Skip to main content

Sirtuin Modulator: Design, Synthesis, and Biological Evaluation

  • Chapter
  • First Online:
Natural Product-based Synthetic Drug Molecules in Alzheimer's Disease

Abstract

A family of signalling proteins called sirtuins is involved in the control of metabolism. The sirtuin family of NAD+-dependent protein lysine deacylases controls a range of physiological processes, including stress reactions and energy metabolism. For ageing-related illnesses such type 2 diabetes, inflammatory diseases, gene repression, metabolic regulation, apoptosis and cell survival, DNA repair, and neurodegenerative disorders, the human sirtuin isoforms (1–7) are thought to be promising therapeutic targets. The search for small compounds that alter the activity of sirtuins is becoming more and more popular since it may have positive implications on treating human ailments. Here, we discussed the sirtuin synthesis, biological importance, potent and specific pharmacological sirtuin activators and inhibitors, isoforms, and the current status of sirtuin-targeted therapeutic research. The rationale behind continued medication development is based on the progressive understanding of the sirtuin modulation processes by such compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alcain FJ, Villalba JM (2009) Sirtuin activators. Expert Opin Ther Pat 19(4):403–414

    Article  CAS  PubMed  Google Scholar 

  • Alhazzazi TY, Kamarajan P, Joo N, Huang JY, Verdin E, D’Silva NJ, Kapila YL (2011) Sirtuin-3 (SIRT3), a novel potential therapeutic target for oral cancer. Cancer 117(8):1670–1678

    Article  CAS  PubMed  Google Scholar 

  • Alvarez R, Altucci L, Gronemeyer H, de Lera AR (2011) Epigenetic multiple modulators. Curr Top Med Chem 11(22):2749–2787

    Article  CAS  PubMed  Google Scholar 

  • Amirchaghmaghi M, Delavarian Z, Iranshahi M, Shakeri MT, Mosannen Mozafari P, Mohammadpour AH, Farazi F, Iranshahy M (2015) A randomized placebo-controlled double blind clinical trial of quercetin for treatment of oral lichen planus. J Dent Res Dent Clin Dent Prospects 9:23–28

    Article  PubMed  PubMed Central  Google Scholar 

  • An F, Wang S, Tian Q, Zhu D (2015) Effects of orientin and vitexin from Trollius chinensis on the growth and apoptosis of esophageal cancer EC-109 cells. Oncol Lett 10:2627–2633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anekonda TS, Reddy PH (2006) Neuronal protection by sirtuins in Alzheimer’s disease. J Neurochem 96(2):305–313

    Article  CAS  PubMed  Google Scholar 

  • Bae JS (2015) Inhibitory effect of orientin on secretory group IIA phospholipase A2. Inflammation 38:1631–1638

    Article  CAS  PubMed  Google Scholar 

  • Barger JL, Kayo T, Pugh TD, Prolla TA, Weindruch R (2008) Short-term consumption of a resveratrol-containing nutraceutical mixture mimics gene expression of long-term caloric restriction in mouse heart. Exp Gerontol 43(9):859–866

    Article  CAS  PubMed  Google Scholar 

  • Baur JA, Pearson KJ, Price NL, Jamieson HA, Lerin C, Kalra A, Prabhu VV, Allard JS, Lopez-Lluch G, Lewis K, Pistell PJ (2006) Resveratrol improves health and survival of mice on a high-calorie diet. Nature 444(7117):337–342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baur JA, Ungvari Z, Minor RK, Le Couteur DG, De Cabo R (2012) Are sirtuins viable targets for improving healthspan and lifespan? Nat Rev Drug Discov 11(6):443–461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bedalov A, Gatbonton T, Irvine WP, Gottschling DE, Simon JA (2001) Identification of a small molecule inhibitor of Sir2p. Proc Natl Acad Sci U S A 98(26):15113–15118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Biacsi R, Kumari D, Usdin K (2008) SIRT1 inhibition alleviates gene silencing in Fragile X mental retardation syndrome. PLoS Genet 4(3):e1000017

    Article  PubMed  PubMed Central  Google Scholar 

  • Bonda DJ, Lee HG, Camins A, Pallàs M, Casadesus G, Smith MA, Zhu X (2011) The sirtuin pathway in ageing and Alzheimer disease: mechanistic and therapeutic considerations. Lancet Neurol 10(3):275–279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boominathan SP, Sarangan G, Srikakulapu S, Rajesh S, Duraipandian C, Srikanth P, Jo L (2014) Antiviral activity of bioassay guided fractionation of Plumbago zeylanica roots against herpes simplex virus type 2. World J Pharm Sci 3:1003–1017

    Google Scholar 

  • Carafa V, Rotili D, Forgione M, Cuomo F, Serretiello E, Hailu GS, Jarho E, Lahtela-Kakkonen M, Mai A, Altucci L (2016) Sirtuin functions and modulation: from chemistry to the clinic. Clin Epigenetics 8:1–21

    Article  Google Scholar 

  • Chen J, Liu Q, Zeng L, Huang X (2020) Protein acetylation/deacetylation: a potential strategy for fungal infection control. Front Microbiol 11:574736

    Article  PubMed  PubMed Central  Google Scholar 

  • Cohen HY, Miller C, Bitterman KJ, Wall NR, Hekking B, Kessler B, Howitz KT, Gorospe M, de Cabo R, Sinclair DA (2004) Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase. Science 305(5682):390–392

    Article  CAS  PubMed  Google Scholar 

  • Currais A, Prior M, Dargusch R, Armando A, Ehren J, Schubert D, Quehenberger O, Maher P (2014) Modulation of p25 and inflammatory pathways by fisetin maintains cognitive function in Alzheimer’s disease transgenic mice. Aging Cell 13:379–390

    Article  CAS  PubMed  Google Scholar 

  • Dai H, Sinclair DA, Ellis JL, Steegborn C (2018) Sirtuin activators and inhibitors: promises, achievements, and challenges. Pharmacol Ther 188:140–154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dali-Youcef N, Lagouge M, Froelich S, Koehl C, Schoonjans K, Auwerx J (2007) Sirtuins: the ‘magnificent seven’, function, metabolism and longevity. Ann Med 39(5):335–345. https://doi.org/10.1080/07853890701408194

    Article  CAS  PubMed  Google Scholar 

  • Feige JN, Lagouge M, Canto C, Strehle A, Houten SM, Milne JC, Lambert PD, Mataki C, Elliott PJ, Auwerx J (2008) Specific SIRT1 activation mimics low energy levels and protects against diet-induced metabolic disorders by enhancing fat oxidation. Cell Metab 8(5):347–358

    Article  CAS  PubMed  Google Scholar 

  • Ferry DR, Smith A, Malkhandi J, Fyfe DW, deTakats PG, Anderson D, Baker J, Kerr DJ (1996) Phase I clinical trial of the flavonoid quercetin: pharmacokinetics and evidence for in vivo tyrosine kinase inhibition. Clin Cancer Res 2:659–668

    CAS  PubMed  Google Scholar 

  • Fiorentino F, Castiello C, Mai A, Rotili D (2022a) Therapeutic potential and activity modulation of the protein lysine deacylase sirtuin 5. J Med Chem 65(14):9580–9606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fiorentino F, Mautone N, Menna M, D’Acunzo F, Mai A, Rotili D (2022b) Sirtuin modulators: past, present, and future perspectives. Future Med Chem 14(12):915–939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujitaka K, Otani H, Jo F, Jo H, Nomura E, Iwasaki M, Nishikawa M, Iwasaka T, Das DK (2011) Modified resveratrol Longevinex improves endothelial function in adults with metabolic syndrome receiving standard treatment. Nutr Res 31(11):842–847

    Article  CAS  PubMed  Google Scholar 

  • Giammona LM, Panuganti S, Kemper JM, Apostolidis PA, Lindsey S, Papoutsakis ET, Miller WM (2009) Mechanistic studies on the effects of nicotinamide on megakaryocytic polyploidization and the roles of NAD+ levels and SIRT inhibition. Exp Hematol 37(11):1340–1352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grozinger CM, Chao ED, Blackwell HE, Moazed D, Schreiber SL (2001) Identification of a class of small molecule inhibitors of the sirtuin family of NAD-dependent deacetylases by phenotypic screening. J Biol Chem 276(42):38837–38843

    Article  CAS  PubMed  Google Scholar 

  • Hamdy AA, Ibrahem MA (2010) Management of aphthous ulceration with topical quercetin: a randomized clinical trial. J Contemp Dent Pract 11:E009–E016

    Article  PubMed  Google Scholar 

  • He X, Nie H, Hong Y, Sheng C, Xia W, Ying W (2012) SIRT2 activity is required for the survival of C6 glioma cells. Biochem Biophys Res Commun 417(1):468–472

    Article  CAS  PubMed  Google Scholar 

  • Heinz SA, Henson DA, Austin MD, Jin F, Nieman DC (2010) Quercetin supplementation and upper respiratory tract infection: a randomized community clinical trial. Pharm Res 62:237–242

    Article  CAS  Google Scholar 

  • Heltweg B, Gatbonton T, Schuler AD, Posakony J, Li H, Goehle S, Kollipara R, DePinho RA, Gu Y, Simon JA, Bedalov A (2006) Antitumor activity of a small-molecule inhibitor of human silent information regulator 2 enzymes. Cancer Res 66(8):4368–4377

    Article  CAS  PubMed  Google Scholar 

  • Howitz KT, Bitterman KJ, Cohen HY, Lamming DW, Lavu S, Wood JG, Zipkin RE, Chung P, Kisielewski A, Zhang LL, Scherer B (2003) Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 425(6954):191–196

    Article  CAS  PubMed  Google Scholar 

  • Kershaw J, Kim K-H (2017) The therapeutic potential of piceatannol, a natural stilbene, in metabolic diseases: a review. J Med Food 20:427–438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan N, Syed DN, Ahmad N, Mukhtar H (2013) Fisetin: a dietary antioxidant for health promotion. Antioxid Redox Signal 19:151–162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kojima K, Ohhashi R, Fujita Y, Hamada N, Akao Y, Nozawa Y, Deguchi T, Ito M (2008) A role for SIRT1 in cell growth and chemoresistance in prostate cancer PC3 and DU145 cells. Biochem Biophys Res Commun 373(3):423–428

    Article  CAS  PubMed  Google Scholar 

  • Kwon GT, Jung JI, Song HR, Woo EY, Jun JG, Kim JK, Her S, Park JH (2012) Piceatannol inhibits migration and invasion of prostate cancer cells: possible mediation by decreased interleukin-6 signaling. J Nutr Biochem 23:228–238

    Article  CAS  PubMed  Google Scholar 

  • Lain S, Hollick JJ, Campbell J, Staples OD, Higgins M, Aoubala M, McCarthy A, Appleyard V, Murray KE, Baker L, Thompson A (2008) Discovery, in vivo activity, and mechanism of action of a small-molecule p53 activator. Cancer Cell 13(5):454–463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lall RK, Adhami VM, Mukhtar H (2016) Dietary flavonoid fisetin for cancer prevention and treatment. Mol Nutr Food Res 60:1396–1405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lam KY, Ling AP, Koh RY, Wong YP, Say YH (2016) A review on medicinal properties of orientin. Adv Pharm Sci 2016:4104595

    Google Scholar 

  • Landry J, Sutton A, Tafrov ST, Heller RC, Stebbins J, Pillus L, Sternglanz R (2000) The silencing protein SIR2 and its homologs are NAD-dependent protein deacetylases. Proc Natl Acad Sci U S A 97(11):5807–5811. https://doi.org/10.1073/pnas.110148297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lara E, Mai A, Calvanese V, Altucci L, Lopez-Nieva P, Martinez-Chantar ML, Varela-Rey M, Rotili D, Nebbioso A, Ropero S, Montoya G (2009) Salermide, a Sirtuin inhibitor with a strong cancer-specific proapoptotic effect. Oncogene 28(6):781–791

    Article  CAS  PubMed  Google Scholar 

  • Li YL, Ma SC, Yang YT, Ye SM, But PP (2002) Antiviral activities of flavonoids and organic acid from Trollius chinensis Bunge. J Ethnopharmacol 79:365–368

    Article  CAS  PubMed  Google Scholar 

  • Lin SJ, Defossez PA, Guarente L (2000) Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae. Science 289(5487):2126–2128

    Article  CAS  PubMed  Google Scholar 

  • Lin Q, Feng S, Cen Y, Yang Y, Wang L (2004) Study on the antibacterial and antiviral activity compositions of Trollium chinensis Bunge. J Zhejiang Univ (Sci Ed) 31:412–415

    CAS  Google Scholar 

  • Liszt G, Ford E, Kurtev M, Guarente L (2005) Mouse Sir2 homolog SIRT6 is a nuclear ADP-ribosyltransferase. J Biol Chem 280(22):21313–21320. https://doi.org/10.1074/jbc.m413296200

    Article  CAS  PubMed  Google Scholar 

  • Liu G, Su L, Hao X, Zhong N, Zhong D, Singhal S, Liu X (2012) Salermide up-regulates death receptor 5 expression through the ATF4-ATF3-CHOP axis and leads to apoptosis in human cancer cells. J Cell Mol Med 16(7):1618–1628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luthi-Carter R, Taylor DM, Pallos J, Lambert E, Amore A, Parker A, Moffitt H, Smith DL, Runne H, Gokce O, Kuhn A (2010) SIRT2 inhibition achieves neuroprotection by decreasing sterol biosynthesis. Proc Natl Acad Sci U S A 107(17):7927–7932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Magyar K, Halmosi R, Palfi A, Feher G, Czopf L, Fulop A, Battyany I, Sumegi B, Toth K, Szabados E (2012) Cardioprotection by resveratrol: a human clinical trial in patients with stable coronary artery disease. Clin Hemorheol Microcirc 50:179–187

    Article  CAS  PubMed  Google Scholar 

  • Maher P, Dargusch R, Ehren JL, Okada S, Sharma K, Schubert D (2011) Fisetin lowers methylglyoxal dependent protein glycation and limits the complications of diabetes. PLoS One 6:e21226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mai A, Massa S, Lavu S, Pezzi R, Simeoni S, Ragno R, Mariotti FR, Chiani F, Camilloni G, Sinclair DA (2005) Design, synthesis, and biological evaluation of sirtinol analogues as class III histone/protein deacetylase (Sirtuin) inhibitors. J Med Chem 48(24):7789–7795

    Article  CAS  PubMed  Google Scholar 

  • Mazloom Z, Abdollahzadeh SM, Dabbaghmanesh MH, Rezaianzadeh A (2014) The effect of quercetin supplementation on oxidative stress, glycemic control, lipid profile and insulin resistance in type 2 diabetes: a randomized clinical trial. J Health Sci Surveill Syst 2:8–14

    Google Scholar 

  • Mccarthy AR, Pirrie L, Hollick JJ, Ronseaux S et al (2012) Synthesis and biological characterisation of sirtuin inhibitors based on the tenovins. Bioorg Med Chem 20:1779–1793

    Article  CAS  PubMed  Google Scholar 

  • Medda F, Russell RJ, Higgins M, McCarthy AR, Campbell J, Slawin AM, Lane DP, Lain S, Westwood NJ (2009) Novel cambinol analogs as sirtuin inhibitors: synthesis, biological evaluation, and rationalization of activity. J Med Chem 52(9):2673–2682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mellini P, Valente S, Mai A (2015) Sirtuin modulators: an updated patent review (2012–2014). Expert Opin Ther Pat 25(1):5–15

    Article  CAS  PubMed  Google Scholar 

  • Messa GA, Piasecki M, Hurst J, Hill C, Tallis J, Degens H (2020) The impact of a high-fat diet in mice is dependent on duration and age, and differs between muscles. J Exp Biol 223(6):jeb217117

    Article  PubMed  PubMed Central  Google Scholar 

  • Miles SL, McFarland M, Niles RM (2014) Molecular and physiological actions of quercetin: need for clinical trials to assess its benefits in human disease. Nutr Rev 72:720–734

    Article  PubMed  Google Scholar 

  • Milne JC, Lambert PD, Schenk S, Carney DP, Smith JJ, Gagne DJ, Jin L, Boss O, Perni RB, Vu CB, Bemis JE (2007) Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes. Nature 450(7170):712–716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mirzayans R, Andrais B, Kumar P, Murray D (2017) Significance of wild-type p53 signaling in suppressing apoptosis in response to chemical genotoxic agents: impact on chemotherapy outcome. Int J Mol Sci 18(5):928

    Article  PubMed  PubMed Central  Google Scholar 

  • Mohamad Nasir NF, Zainuddin A, Shamsuddin S (2018) Emerging roles of Sirtuin 6 in Alzheimer’s disease. J Mol Neurosci 64:157–161

    Article  CAS  PubMed  Google Scholar 

  • Nagai S, Matsumoto C, Shibano M, Fujimori K (2018) Suppression of fatty acid and triglyceride synthesis by the flavonoid orientin through decrease of C/EBPδ expression and inhibition of PI3K/Akt-FOXO1 signaling in adipocytes. Nutrients 10:130

    Article  PubMed  PubMed Central  Google Scholar 

  • Nayak V, Devi PU (2005) Protection of mouse bone marrow against radiation-induced chromosome damage and stem cell death by the ocimum flavonoids orientin and vicenin. Radiat Res 163:165–171

    Article  CAS  PubMed  Google Scholar 

  • Nayak V, Uma P (2006) Antioxidant and radioprotective effects of ocimum flavonoids orientin and vicenin in Escherichia coli. Def Sci J 56:179

    Article  CAS  Google Scholar 

  • Neugebauer RC, Uchiechowska U, Meier R, Hruby H, Valkov V, Verdin E, Sippl W, Jung M (2008) Structure-activity studies on splitomicin derivatives as sirtuin inhibitors and computational prediction of binding mode. J Med Chem 51(5):1203–1213

    Article  CAS  PubMed  Google Scholar 

  • Nguyen AV, Martinez M, Stamos MJ, Moyer MP, Planutis K, Hope C, Holcombe RF (2009) Results of a phase I pilot clinical trial examining the effect of plant-derived resveratrol and grape powder on Wnt pathway target gene expression in colonic mucosa and colon cancer. Cancer Manag Res 1:25–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nie H, Chen H, Han J, Hong Y, Ma Y, Xia W, Ying W (2011) Silencing of SIRT2 induces cell death and a decrease in the intracellular ATP level of PC12 cells. Int J Physiol Pathophysiol Pharmacol 3(1):65

    CAS  PubMed  PubMed Central  Google Scholar 

  • Orecchia A, Scarponi C, Di Felice F, Cesarini E, Avitabile S, Mai A, Mauro ML, Sirri V, Zambruno G, Albanesi C, Camilloni G (2011) Sirtinol treatment reduces inflammation in human dermal microvascular endothelial cells. PLoS One 6(9):e24307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Outeiro TF, Kontopoulos E, Altmann SM, Kufareva I et al (2007) Sirtuin 2 inhibitors rescue alpha-synuclein-mediated toxicity in models of Parkinson’s disease. Science 317:516–519

    Article  CAS  PubMed  Google Scholar 

  • Outeiro TF, Marques O, Kazantsev A (2008) Therapeutic role of sirtuins in neurodegenerative disease. Biochim Biophys Acta Mol Basis Dis 1782(6):363–369

    Article  CAS  Google Scholar 

  • Pagans S, Pedal A, North BJ, Kaehlcke K, Marshall BL, Dorr A, Hetzer-Egger C, Henklein P, Frye R, McBurney MW, Hruby H (2005) SIRT1 regulates HIV transcription via Tat deacetylation. PLoS Biol 3(2):e41

    Article  PubMed  PubMed Central  Google Scholar 

  • Pasco MY, Rotili D, Altucci L, Farina F, Rouleau GA, Mai A, Neri C (2010) Characterization of sirtuin inhibitors in nematodes expressing a muscular dystrophy protein reveals muscle cell and behavioral protection by specific sirtinol analogues. J Med Chem 53(3):1407–1411

    Article  CAS  PubMed  Google Scholar 

  • Pearson KJ, Baur JA, Lewis KN, Peshkin L, Price NL, Labinskyy N, Swindell WR, Kamara D, Minor RK, Perez E, Jamieson HA (2008) Resveratrol delays age-related deterioration and mimics transcriptional aspects of dietary restriction without extending life span. Cell Metab 8(2):157–168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peck B, Chen CY, Ho KK, Di Fruscia P, Myatt SS, Coombes RC, Fuchter MJ, Hsiao CD, Lam EW (2010) SIRT inhibitors induce cell death and p53 acetylation through targeting both SIRT1 and SIRT2SIRT inhibitors target SIRT1/2 to activate p53. Mol Cancer Ther 9(4):844–855

    Article  CAS  PubMed  Google Scholar 

  • Perabo FG, Müller SC (2005) New agents in intravesical chemotherapy of superficial bladder cancer. Scand J Urol Nephrol 39(2):108–116

    Article  CAS  PubMed  Google Scholar 

  • Pereira CV, Lebiedzinska M, Wieckowski MR, Oliveira PJ (2012) Regulation and protection of mitochondrial physiology by sirtuins. Mitochondrion 12(1):66–76

    Article  CAS  PubMed  Google Scholar 

  • Poulsen MM, Vestergaard PF, Clasen BF, Radko Y, Christensen LP, Stødkilde-Jørgensen H, Møller N, Jessen N, Pedersen SB, Jørgensen JO (2013) High-dose resveratrol supplementation in obese men: an investigator-initiated, randomized, placebo-controlled clinical trial of substrate metabolism, insulin sensitivity, and body composition. Diabetes 62:1186–1195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rezvan N, Moini A, Janani L, Mohammad K, Saedisomeolia A, Nourbakhsh M, Gorgani-Firuzjaee S, Mazaherioun M, Hosseinzadeh-Attar MJ (2017) Effects of quercetin on adiponectin-mediated insulin sensitivity in polycystic ovary syndrome: a randomized placebo-controlled double-blind clinical trial. Horm Metab Res 49:115–121

    CAS  PubMed  Google Scholar 

  • Rimando AM, Nagmani R, Feller DR, Yokoyama W (2005) Pterostilbene, a new agonist for the peroxisome proliferator-activated receptor alpha-isoform, lowers plasma lipoproteins and cholesterol in hypercholesterolemic hamsters. J Agric Food Chem 53:3403–3407

    Article  CAS  PubMed  Google Scholar 

  • Rogina B, Helfand SL (2004) Sir2 mediates longevity in the fly through a pathway related to calorie restriction. Proc Natl Acad Sci U S A 101(45):15998–16003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sauve AA, Schramm VL (2003) Sir2 regulation by nicotinamide results from switching between base exchange and deacetylation chemistry. Biochemistry 42(31):9249–9256

    Article  CAS  PubMed  Google Scholar 

  • Schutkowski M, Fischer F, Roessler C, Steegborn C (2014) New assays and approaches for discovery and design of Sirtuin modulators. In: Expert opinion on drug discovery, vol 9(2). Informa UK Limited, pp 183–199. https://doi.org/10.1517/17460441.2014.875526

    Chapter  Google Scholar 

  • Serban M-C, Sahebkar A, Zanchetti A, Mikhailidis DP, Howard G, Antal D, Andrica F, Ahmed A, Aronow WS, Muntner P et al (2016) Effects of quercetin on blood pressure: a systematic review and meta-analysis of randomized controlled trials. J Am Heart Assoc 5:e002713

    Article  PubMed  PubMed Central  Google Scholar 

  • Smith JJ, Kenney RD, Gagne DJ, Frushour BP, Ladd W, Galonek HL, Israelian K, Song J, Razvadauskaite G, Lynch AV, Carney DP (2009) Small molecule activators of SIRT1 replicate signaling pathways triggered by calorie restriction in vivo. BMC Syst Biol 3(1):1–4

    Article  Google Scholar 

  • Sun A, Ren G, Deng C, Zhang J, Luo X, Wu X, Mani S, Dou W, Wang Z (2016) C-glycosyl flavonoidorientin improves chemically induced inflammatory bowel disease in mice. J Funct Foods 21:418–430

    Article  CAS  Google Scholar 

  • Syed DN, Adhami VM, Khan MI, Mukhtar H (2013) Inhibition of Akt/mTOR signaling by the dietary flavonoid fisetin. Anti Cancer Agents Med Chem 13:995–1001

    Article  CAS  Google Scholar 

  • Tang Y-L, Chan S-W (2014) A review of the pharmacological effects of piceatannol on cardiovascular diseases. Phytother Res 28:1581–1588

    Article  CAS  PubMed  Google Scholar 

  • Timmers S, Konings E, Bilet L, Houtkooper RH, van de Weijer T, Goossens GH, Hoeks J, van der Krieken S, Ryu D, Kersten S, Moonen-Kornips E (2011) Calorie restriction-like effects of 30 days of resveratrol supplementation on energy metabolism and metabolic profile in obese humans. Cell Metab 14(5):612–622

    Article  CAS  PubMed  Google Scholar 

  • Trapp J, Meier R, Hongwiset D, Kassack MU, Sippl W, Jung M (2007) Structure–activity studies on suramin analogues as inhibitors of NAD+-dependent histone deacetylases (sirtuins). ChemMedChem 2(10):1419–1431

    Article  CAS  PubMed  Google Scholar 

  • Tripathi R, Samadder T, Gupta S, Surolia A, Shaha C (2011) Anticancer activity of a combination of cisplatin and fisetin in embryonal carcinoma cells and xenograft tumors. Mol Cancer 10:255–268

    Article  CAS  Google Scholar 

  • Uma Devi P, Ganasoundari A, Rao BS, Srinivasan KK (1999) In vivo radioprotection by ocimum flavonoids: survival of mice. Radiat Res 151:74–78

    Article  CAS  PubMed  Google Scholar 

  • Valente S, Mellini P, Spallotta F, Carafa V, Nebbioso A, Polletta L, Carnevale I, Saladini S, Trisciuoglio D, Gabellini C, Tardugno M (2016) 1,4-Dihydropyridines active on the SIRT1/AMPK pathway ameliorate skin repair and mitochondrial function and exhibit inhibition of proliferation in cancer cells. J Med Chem 59(4):1471–1491

    Article  CAS  PubMed  Google Scholar 

  • Vang O, Ahmad N, Baile CA, Baur JA, Brown K, Csiszar A, Das DK, Delmas D, Gottfried C, Lin HY, Ma QY (2011) What is new for an old molecule? Systematic review and recommendations on the use of resveratrol. PLoS One 6(6):e19881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verdin E, Hirschey MD, Finley LW, Haigis MC (2010) Sirtuin regulation of mitochondria: energy production, apoptosis, and signaling. Trends Biochem Sci 35(12):669–675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Villalba JM, Alcaín FJ (2012) Sirtuin activators and inhibitors. Biofactors 38(5):349–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vion E, Page G, Bourdeaud E, Paccalin M, Guillard J, Rioux Bilan A (2018) Trans ε-viniferin is an amyloid-β disaggregating and anti-inflammatory drug in a mouse primary cellular model of Alzheimer’s disease. Mol Cell Neurosci 88:1–6

    Article  CAS  PubMed  Google Scholar 

  • Vu CB, Bemis JE, Disch JS, Ng PY, Nunes JJ, Milne JC, Carney DP, Lynch AV, Smith JJ, Lavu S, Lambert PD (2009) Discovery of imidazo [1, 2-b] thiazole derivatives as novel SIRT1 activators. J Med Chem 52(5):1275–1283

    Article  CAS  PubMed  Google Scholar 

  • Wątroba M, Szukiewicz D (2016) The role of sirtuins in aging and age-related diseases. Adv Med Sci 61(1):52–62

    Article  PubMed  Google Scholar 

  • Wong RH, Howe PR, Buckley JD, Coates AM, Kunz I, Berry NM (2011) Acute resveratrol supplementation improves flow-mediated dilatation in overweight/obese individuals with mildly elevated blood pressure. Nutr Metab Cardiovasc Dis 21(11):851–856

    Article  CAS  PubMed  Google Scholar 

  • Wood JG, Rogina B, Lavu S, Howitz K, Helfand SL, Tatar M, Sinclair D (2004) Sirtuin activators mimic caloric restriction and delay ageing in metazoans. Nature 430(7000):686–689

    Article  CAS  PubMed  Google Scholar 

  • Yáñez M, Fraiz N, Cano E, Orallo F (2006) (−)-Trans-epsilon-viniferin, a polyphenol present in wines, is an inhibitor of noradrenaline and 5-hydroxytryptamine uptake and of monoamine oxidase activity. Eur J Pharmacol 542:54–60

    Article  PubMed  Google Scholar 

  • Yeong KY, Berdigaliyev N, Chang Y (2020) Sirtuins and their implications in neurodegenerative diseases from a drug discovery perspective. ACS Chem Neurosci 11(24):4073–4091

    Article  CAS  PubMed  Google Scholar 

  • Yoo H, Ku SK, Lee T, Bae JS (2014) Orientin inhibits HMGB1-induced inflammatory responses in HUVECs and in murine polymicrobial sepsis. Inflammation 37:1705–1717

    Article  CAS  PubMed  Google Scholar 

  • Yousefzadeh MJ, Zhu YI, McGowan SJ, Angelini L, Fuhrmann-Stroissnigg H, Xu M, Ling YY, Melos KI, Pirtskhalava T, Inman CL, McGuckian C (2018) Fisetin is a senotherapeutic that extends health and lifespan. EBioMedicine 36:18–28

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu B, Jiang Y, Zhang B, Yang H, Ma T (2018) Resveratrol dimer trans-ε-viniferin prevents rotaviral diarrhea in mice by inhibition of the intestinal calcium-activated chloride channel. Pharm Res 129:453–461

    Article  CAS  Google Scholar 

  • Yuan Z-P, Chen L-J, Fan L-Y, Tang M-H, Yang G-L, Yang H-S, Du X-B, Wang G-Q, Yao W-X, Zhao Q-M et al (2006) Liposomal quercetin efficiently suppresses growth of solid tumors in murine models. Clin Cancer Res 12:3193–3199

    Article  CAS  PubMed  Google Scholar 

  • Yuan H, Wang Z, Li L, Zhang H, Modi H, Horne D, Bhatia R, Chen W (2012) Activation of stress response gene SIRT1 by BCR-ABL promotes leukemogenesis. Blood 119(8):1904–1914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zahedi M, Ghiasvand R, Feizi A, Asgari G, Darvish L (2013) Does quercetin improve cardiovascular risk factors and inflammatory biomarkers in women with type 2 diabetes: a double-blind randomized controlled clinical trial. Int J Prev Med 4:777–785

    PubMed  PubMed Central  Google Scholar 

  • Zhao H, Ma T, Fan B, Yang L, Han C, Luo J, Kong L (2016) Protective effect of trans-δ-viniferin against high glucose-induced oxidative stress in human umbilical vein endothelial cells through the SIRT1 pathway. Free Radic Res 50:68–83

    Article  CAS  PubMed  Google Scholar 

  • Zhu Y, Doornebal EJ, Pirtskhalava T, Giorgadze N, Wentworth M, Fuhrmann-Stroissnigg H, Niedernhofer LJ, Robbins PD, Tchkonia T, Kirkland JL (2017) New agents that target senescent cells: the flavone, fisetin, and the BCL-X(L) inhibitors, A1331852 and A1155463. Aging (Albany NY) 9:955–963

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kori, S.K. et al. (2023). Sirtuin Modulator: Design, Synthesis, and Biological Evaluation. In: Sharma, A., Modi, G.P. (eds) Natural Product-based Synthetic Drug Molecules in Alzheimer's Disease. Springer, Singapore. https://doi.org/10.1007/978-981-99-6038-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-6038-5_15

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-6037-8

  • Online ISBN: 978-981-99-6038-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics