet, R., Desgranges, B., Kim, H. S., … & Eustache, F. (2009). Multidimensional classification of hippocampal shape features discriminates Alzheimer’s disease and mild cognitive impairment from normal aging. Neuroimage, 47(4), 1476–1486.

    Article  PubMed  Google Scholar 

  • Gonzalez, R. C., & Woods, R. E. Digital image processing using MATLAB (2nd edn.). Pearson Prentice Hall (Chap. 11), 2010.

  • Gutman, B., Wang, Y., Morra, J., Toga, A. W., & Thompson, P. M. (2009). Disease classification with hippocampal shape invariants. Hippocampus, 19(6), 572–578.

    Article  PubMed  PubMed Central  Google Scholar 

  • Haralick, R. M., & Shanmugam, K. (1973). Textural features for image classification. IEEE Transactions on Systems, Man, and Cybernetics, (6), 610–621.

  • Hu, M. K. (1962). Visual pattern recognition by moment invariants. IRE Transactions on Information Theory, 8(2), 179–187.

    Article  Google Scholar 

  • Kim, Y., Street, W. N., & Menczer, F. (2003). Feature selection in data mining. Data Mining: opportunities and Challenges, 3(9), 80–105.

    Article  Google Scholar 

  • Klöppel, S., Stonnington, C. M., Chu, C., Draganski, B., Scahill, R. I., Rohrer, J. D., & Frackowiak, R. S. (2008). Automatic classification of MR scans in Alzheimer’s disease. Brain, 131(3), 681–689.

    Article  PubMed  Google Scholar 

  • Kohavi, R. (1995). A study of cross-validation and bootstrap for accuracy estimation and model selection. Ijcai, 14(2) pp. 1137–1145).

    Google Scholar 

  • Kusy, M., & Kowalski, P. A. (2018). Weighted probabilistic neural network. Information Sciences, 430, 65–76.

    Article  Google Scholar 

  • Laws, K. I. (1980, July). Rapid texture identification. In” image proc. for missile guid.”. (Vol. 238, pp. 376–381).

  • Magnin, B., Mesrob, L., Kinkingnéhun, S., Pélégrini-Issac, M., Colliot, O., Sarazin, M., … & Benali, H. (2009). Support vector machine-based classification of Alzheimer’s disease from whole-brain anatomical MRI. Neuroradiology, 51(2), 73–83.

    Article  PubMed  Google Scholar 

  • Munteanu, C. R., Fernandez-Lozano, C., Abad, V. M., Fernández, S. P., Álvarez-Linera, J., Hernández-Tamames, J. A., & Pazos, A. (2015). Classification of mild cognitive impairment and Alzheimer’s disease with machine-learning techniques using 1 H magnetic resonance spectroscopy data. Expert Systems with Applications, 42(15), 6205–6214.

    Article  Google Scholar 

  • Nestor, P. J., Fryer, T. D., Ikeda, M., & Hodges, J. R. (2003). Retrosplenial cortex (BA 29/30) hypometabolism in mild cognitive impairment (prodromal Alzheimer’s disease). European Journal of Neuroscience, 18(9), 2663–2667.

    Article  CAS  PubMed  Google Scholar 

  • Pan, Y., Huang, W., Lin, Z., Zhu, W., Zhou, J., Wong, J., Ding, Z. (2015). Brain tumor grading based on neural networks and convolutional neural networks. Conference Proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. pp. 699–702. https://doi.org/10.1109/EMBC.2015.7318458.

  • Ridha, B. H., Barnes, J., van de Pol, L. A., Schott, J. M., Boyes, R. G., Siddique, M. M., … & Fox, N. C. (2007). Application of automated medial temporal lobe atrophy scale to Alzheimer disease. Archives of Neurology, 64(6), 849–854.

    Article  PubMed  Google Scholar 

  • Saad, N. M., Bakar, S. A. R. S. A., Muda, A. S., & Mokji, M. M. (2015). Review of brain lesion detection and classification using neuroimaging analysis techniques. Jurnal Teknologi, 74(6), 73–85.

    Google Scholar 

  • Shen, K. K., Fripp, J., Mériaudeau, F., Chételat, G., Salvado, O., & Bourgeat, P. & Alzheimer’s Disease Neuroimaging Initiative. (2012). Detecting global and local hippocampal shape changes in Alzheimer’s disease using statistical shape models. Neuroimage, 59(3), 2155–2166.

  • Srinivasan, G. N., & Shobha, G. (2008). Statistical texture analysis. In Proceedings of World Academy of Science, Engineering and Technology, 36, 1264–1269.

  • Stoitsis, J., Golemati, S., & Nikita, K. S. (2006). A modular software system to assist interpretation of medical images—Application to vascular ultrasound images. IEEE Transactions on Instrumentation and Measurement, 55(6), 1944–1952.

    Article  Google Scholar 

  • Studholme, C., Drapaca, C., Iordanova, B., & Cardenas, V. (2006). Deformation-based mapping of volume change from serial brain MRI in the presence of local tissue contrast change. IEEE Transactions on Medical Imaging, 25(5), 626–639.

    Article  PubMed  Google Scholar 

  • Tang, J., Alelyani, S., & Liu, H. (2014). Feature selection for classification: A review. Data Classification: Algorithms and Applications, p. 37.

  • Toews, M., Wells, W., Collins, D. L., & Arbel, T. (2010). Feature-based morphometry: discovering group-related anatomical patterns. NeuroImage, 49(3), 2318–2327.

    Article  PubMed  Google Scholar 

  • Toga, A. W., Thompson, P. M., Mega, M. S., Narr, K. L., & Blanton, R. E. (2001). Probabilistic approaches for atlasing normal and disease-specific brain variability. Anatomy and Embryology, 204(4), 267–282.

    Article  CAS  PubMed  Google Scholar 

  • Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, N., … & Joliot, M. (2002). Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage, 15(1), 273–289.

    Article  CAS  PubMed  Google Scholar 

  • Weszka, J. S., Dyer, C. R., & Rosenfeld, A. (1976). A comparative study of texture measures for terrain classification. IEEE Transactions on Systems, Man, and Cybernetics, (4), 269–285.

  • Wu, C. M., Chen, Y. C., & Hsieh, K. S. (1992). Texture features for classification of ultrasonic liver images. IEEE Transactions on Medical Imaging, 11(2), 141–152.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, D., Wang, Y., Zhou, L., Yuan, H., & Shen, D. & Alzheimer’s Disease Neuroimaging Initiative. (2011). Multimodal classification of Alzheimer’s disease and mild cognitive impairment. Neuroimage, 55(3), 856–867.

  • Zhang, Y., Dong, Z., Wu, L., & Wang, S. (2011). A hybrid method for MRI brain image classification. Expert Systems with Applications, 38(8), 10049–10053.

    Article  Google Scholar 

  • Zöllner, F. G., Emblem, K. E., & Schad, L. R. (2012). SVM-based glioma grading: optimization by feature reduction analysis. Zeitschrift Für Medizinische Physik, 22(3), 205–214.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baskar Duraisamy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duraisamy, B., Shanmugam, J.V. & Annamalai, J. Alzheimer disease detection from structural MR images using FCM based weighted probabilistic neural network. Brain Imaging and Behavior 13, 87–110 (2019). https://doi.org/10.1007/s11682-018-9831-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11682-018-9831-2

Keywords

Navigation