Skip to main content

Role of Phytomelatonin in Plant Tolerance Under Environmental Stress

  • Chapter
  • First Online:
Stress-responsive Factors and Molecular Farming in Medicinal Plants

Abstract

Phytomelatonin, a recently discovered unique novel plant growth regulator is widespread among plants with a broad range of phenotypic manifestations and plays several physio-morphological functions in plants. Though melatonin is derived from both animals and plants, it is manufactured inside the cell, especially in chloroplast and mitochondria from tryptophan amino acid. It is a versatile signaling molecule that potentially triggers a sequence of events required to reduce stress conditions in plants. It is an evolutionary conserved pleiotropic bioprotectant that promotes stress tolerance in plants by directly scavenging reactive oxygen species (ROS) or reactive nitrogen species (RNS) due to various physiochemical (heat, cold, water deficit, waterlogging, heavy metal, and several others) and biological (viral, bacterial, and fungal-mediated) environmental stresses. Along with this, phytomelatonin stimulates the free radical-antioxidant defense system, promotes the plant photosynthesis efficiency, enhances stomatal conductance, regulates genes related to stress resistance, and helps in protecting the plant from pathogenic infections by triggering the release of some stress-induced hormones such as jasmonic acid (JA), ethylene, salicylic acid (SA), etc. It induces transcription of genes associated with various physio-morphological processes including rooting, seedling germination, fruit ripening, senescence, and circadian rhythm. In this chapter, we have summarized the protective mechanism of phytomelatonin against diverse abiotic and biotic stress along with its uses for enhancing plant stress resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aghdam MS, Fard JR (2017) Melatonin treatment attenuates postharvest decay and maintains nutritional quality of strawberry fruits (Fragaria ananassa cv. Selva) by enhancing GABA shunt activity. Food Chem 221:1650–1657

    Article  CAS  PubMed  Google Scholar 

  • Ahmad NS, Kareem SH, Mustafa KM, Ahmad DA (2017) Early screening of some Kurdistan wheat (Triticum aestivum L.) cultivars under drought stress. J Agric Sci 9(2):88–103

    Google Scholar 

  • Ahmad S, Kamran M, Ding R, Meng X, Wang H, Ahmad I, Fahad S, Han Q (2019) Exogenous melatonin confers drought stress by promoting plant growth, photosynthetic capacity and antioxidant defense system of maize seedlings. PeerJ 7:e7793

    Article  PubMed  PubMed Central  Google Scholar 

  • Alam MN, Wang Y, Chan Z (2018) Physiological and biochemical analyses reveal drought tolerance in cool-season tall fescue (Festuca arundinacea) turf grass with the application of melatonin. Crop Pasture Sci 69(10):1041–1049

    Article  CAS  Google Scholar 

  • Ali S, Gill RA, Shafique S, Ahmar S, Kamran M, Zhang N, Riaz M, Nawaz M, Fang R, Ali B, Zhou W (2022) Role of phytomelatonin responsive to metal stresses: an omics perspective and future scenario. Front Plant Sci 2022:3149

    Google Scholar 

  • Arnao MB, Hernández-Ruiz J (2015) Functions of melatonin in plants: a review. J Pineal Res 59(2):133–150

    Article  CAS  PubMed  Google Scholar 

  • Arnao MB, Hernández-Ruiz J (2019) Melatonin: a new plant hormone and/or a plant master regulator? Trends Plant Sci 24(1):38–48

    Article  CAS  PubMed  Google Scholar 

  • Back K, Tan DX, Reiter RJ (2016) Melatonin biosynthesis in plants: multiple pathways catalyze tryptophan to melatonin in the cytoplasm or chloroplasts. J Pineal Res 61(4):426–437

    Article  CAS  PubMed  Google Scholar 

  • Barand A, Nasibi F, Manouchehri Kalantari K, Moradi M (2020) The effects of foliar application of melatonin on some physiological and biochemical characteristics and expression of fatty acid desaturase gene in pistachio seedlings (Pistacia vera L.) under freezing stress. J Plant Interact 15(1):257–265

    Article  CAS  Google Scholar 

  • Bhardwaj R, Pareek S, Saravanan C, Yahia EM (2022) Contribution of pre-storage melatonin application to chilling tolerance of some mango fruit cultivars and relationship with polyamines metabolism and γ-aminobutyric acid shunt pathway. Environ Exp Bot 194:104691

    Article  CAS  Google Scholar 

  • Buttar ZA, Wu SN, Arnao MB, Wang C, Ullah I, Wang C (2020) Melatonin suppressed the heat stress-induced damage in wheat seedlings by modulating the antioxidant machinery. Plants. 9(7):809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Byeon Y, Back K (2014) Melatonin synthesis in rice seedlings in vivo is enhanced at high temperatures and under dark conditions due to increased serotonin N-acetyltransferase and N-acetylserotonin methyltransferase activities. J Pineal Res 56(2):189–195

    Article  CAS  PubMed  Google Scholar 

  • Byeon Y, Lee HJ, Lee HY, Back K (2016) Cloning and functional characterization of the Arabidopsis N-acetylserotonin O-methyltransferase responsible for melatonin synthesis. J Pineal Res 60(1):65–73

    Article  CAS  PubMed  Google Scholar 

  • Campos CN, Ávila RG, de Souza KR, Azevedo LM, Alves JD (2019) Melatonin reduces oxidative stress and promotes drought tolerance in young Coffea arabica L. plants. Agric Water Manag 211:37–47

    Article  Google Scholar 

  • Cen H, Wang T, Liu H, Tian D, Zhang Y (2020) Melatonin application improves salt tolerance of alfalfa (Medicago sativa L.) by enhancing antioxidant capacity. Plants 9(2):220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chamanara M, Rashidian A, Mehr SE, Dehpour AR, Shirkohi R, Akbarian R, Abdollahi A, Rezayat SM (2019) Melatonin ameliorates TNBS-induced colitis in rats through the melatonin receptors: involvement of TLR4/MyD88/NF-κB signalling pathway. Inflammopharmacology 27:361–371

    Article  CAS  PubMed  Google Scholar 

  • Chen Z, Xie Y, Gu Q, Zhao G, Zhang Y, Cui W, Xu S, Wang R, Shen W (2017) The AtrbohF-dependent regulation of ROS signaling is required for melatonin-induced salinity tolerance in Arabidopsis. Free Radic Biol Med 108:465–477

    Article  CAS  PubMed  Google Scholar 

  • Chen YE, Mao JJ, Sun LQ, Huang B, Ding CB, Gu Y, Liao JQ, Hu C, Zhang ZW, Yuan S, Yuan M (2018a) Exogenous melatonin enhances salt stress tolerance in maize seedlings by improving antioxidant and photosynthetic capacity. Physiol Plant 164(3):349–363

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Sun C, Laborda P, Zhao Y, Palmer I, Fu ZQ, Qiu J, Liu F (2018b) Melatonin treatment inhibits the growth of Xanthomonas oryzae pv. oryzae. Front Microbiol 9:2280

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen L, Wang MR, Li JW, Feng CH, Cui ZH, Zhao L, Wang QC (2019) Exogenous application of melatonin improves eradication of apple stem grooving virus from the infected in vitro shoots by shoot tip culture. Plant Pathol 68(5):997–1006

    Article  CAS  Google Scholar 

  • DaCosta M, Huang B (2007) Changes in antioxidant enzyme activities and lipid peroxidation for bentgrass species in response to drought stress. J Am Soc Hortic Sci 132(3):319–326

    Article  CAS  Google Scholar 

  • Dai L, Li J, Harmens H, Zheng X, Zhang C (2020) Melatonin enhances drought resistance by regulating leaf stomatal behaviour, root growth and catalase activity in two contrasting rapeseed (Brassica napus L.) genotypes. Plant Physiol Biochem 149:86–95

    Article  CAS  PubMed  Google Scholar 

  • de Azevedo Neto AD, Prisco JT, Enéas-Filho J, de Abreu CE, Gomes-Filho E (2006) Effect of salt stress on antioxidative enzymes and lipid peroxidation in leaves and roots of salt-tolerant and salt-sensitive maize genotypes. Environ Exp Bot 56(1):87–94

    Article  Google Scholar 

  • Elmahallawy EK, Jiménez-Aranda A, Martínez AS, Rodriguez-Granger J, Navarro-Alarcón M, Gutiérrez-Fernández J, Agil A (2014) Activity of melatonin against Leishmania infantum promastigotes by mitochondrial dependent pathway. Chem Biol Interact 220:84–93

    Article  CAS  PubMed  Google Scholar 

  • Fahad S, Bajwa AA, Nazir U, Anjum SA, Farooq A, Zohaib A, Sadia S, Nasim W, Adkins S, Saud S, Ihsan MZ (2017) Crop production under drought and heat stress: plant responses and management options. Front Plant Sci 2017:1147

    Article  Google Scholar 

  • Fu J, Wu Y, Miao Y, Xu Y, Zhao E, Wang J, Sun H, Liu Q, Xue Y, Xu Y, Hu T (2017) Improved cold tolerance in Elymus nutans by exogenous application of melatonin may involve ABA-dependent and ABA-independent pathways. Sci Rep 7(1):39865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao W, Zhang Y, Feng Z, Bai Q, He J, Wang Y (2018) Effects of melatonin on antioxidant capacity in naked oat seedlings under drought stress. Molecules 23(7):1580

    Article  PubMed  PubMed Central  Google Scholar 

  • Gao W, Feng Z, Bai Q, He J, Wang Y (2019) Melatonin-mediated regulation of growth and antioxidant capacity in salt-tolerant naked oat under salt stress. Int J Mol Sci 20(5):1176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghori NH, Ghori T, Hayat MQ, Imadi SR, Gul A, Altay V, Ozturk M (2019) Heavy metal stress and responses in plants. Int J Environ Sci Technol 16:1807–1828

    Article  CAS  Google Scholar 

  • Goh CH, Ko SM, Koh S, Kim YJ, Bae HJ (2012) Photosynthesis and environments: photoinhibition and repair mechanisms in plants. J Plant Biol 55:93–101

    Article  CAS  Google Scholar 

  • Griffiths H, Parry MA (2002) Plant responses to water stress. Ann Bot 89(7):801–802

    Article  PubMed  PubMed Central  Google Scholar 

  • Gu Q, Chen Z, Yu X, Cui W, Pan J, Zhao G, Xu S, Wang R, Shen W (2017) Melatonin confers plant tolerance against cadmium stress via the decrease of cadmium accumulation and reestablishment of microRNA-mediated redox homeostasis. Plant Sci 261:28–37

    Article  CAS  PubMed  Google Scholar 

  • Hasan MK, Ahammed GJ, Yin L, Shi K, Xia X, Zhou Y, Yu J, Zhou J (2015) Melatonin mitigates cadmium phytotoxicity through modulation of phytochelatins biosynthesis, vacuolar sequestration, and antioxidant potential in Solanum lycopersicum L. Front Plant Sci 6:601

    Article  PubMed  PubMed Central  Google Scholar 

  • Hernández IG, Gomez FJ, Cerutti S, Arana MV, Silva MF (2015) Melatonin in Arabidopsis thaliana acts as plant growth regulator at low concentrations and preserves seed viability at high concentrations. Plant Physiol Biochem 94:191–196

    Article  PubMed  Google Scholar 

  • Hu Z, Fu Q, Zheng J, Zhang A, Wang H (2020) Transcriptomic and metabolomic analyses reveal that melatonin promotes melon root development under copper stress by inhibiting jasmonic acid biosynthesis. Hortic Res 1:7

    Google Scholar 

  • Huang B, Chen YE, Zhao YQ, Ding CB, Liao JQ, Hu C, Zhou LJ, Zhang ZW, Yuan S, Yuan M (2019) Exogenous melatonin alleviates oxidative damages and protects photosystem II in maize seedlings under drought stress. Front Plant Sci 10:677

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang X, Tanveer M, Min Y, Shabala S (2022) Melatonin as a regulator of plant ionic homeostasis: implications for abiotic stress tolerance. J Exp Bot 73(17):5886–5902

    Article  PubMed  Google Scholar 

  • Imran M, Aaqil Khan M, Shahzad R, Bilal S, Khan M, Yun BW, Khan AL, Lee IJ (2021) Melatonin ameliorates thermotolerance in soybean seedling through balancing redox homeostasis and modulating antioxidant defense, phytohormones and polyamines biosynthesis. Molecules 26(17):5116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Isayenkov SV, Maathuis FJ (2019) Plant salinity stress: many unanswered questions remain. Front Plant Sci 10:80

    Article  PubMed  PubMed Central  Google Scholar 

  • Ismail AM, Heuer S, Thomson MJ, Wissuwa M (2007) Genetic and genomic approaches to develop rice germplasm for problem soils. Plant Mol Biol 65:547–570

    Article  CAS  PubMed  Google Scholar 

  • Jadhav PV, Kale PB, Moharil MP, Gawai DC, Dudhare MS, Munje SS, Nandanwar RS, Mane SS, Varghese P, Manjaya JG, Dani RG (2021) Genetic engineering of crop plants for salinity and drought stress tolerance: Being closer to the field. In: Abiotic stress tolerance mechanisms in plants. CRC Press, Boca Raton, pp 1–84

    Google Scholar 

  • Jahan MS, Shu S, Wang Y, Chen Z, He M, Tao M, Sun J, Guo S (2019) Melatonin alleviates heat-induced damage of tomato seedlings by balancing redox homeostasis and modulating polyamine and nitric oxide biosynthesis. BMC Plant Biol 19(1):1–6

    Article  CAS  Google Scholar 

  • Jasim AH, Al Timmen WA, Abid AS (2016) Effect of salt stress on plant growth and free endogenous hormones of primed radish (Raphanus sativus L.) seeds with salicylic acid. Int J Chem Tech Res 9(6):339–346

    Google Scholar 

  • Jogaiah S, Govind SR, Tran LS (2013) Systems biology-based approaches toward understanding drought tolerance in food crops. Crit Rev Biotechnol 33(1):23–39

    Article  PubMed  Google Scholar 

  • Kamiab F (2020) Exogenous melatonin mitigates the salinity damages and improves the growth of pistachio under salinity stress. J Plant Nutr 43(10):1468–1484

    Article  CAS  Google Scholar 

  • Kanwar MK, Yu J, Zhou J (2018) Phytomelatonin: recent advances and future prospects. J Pineal Res 65(4):e12526

    Article  PubMed  Google Scholar 

  • Ke Q, Ye J, Wang B, Ren J, Yin L, Deng X, Wang S (2018) Melatonin mitigates salt stress in wheat seedlings by modulating polyamine metabolism. J Plant Nutr 9:914

    Google Scholar 

  • Khakwani AA, Dennett MD, Munir M (2011) Drought tolerance screening of wheat varieties by inducing water stress conditions. Songklanakarin J Sci Technol 33(2):135

    Google Scholar 

  • Khan TA, Fariduddin Q, Nazir F, Saleem M (2020) Melatonin in business with abiotic stresses in plants. Physiol Mol Biol Plants 26:1931–1944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kobylińska A, Posmyk MM (2016) Melatonin restricts Pb-induced PCD by enhancing BI-1 expression in tobacco suspension cells. Biometals 29:1059–1074

    Article  PubMed  PubMed Central  Google Scholar 

  • Kong XM, Ge WY, Wei BD, Zhou Q, Zhou X, Zhao YB, Ji SJ (2020) Melatonin ameliorates chilling injury in green bell peppers during storage by regulating membrane lipid metabolism and antioxidant capacity. Postharvest Biol Technol 170:111315

    Article  CAS  Google Scholar 

  • Kumar A, Patel JS, Meena VS, Ramteke PW (2019) Plant growth-promoting rhizobacteria: strategies to improve abiotic stresses under sustainable agriculture. J Plant Nutr 42(11-12):1402–1415

    Article  CAS  Google Scholar 

  • Lee HY, Byeon Y, Back K (2014) Melatonin as a signal molecule triggering defense responses against pathogen attack in Arabidopsis and tobacco. J Pineal Res 57(3):262–268

    Article  CAS  PubMed  Google Scholar 

  • Lerner AB, Case JD, Takahashi Y (1960) Isolation of melatonin and 5-methoxyindole-3-acetic acid from bovine pineal glands. J Biol Chem 235(7):1992–1997

    Article  CAS  PubMed  Google Scholar 

  • Li C, Tan DX, Liang D, Chang C, Jia D, Ma F (2015) Melatonin mediates the regulation of ABA metabolism, free-radical scavenging, and stomatal behaviour in two Malus species under drought stress. J Exp Bot 66(3):669–680

    Article  CAS  PubMed  Google Scholar 

  • Li H, Dong Y, Chang J, He J, Chen H, Liu Q, Wei C, Ma J, Zhang Y, Yang J, Zhang X (2016) High-throughput microRNA and mRNA sequencing reveals that microRNAs may be involved in melatonin-mediated cold tolerance in Citrullus lanatus L. Front Plant Sci 7:1231

    PubMed  PubMed Central  Google Scholar 

  • Li J, Yang Y, Sun K, Chen Y, Chen X, Li X (2019a) Exogenous melatonin enhances cold, salt and drought stress tolerance by improving antioxidant defense in tea plant (Camellia sinensis (L.) O. Kuntze). Molecules 24(9):1826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Liu J, Zhu T, Zhao C, Li L, Chen M (2019b) The role of melatonin in salt stress responses. Int J Mol Sci 20(7):1735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Ahammed GJ, Zhang XN, Zhang L, Yan P, Zhang LP, Fu JY, Han WY (2021) Melatonin-mediated regulation of anthocyanin biosynthesis and antioxidant defense confer tolerance to arsenic stress in Camellia sinensis L. J Hazard Mater 403:123922

    Article  CAS  PubMed  Google Scholar 

  • Liang D, Gao F, Ni Z, Lin L, Deng Q, Tang Y, Wang X, Luo X, Xia H (2018) Melatonin improves heat tolerance in kiwifruit seedlings through promoting antioxidant enzymatic activity and glutathione S-transferase transcription. Molecules 23(3):584

    Article  PubMed  PubMed Central  Google Scholar 

  • Lin L, Li J, Chen F, Liao MA, Tang Y, Liang D, Xia H, Lai Y, Wang X, Chen C, Ren W (2018) Effects of melatonin on the growth and cadmium characteristics of Cyphomandra betacea seedlings. Environ Monit Assess 190:1–8

    Article  CAS  Google Scholar 

  • Ma X, Zhang J, Burgess P, Rossi S, Huang B (2018) Interactive effects of melatonin and cytokinin on alleviating drought-induced leaf senescence in creeping bentgrass (Agrostis stolonifera). Environ Exp Bot 145:1

    Article  CAS  Google Scholar 

  • Maggio A, Raimondi G, Martino A, De Pascale S (2007) Salt stress response in tomato beyond the salinity tolerance threshold. Environ Exp Bot 59(3):276–282

    Article  CAS  Google Scholar 

  • Maischak H, Zimmermann MR, Felle HH, Boland W, Mithöfer A (2010) Alamethicin-induced electrical long distance signaling in plants. Plant Signal Behav 5(8):988–990

    Article  PubMed  PubMed Central  Google Scholar 

  • Malik Z, Afzal S, Dawood M, Abbasi GH, Khan MI, Kamran M, Zhran M, Hayat MT, Aslam MN, Rafay M (2021) Exogenous melatonin mitigates chromium toxicity in maize seedlings by modulating antioxidant system and suppresses chromium uptake and oxidative stress. Environ Geochem Health 2:1–9

    Google Scholar 

  • Manchester LC, Coto-Montes A, Boga JA, Andersen LP, Zhou Z, Galano A, Vriend J, Tan DX, Reiter RJ (2015) Melatonin: an ancient molecule that makes oxygen metabolically tolerable. J Pineal Res 59(4):403–419

    Article  CAS  PubMed  Google Scholar 

  • Mandal MK, Suren H, Ward B, Boroujerdi A, Kousik C (2018) Differential roles of melatonin in plant-host resistance and pathogen suppression in cucurbits. J Pineal Res 65(3):e12505

    Article  PubMed  Google Scholar 

  • Mannino G, Gentile C, Ertani A, Serio G, Bertea CM (2021) Anthocyanins: biosynthesis, distribution, ecological role, and use of biostimulants to increase their content in plant foods—a review. Agriculture 11(3):212

    Article  CAS  Google Scholar 

  • Marta B, Szafrańska K, Posmyk MM (2016) Exogenous melatonin improves antioxidant defense in cucumber seeds (Cucumis sativus L.) germinated under chilling stress. Front Plant Sci 7:575

    Article  PubMed  PubMed Central  Google Scholar 

  • Meng JF, Xu TF, Wang ZZ, Fang YL, Xi ZM, Zhang ZW (2014) The ameliorative effects of exogenous melatonin on grape cuttings under water-deficient stress: antioxidant metabolites, leaf anatomy, and chloroplast morphology. J Pineal Res 57(2):200–212

    Article  CAS  PubMed  Google Scholar 

  • Moustafa-Farag M, Almoneafy A, Mahmoud A, Elkelish A, Arnao MB, Li L, Ai S (2019) Melatonin and its protective role against biotic stress impacts on plants. Biomolecules 10(1):54

    Article  PubMed  PubMed Central  Google Scholar 

  • Mukherjee S, David A, Yadav S, Baluška F, Bhatla SC (2014) Salt stress-induced seedling growth inhibition coincides with differential distribution of serotonin and melatonin in sunflower seedling roots and cotyledons. Physiol Plant 152(4):714–728

    Article  CAS  PubMed  Google Scholar 

  • Murch SJ, Erland LA (2021) A systematic review of melatonin in plants: an example of evolution of literature. Front Plant Sci 12:683047

    Article  PubMed  PubMed Central  Google Scholar 

  • Nawaz MA, Jiao Y, Chen C, Shireen F, Zheng Z, Imtiaz M, Bie Z, Huang Y (2018) Melatonin pretreatment improves vanadium stress tolerance of watermelon seedlings by reducing vanadium concentration in the leaves and regulating melatonin biosynthesis and antioxidant-related gene expression. J Plant Physiol 220:115–127

    Article  CAS  PubMed  Google Scholar 

  • Ni J, Wang Q, Shah FA, Liu W, Wang D, Huang S, Fu S, Wu L (2018) Exogenous melatonin confers cadmium tolerance by counterbalancing the hydrogen peroxide homeostasis in wheat seedlings. Molecules 23(4):799

    Article  PubMed  PubMed Central  Google Scholar 

  • Park HS, Kazerooni EA, Kang SM, Al-Sadi AM, Lee IJ (2021) Melatonin enhances the tolerance and recovery mechanisms in Brassica juncea (L.) Czern. under saline conditions. Front Plant Sci 12:593717

    Article  PubMed  PubMed Central  Google Scholar 

  • Posmyk MM, Kuran H, Marciniak K, Janas KM (2008) Presowing seed treatment with melatonin protects red cabbage seedlings against toxic copper ion concentrations. J Pineal Res 45(1):24–31

    Article  CAS  PubMed  Google Scholar 

  • Prakash V, Singh VP, Tripathi DK, Sharma S, Corpas FJ (2019) Crosstalk between nitric oxide (NO) and abscisic acid (ABA) signalling molecules in higher plants. Environ Exp Bot 161:41–49

    Article  CAS  Google Scholar 

  • Qian Y, Tan DX, Reiter RJ, Shi H (2015) Comparative metabolomic analysis highlights the involvement of sugars and glycerol in melatonin-mediated innate immunity against bacterial pathogen in Arabidopsis. Sci Rep 5(1):15815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rajendran K, Tester M, Roy SJ (2009) Quantifying the three main components of salinity tolerance in cereals. Plant Cell Environ 32(3):237–249

    Article  CAS  PubMed  Google Scholar 

  • Roy SJ, Negrão S, Tester M (2014) Salt resistant crop plants. Curr Opin Biotechnol 26:115–124

    Article  CAS  PubMed  Google Scholar 

  • Sadak MS, Abdalla AM, Abd Elhamid EM, Ezzo MI (2020) Role of melatonin in improving growth, yield quantity and quality of Moringa oleifera L. plant under drought stress. Bull Natl Res Cent 44(1):1–3

    Article  Google Scholar 

  • Saremba BM, Tymm FJ, Baethke K, Rheault MR, Sherif SM, Saxena PK, Murch SJ (2017) Plant signals during beetle (Scolytus multistriatus) feeding in American elm (Ulmus americana Planch). Plant Signal Behav 12(5):e1296997

    Article  PubMed  PubMed Central  Google Scholar 

  • Schubert S, Serraj R, Plies-Balzer E, Mengel K (1995) Effect of drought stress on growth, sugar concentrations and amino acid accumulation in N2-fixing alfalfa (Medicago sativa). J Plant Physiol 146(4):541–546

    Article  CAS  Google Scholar 

  • Shah AA, Ahmed S, Ali A, Yasin NA (2020) 2-Hydroxymelatonin mitigates cadmium stress in cucumis sativus seedlings: modulation of antioxidant enzymes and polyamines. Chemosphere 243:125308

    Article  CAS  PubMed  Google Scholar 

  • Shalata A, Tal M (1998) The effect of salt stress on lipid peroxidation and antioxidants in the leaf of the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennellii. Physiol Plant 104(2):169–174

    Article  CAS  Google Scholar 

  • Shannon MC (1997) Adaptation of plants to salinity. Adv Agron 60:75–120

    Article  Google Scholar 

  • Shi H, Jiang C, Ye T, Tan DX, Reiter RJ, Zhang H, Liu R, Chan Z (2015) Comparative physiological, metabolomic, and transcriptomic analyses reveal mechanisms of improved abiotic stress resistance in bermudagrass [Cynodon dactylon (L). Pers.] by exogenous melatonin. J Exp Bot 66(3):681–694

    Article  CAS  PubMed  Google Scholar 

  • Singh A, Banerjee A, Roychoudhury A (2022) Fluoride tolerance in rice is negatively regulated by the ‘stress-phytohormone’ abscisic acid (ABA), but promoted by ABA-antagonist growth regulators, melatonin, and gibberellic acid. Protoplasma 259(5):1331–1350

    Article  CAS  PubMed  Google Scholar 

  • Singh-sangwan NE, Abad Farooqi AH, Singh-Sangwan R (1994) Effect of drought stress on growth and essential oil metabolism in lemongrasses. New Phytol 128(1):173–179

    Article  CAS  PubMed  Google Scholar 

  • Sofy AR, Sofy MR, Hmed AA, Dawoud RA, Refaey EE, Mohamed HI, El-Dougdoug NK (2021) Molecular characterization of the Alfalfa mosaic virus infecting Solanum melongena in Egypt and the control of its deleterious effects with melatonin and salicylic acid. Plants 10(3):459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stoeva N, Kaymakanova M (2008) Effect of salt stress on the growth and photosynthesis rate of bean plants (Phaseolus vulgaris L.). J Cent Eur Agric 9(3):385–391

    Google Scholar 

  • Sun X, Xu L, Wang Y, Yu R, Zhu X, Luo X, Gong Y, Wang R, Limera C, Zhang K, Liu L (2015) Identification of novel and salt-responsive miRNAs to explore miRNA-mediated regulatory network of salt stress response in radish (Raphanus sativus L.). BMC Genomics 16(1):1–6

    Article  Google Scholar 

  • Sun Y, Liu Z, Lan G, Jiao C, Sun Y (2019) Effect of exogenous melatonin on resistance of cucumber to downy mildew. Sci Hortic 255:231–241

    Article  CAS  Google Scholar 

  • Sun C, Liu L, Wang L, Li B, Jin C, Lin X (2021) Melatonin: a master regulator of plant development and stress responses. J Integr Plant Biol 63(1):126–145

    Article  CAS  PubMed  Google Scholar 

  • Takahashi S, Murata N (2008) How do environmental stresses accelerate photoinhibition? Trends Plant Sci 13(4):178–182

    Article  CAS  PubMed  Google Scholar 

  • Tiwari RK, Lal MK, Kumar R, Mangal V, Altaf MA, Sharma S, Singh B, Kumar M (2021) Insight into melatonin-mediated response and signaling in the regulation of plant defense under biotic stress. Plant Mol Biol 16:1–5

    Google Scholar 

  • Turner NC, Wright GC, Siddique KH (2004) Adaptation of grain legumes (pulses) to water-limited environments. Adv Agron 71:193–131

    Article  Google Scholar 

  • Uchendu EE, Shukla MR, Reed BM, Saxena PK (2013) Melatonin enhances the recovery of cryopreserved shoot tips of American elm (Ulmus americana L.). J Pineal Res 55(4):435–442

    Article  CAS  PubMed  Google Scholar 

  • Vielma JR, Bonilla E, Chacín-Bonilla L, Mora M, Medina-Leendertz S, Bravo Y (2014) Effects of melatonin on oxidative stress, and resistance to bacterial, parasitic, and viral infections: a review. Acta Trop 137:31–38

    Article  CAS  PubMed  Google Scholar 

  • Wang LY, Liu JL, Wang WX, Sun Y (2016) Exogenous melatonin improves growth and photosynthetic capacity of cucumber under salinity-induced stress. Photosynthetica 54:19–27

    Article  Google Scholar 

  • Wang Y, Reiter RJ, Chan Z (2018) Phytomelatonin: a universal abiotic stress regulator. J Exp Bot 69(5):963–974

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Zhang H, Xie Q, Liu Y, Lv H, Bai R, Ma R, Li X, Zhang X, Guo YD, Zhang N (2020) SlSNAT interacts with HSP40, a molecular chaperone, to regulate melatonin biosynthesis and promote thermotolerance in tomato. Plant Cell Physiol 61(5):909–921

    Article  CAS  PubMed  Google Scholar 

  • Wang D, Chen Q, Chen W, Guo Q, Xia Y, Wang S, Jing D, Liang G (2021) Physiological and transcription analyses reveal the regulatory mechanism of melatonin in inducing drought resistance in loquat (Eriobotrya japonica Lindl.) seedlings. Environ Exp Bot 181:104291

    Article  CAS  Google Scholar 

  • Wei Y, Chang Y, Zeng H, Liu G, He C, Shi H (2018) RAV transcription factors are essential for disease resistance against cassava bacterial blight via activation of melatonin biosynthesis genes. J Pineal Res 64(1):e12454

    Article  Google Scholar 

  • Xiao S, Liu L, Wang H, Li D, Bai Z, Zhang Y, Sun H, Zhang K, Li C (2019) Exogenous melatonin accelerates seed germination in cotton (Gossypium hirsutum L.). PLoS One 14(6):e0216575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie Z, Wang J, Wang W, Wang Y, Xu J, Li Z, Zhao X, Fu B (2021) Integrated analysis of the transcriptome and metabolome revealed the molecular mechanisms underlying the enhanced salt tolerance of rice due to the application of exogenous melatonin. Front Plant Sci 11:618680

    Article  PubMed  PubMed Central  Google Scholar 

  • Yadav RS, Hash CT, Bidinger FR, Devos KM, Howarth CJ (2004) Genomic regions associated with grain yield and aspects of post-flowering drought tolerance in pearl millet across stress environments and tester background. Euphytica 136:265–277

    Article  CAS  Google Scholar 

  • Yang XL, Xu H, Li D, Gao X, Li TL, Wang R (2018) Effect of melatonin priming on photosynthetic capacity of tomato leaves under low-temperature stress. Photosynthetica 56(3):884–892

    Article  CAS  Google Scholar 

  • Yang WJ, Du YT, Zhou YB, Chen J, Xu ZS, Ma YZ, Chen M, Min DH (2019) Overexpression of TaCOMT improves melatonin production and enhances drought tolerance in transgenic Arabidopsis. Int J Mol Sci 20(3):652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yildirim ER, Turan ME, Donmez MF (2008) Mitigation of salt stress in radish (Raphanus sativus L.) by plant growth promoting rhizobacteria. Roumanian Biotechnol Lett 13:3933–3943

    Google Scholar 

  • Yin L, Wang P, Li M, Ke X, Li C, Liang D, Wu S, Ma X, Li C, Zou Y, Ma F (2013) Exogenous melatonin improves Malus resistance to Marssonina apple blotch. J Pineal Res 54(4):426–434

    Article  CAS  PubMed  Google Scholar 

  • Zhang N, Zhao B, Zhang HJ, Weeda S, Yang C, Yang ZC, Ren S, Guo YD (2013) Melatonin promotes water-stress tolerance, lateral root formation, and seed germination in cucumber (Cucumis sativus L.). J Pineal Res 54(1):15–23

    Article  CAS  PubMed  Google Scholar 

  • Zhang N, Sun Q, Zhang H, Cao Y, Weeda S, Ren S, Guo YD (2015) Roles of melatonin in abiotic stress resistance in plants. J Exp Bot 66(3):647–656

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, Zheng X, Reiter RJ, Feng S, Wang Y, Liu S, Jin L, Li Z, Datla R, Ren M (2017a) Melatonin attenuates potato late blight by disrupting cell growth, stress tolerance, fungicide susceptibility and homeostasis of gene expression in Phytophthora infestans. Front Plant Sci 8:1993

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Shi Y, Zhang X, Du H, Xu B, Huang B (2017b) Melatonin suppression of heat-induced leaf senescence involves changes in abscisic acid and cytokinin biosynthesis and signaling pathways in perennial ryegrass (Lolium perenne L.). Environ Exp Bot 138:36–45

    Article  CAS  Google Scholar 

  • Zhang Z, Hu Q, Liu Y, Cheng P, Cheng H, Liu W, Xing X, Guan Z, Fang W, Chen S, Jiang J (2019) Strigolactone represses the synthesis of melatonin, thereby inducing floral transition in Arabidopsis thaliana in an FLC-dependent manner. J Pineal Res 67(2):e12582

    Article  PubMed  Google Scholar 

  • Zhao Y, Qi LW, Wang WM, Saxena PK, Liu CZ (2011) Melatonin improves the survival of cryopreserved callus of Rhodiola crenulata. J Pineal Res 50(1):83–88

    Article  CAS  PubMed  Google Scholar 

  • Zhao H, Xu L, Su T, Jiang Y, Hu L, Ma F (2015) Melatonin regulates carbohydrate metabolism and defenses against Pseudomonas syringae pv. tomato DC 3000 infection in Arabidopsis thaliana. J Pineal Res 59(1):109–119

    Article  CAS  PubMed  Google Scholar 

  • Zhao L, Chen L, Gu P, Zhan X, Zhang Y, Hou C, Wu Z, Wu YF, Wang QC (2019) Exogenous application of melatonin improves plant resistance to virus infection. Plant Pathol 68(7):1287–1295

    Article  CAS  Google Scholar 

  • Zheng X, Tan DX, Allan AC, Zuo B, Zhao Y, Reiter RJ, Wang L, Wang Z, Guo Y, Zhou J, Shan D (2017) Chloroplastic biosynthesis of melatonin and its involvement in protection of plants from salt stress. Sci Rep 7(1):1–2

    Google Scholar 

  • Zhou X, Zhao H, Cao K, Hu L, Du T, Baluška F, Zou Z (2016) Beneficial roles of melatonin on redox regulation of photosynthetic electron transport and synthesis of D1 protein in tomato seedlings under salt stress. Front Plant Sci 7:1823

    Article  PubMed  PubMed Central  Google Scholar 

  • Zuo Z, Sun L, Wang T, Miao P, Zhu X, Liu S, Song F, Mao H, Li X (2017) Melatonin improves the photosynthetic carbon assimilation and antioxidant capacity in wheat exposed to nano-ZnO stress. Molecules 22(10):1727

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Author (Sandeep Kumar and Sachin Kumar) wish to acknowledge the academic support from UCOST, Dehradun (India).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, S. et al. (2023). Role of Phytomelatonin in Plant Tolerance Under Environmental Stress. In: Singh, D., Mishra, A.K., Srivastava, A.K. (eds) Stress-responsive Factors and Molecular Farming in Medicinal Plants . Springer, Singapore. https://doi.org/10.1007/978-981-99-4480-4_16

Download citation

Publish with us

Policies and ethics