Skip to main content
Log in

Melatonin in business with abiotic stresses in plants

  • Review Article
  • Published:
Physiology and Molecular Biology of Plants Aims and scope Submit manuscript

Abstract

Melatonin (MEL) is the potential biostimulator molecule, governing multiple range of growth and developmental processes in plants, particularly under different environmental constrains. Mainly, its role is considered as an antioxidant molecule that copes with oxidative stress through scavenging of reactive oxygen species and modulation of stress related genes. It also enhances the antioxidant enzyme activities and thus helps in regulating the redox hemostasis in plants. Apart from its broad range of antioxidant functions, it is involved in the regulation of various physiological processes such as germination, lateral root growth and senescence in plants. Moreover this multifunctional molecule takes much interest due to its recent identification and characterization of receptorCandidate G-protein-Coupled Receptor 2/Phytomelatonin receptor(CAND2/PMTR1) in Arabidopsis thaliana. In this compiled work, different aspects of melatonin in plants such as melatonin biosynthesis and detection in plants, signaling pathway, modulation of stress related genes and physiological role of melatonin under different environmental stresses have been dissected in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Afreen F, Zobayed SM, Kozai T (2006) Melatonin in glycyrrhizauralensis: response of plant roots to spectral quality of light and UV-B radiation. J Pineal Res 41:108–115

    CAS  PubMed  Google Scholar 

  • Allegra M, Reiter RJ, Tan DX, Gentile C, Tesoriere L, Livrea MA (2003) The chemistry of melatonin’s interaction with reactive species. J Pineal Res 34:1–10

    CAS  PubMed  Google Scholar 

  • Arnao MB (2014) Phytomelatonin: discovery, content, and role in plants. Adv Bot. https://doi.org/10.1155/2014/815769

    Article  Google Scholar 

  • Arnao MB, Hernández-Ruiz J (2007) Melatonin promotes adventitious-and lateral root regeneration in etiolated hypocotyls of Lupinus albus L. J Pineal Res 42:147–152

    CAS  PubMed  Google Scholar 

  • Arnao MB, Hernández-Ruiz J (2009a) Assessment of different sample processing procedures applied to the determination of melatonin in plants. Phytochem Anal 20:14–18

    CAS  PubMed  Google Scholar 

  • Arnao MB, Hernández-Ruiz J (2009b) Protective effect of melatonin against chlorophyll degradation during the senescence of barley leaves. J Pineal Res 46:58–63. https://doi.org/10.1111/j.1600-079x.2008.00625.x

    Article  CAS  PubMed  Google Scholar 

  • Arnao MB, Hernández-Ruiz J (2014) Melatonin: plant growth regulator and/or biostimulatorduring stress? Trends Plant Sci 19:789–797

    CAS  PubMed  Google Scholar 

  • Arnao MB, Hernández-Ruiz J (2017a) Growth activity, rooting capacity, and tropism: three auxinic precepts fulfilled by melatonin. Acta Physiol Plant 39:127

    Google Scholar 

  • Arnao MB, Hernández-Ruiz J (2017b) Melatonin and its relationship to plant hormones. Ann Bot 121:195–207

    PubMed Central  Google Scholar 

  • Arnao MB, Hernández-Ruiz J (2019) Melatonin: a new plant hormone and/or a plant master regulator? Trends Plant Sci 24:38–48. https://doi.org/10.1016/j.tplants.2018.10.010

    Article  CAS  PubMed  Google Scholar 

  • Bai Y, Guo J, Reiter RJ, Wei Y, Shi H (2020) Melatonin synthesis enzymes interact with ascorbate peroxidase to protect against oxidative stress in cassava. J Exp Bot. https://doi.org/10.1093/jxb/eraa267

    Article  PubMed  PubMed Central  Google Scholar 

  • Bajwa VS, Shukla MR, Sherif SM, Murch SJ, Saxena PK (2014) Role of melatonin in alleviating cold stress in Arabidopsis thaliana. J Pineal Res 56:238–245

    CAS  PubMed  Google Scholar 

  • Bidabadi SS, VanderWeide J, Sabbatini P (2020) Exogenous melatonin improves glutathione content, redox state and increases essential oil production in two salvia species under drought stress. Sci Rep 10:1–12

    Google Scholar 

  • Boccalandro HE, González CV, Wunderlin DA, Silva MF (2011) Melatonin levels, determined by LC-ESI-MS/MS, fluctuate during the day/night cycle in Vitis vinifera cv Malbec: evidence of its antioxidant role in fruits. J Pineal Res 51:226–232

    CAS  PubMed  Google Scholar 

  • Byeon Y, Back K (2014) Melatonin synthesis in rice seedlings in vivo is enhanced at high temperatures and under dark conditions due to increased serotonin N-acetyltransferase and N-acetylserotoninmethyltransferase activities. J Pineal Res 56:189–195

    CAS  PubMed  Google Scholar 

  • Campos CN, Ávila RG, deSouza KRD, Azevedo LM, Alves JD (2019) Melatonin reduces oxidative stress and promotes drought tolerance in young Coffea arabica L. plants. Agric Water Manag 211:37–47. https://doi.org/10.1016/j.agwat.2018.09.025

    Article  Google Scholar 

  • Cao YY, Qi CD, Li S, Wang Z, Wang X, Wang J, Ren S, Li X, Zhang N, Guo YD (2019) Melatonin alleviates copper toxicity via improving copper sequestration and ROS scavenging in cucumber. Plant Cell Physiol 60:562–574

    CAS  PubMed  Google Scholar 

  • Carrillo-Vico A, Lardone PJ, Álvarez-Sánchez N, Rodríguez-Rodríguez A, Guerrero JM (2013) Melatonin: buffering the immune system. Int J MolSci 14:8638–8683

    Google Scholar 

  • Castanares JL, Bouzo CA (2019) Effect of exogenous melatonin on seed germination and seedling growth in melon (Cucumis melo L.) under salt stress. Hortic Plant J5:79–87

    Google Scholar 

  • Chen Q, Qi WB, Reiter RJ, Wei W, Wang BM (2009) Exogenously applied melatonin stimulates root growth and raises endogenous indoleacetic acid in roots of etiolated seedlings of Brassica juncea. J Plant Phyiol 166:324–328

    CAS  Google Scholar 

  • Chen YE, Mao JJ, Sun LQ, Huang B, Ding CB, Gu Y, Liao JQ, Hu C, Zhang ZW, Yuan S, Yuan M (2018) Exogenous melatonin enhances salt stress tolerance in maize seedlings by improving antioxidant and photosynthetic capacity. Physiol Plant 164:349–363

    CAS  PubMed  Google Scholar 

  • Choi GH, Lee HY, Back K (2017) Chloroplast overexpression of rice caffeic acid O-methyltransferase increases melatonin production in chloroplasts via the 5-methoxytryptamine pathway in transgenic rice plants. J Pineal Res 63:12412

    Google Scholar 

  • Cui G, Zhao X, Liu S, Sun F, Zhang C, Xi Y (2017) Beneficial effects of melatonin in overcoming drought stress in wheat seedlings. Plant Physiol Biochem 118:138–149

    CAS  PubMed  Google Scholar 

  • Dawood MG (2018) Physiological effect of melatonin, IAA and their precursor on quality and quantity of chickpea plants grown under sandy soil conditions. Agric Eng Int CIGR J 19:35–44

    Google Scholar 

  • Debnath B, Hussain M, Irshad M, Mitra S, Li M, Liu S, Qiu D (2018) Exogenous melatonin mitigates acid rain stress to tomato plants through modulation of leaf ultrastructure, photosynthesis and antioxidant potential. Molecules 23:388. https://doi.org/10.3390/molecules23020388

    Article  CAS  PubMed Central  Google Scholar 

  • Debnath B, Islam W, Li M, Sun Y, Lu X, Mitra S, Hussain M, Liu S, Qiu D (2019) Melatonin mediates enhancement of stress tolerance in plants. Int J Mol Sci 20:1040

    CAS  PubMed Central  Google Scholar 

  • De-Luca V, Marineau C, Brisson N (1989) Molecular cloning and analysis of cDNA encoding a plant tryptophan decarboxylase: comparison with animal dopa decarboxylases. ProcNat lAcadSci 86:2582–2586

    CAS  Google Scholar 

  • Di-Fiore S, Li Q, Leech MJ, Schuster F, Emans N, Fischer R, Schillberg S (2002) Targeting tryptophan decarboxylase to selected subcellular compartments of tobacco plants affects enzyme stability and in vivo function and leads to a lesion-mimic phenotype. Plant Physiol 129:1160–1169

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dubbels R, Reiter RJ, Klenke E, Goebel A, Schnakenberg E, Ehlers C, Schiwara HW, Schloot W (1995) Melatonin in edible plants identified by radioimmunoassay and by high performance liquid chromatography-mass spectrometry. J Pineal Res 18:28–31

    CAS  PubMed  Google Scholar 

  • Falcón J, Besseau L, Fuentès M, Sauzet S, Magnanou E, Boeuf G (2009) Structural and functional evolution of the pineal melatonin system in vertebrates. Annals NY AcadSci 1163:101–111

    Google Scholar 

  • Fan J, Xie Y, Zhang Z, Chen L (2018) Melatonin: a Multifunctional Factor in Plants. Int J MolSci 19:1528

    Google Scholar 

  • Farouk S, Al-Amri SM (2019) Exogenous melatonin-mediated modulation of arsenic tolerance with improved accretion of secondary metabolite production, activating antioxidant capacity and improved chloroplast ultrastructure in rose mary herb. Ecotoxicol Environ Saf 180:333–347

    CAS  PubMed  Google Scholar 

  • Filippou P, Tanou G, Molassiotis A, Fotopoulos V (2013) Plant acclimation to environmental stress using priming agents. In: Gill SS, Tuteja N (eds) Plant acclimation to environmental stress. Springer, New York, pp 1–27

    Google Scholar 

  • Fujiwara T, Maisonneuve S, Isshiki M, Mizutani M, Chen L, Wong HL, Kawasaki T, Shimamoto K (2010) Sekiguchi lesion gene encodes a cytochrome P450 monooxygenase that catalyzes conversion of tryptamine to serotonin in rice. J Biol Chem 285:11308

    CAS  PubMed  PubMed Central  Google Scholar 

  • Galano A, Tan DX, Reiter R (2018) Melatonin: a versatile protector against oxidative DNA damage. Molecules 23:530

    PubMed Central  Google Scholar 

  • Gao W, Zhang Y, Feng Z, Bai Q, He J, Wang Y (2018) Effects of melatonin on antioxidant capacity in naked oat seedlings under drought stress. Molecules 23:1580

    PubMed Central  Google Scholar 

  • Gomez FJV, Hernández IG, Martinez LD, Silva MF, Cerutti S (2013) Analytical tools for elucidating the biological role of melatonin in plants by LC-MS/MS. Electrophoresis 34:1749–1756

    CAS  PubMed  Google Scholar 

  • Gomez FJ, Hernández IG, Cerutti S, Silva MF (2015) Solid phase extraction/cyclodextrin-modified micellarelectrokinetic chromatography for the analysis of melatonin and related indole compounds in plants. Microchem J 123:22–27

    CAS  Google Scholar 

  • Gul M, Khan FA, Wani SA, Bhat SA, Mir SA, Malik AA, Kumar A, Narayan S, Stephen K, Lone SA (2018) Foliar application of melatonin modulates the growth and photosynthetic pigments in broccoli cv. Palam Samridhi. Skuast J Res 20:193–198

    Google Scholar 

  • Halliwell B, Gutteridge JM (2015) Free radicals in biology and medicine. Oxford University Press, USA

    Google Scholar 

  • Han QH, Huang B, Ding CB, Zhang ZW, Chen YE, Hu C, Zhou LJ, Huang Y, Liao JQ, Yuan S, Yuan M (2017) Effects of melatonin on anti-oxidative systems and photosystem II in cold-stressed rice seedlings. Front Plant Sci 8:785. https://doi.org/10.3389/fpls.2017.00785

    Article  PubMed  PubMed Central  Google Scholar 

  • Hardeland R (1996) Ubiquitous melatonin-presence and effects in unicells, plants and animals. Trends Comp Biochem Physiol 2:25–45

    CAS  Google Scholar 

  • Hardeland R (2012) Melatonin in aging and disease—multiple consequences of reduced secretion, options and limits of treatment. Aging Dis 3:194

    PubMed  Google Scholar 

  • Hardeland R (2013) Melatonin and the theories of aging: a critical appraisal of melatonin’s role in antiaging mechanisms. J Pineal Res 55:325–356

    CAS  PubMed  Google Scholar 

  • Hardeland R (2016) Melatonin in plants–diversity of levels and multiplicity of functions. Front Plant Sci 19:198

    Google Scholar 

  • Hardeland R, Pandi-Perumal SR, Poeggeler B (2007) Melatonin in plants—focus on a vertebrate night hormone with cytoprotective properties. Funct Plant Sci Biotechnol 1:3245

    Google Scholar 

  • Hasan M, Ahammed GJ, Yin L, Shi K, Xia X, Zhou Y, Yu J, Zhou J (2015a) Melatonin mitigates cadmium phytotoxicity through modulation of phytochelatins biosynthesis, vacuolar sequestration, and antioxidant potential in Solanum lycopersicum L. Front in Plant Sci 11:601

    Google Scholar 

  • Hasan MK, Ahammed GJ, Yin L, Shi K, Xia X, Zhou Y et al (2015b) Melatonin mitigates cadmium phytotoxicity through modulation of phytochelatins biosynthesis, vacuolar sequestration, and antioxidant potential in Solanum lycopersicum L. Front Plant Sci 6:601

    PubMed  PubMed Central  Google Scholar 

  • Hattori A, Migitaka H, Iigo M, Itoh M, Yamamoto K, Ohtani-Kaneko R, Hara M, Suzuki T, Reiter RJ (1995) Identification of melatonin in plants and its effects on plasma melatonin levels and binding to melatonin receptors in vertebrates. Biochem Mol Bio Int 35:627–634

    CAS  Google Scholar 

  • Hernández-Ruiz J, Cano A, Arnao MB (2005) Melatonin acts as a growth-stimulating compound in some monocot species. J Pineal Res 39:137–142

    PubMed  Google Scholar 

  • Huang X, Mazza G (2011a) Application of LC and LC-MS to the analysis of melatonin and serotonin in edible plants. Crit Rev Food Sci Nutr 51:269–284

    CAS  PubMed  Google Scholar 

  • Huang X, Mazza G (2011b) Simultaneous analysis of serotonin, melatonin, piceid and resveratrol in fruits using liquid chromatography tandem mass spectrometry. J Chromatogr 1218:3890–3899

    CAS  Google Scholar 

  • Huang YH, Liu SJ, Yuan S, Guan C, Tian DY, Cui X, Zhang YW, Yang FY (2017) Overexpression of ovine AANAT and HIOMT genes in switchgrass leads to improved growth performance and salt-tolerance. Sci Rep 7:1–13

    Google Scholar 

  • Kabiri R, Hatami A, Oloumi H, Naghizadeh M, Nasibi F, Tahmasebi Z (2018) Foliar application of melatonin induces tolerance to drought stress in Moldavian balm plants (Dracocephalum moldavica) through regulating the antioxidant system. Folia Hortic 30:155–167

    Google Scholar 

  • Kang S, Kang K, Lee K, Back K (2007) Characterization of rice tryptophan decarboxylases and their direct involvement in serotonin biosynthesis in transgenic rice. Planta 227:263–272

    CAS  PubMed  Google Scholar 

  • Kang K, Lee K, Park S, Kim YS, Back K (2010) Enhanced production of melatonin by ectopic overexpression of human serotonin N-acetyltransferase plays a role in cold resistance in transgenic rice seedlings. J Pineal Res 49:176–182

    CAS  PubMed  Google Scholar 

  • Ke Q, Ye J, Wang B, Ren J, Yin L, Deng X, Wang S (2018) Melatonin mitigates salt stress in wheat seedlings by modulating polyamine metabolism. Front Plant Sci 9:914. https://doi.org/10.3389/fpls.2018.00914

    Article  PubMed  PubMed Central  Google Scholar 

  • Kolář J, Macháčková I (2005) Melatonin in higher plants: occurrence and possible functions. J Pineal Res 39:333–341

    PubMed  Google Scholar 

  • Kołodziejczyk I, Dzitko K, Szewczyk R, Posmyk MM (2016) Exogenous melatonin improves corn (Zea mays L.) embryo proteome in seeds subjected to chilling stress. J Plant Physiol 193:47–56

    PubMed  Google Scholar 

  • Lazar D, Murch SJ, Beilby MJ, Al Khazaaly S (2013) Exogenous melatonin affects photosynthesis in characeae Chara australis. Plant Signal Behav 8:23279. https://doi.org/10.4161/psb.23279

    Article  CAS  Google Scholar 

  • Lee K, Back K (2017) Overexpression of rice serotonin N-acetyltransferase 1 in transgenic rice plants confers resistance to cadmium and senescence and increases grain yield. J Pineal Res 62:12392. https://doi.org/10.1111/jpi12392

    Article  Google Scholar 

  • Lerner AB, Case JD, Takahashi Y, Lee TH, Mori W (1958) Isolation of melatonin, the pineal gland factor that lightens melanocyte S1. J Am Chem Soc 80:2587

    CAS  Google Scholar 

  • Lerner AB, Case JD, Mori W, Wright MR (1959) Melatonin in peripheral nerve. Nature 183:1821

    CAS  PubMed  Google Scholar 

  • Li C, Wang P, Wei Z, Liang D, Liu C, Yin L, Jia D, Fu M, Ma F (2012) The mitigation effects of exogenous melatonin on salinity-induced stress in Malus hupehensis. J Pineal Res 53:298–306

    CAS  PubMed  Google Scholar 

  • Li D, Zhang D, Wang H, Li Y, Li R (2017a) Physiological response of plants to polyethylene glycol (PEG-6000) by exogenous melatonin application in wheat. Zemdirbyste-Agric 104:219–228

    Google Scholar 

  • Li H, Xu H, Zhang P, Gao M, Wang D, Zhao H (2017b) High temperature effects on D1 protein turnover in three wheat varieties with different heat susceptibility. Plant Growth Regul 81:1–9

    CAS  Google Scholar 

  • Li J, Yang Y, Sun K, Chen Y, Chen X, Li X (2019) Exogenous melatonin enhances cold, salt and drought stress tolerance by improving antioxidant defense in tea plant (Camellia sinensis (L.) O. Kuntze). Molecules 24:1826. https://doi.org/10.3390/molecules24091826

    Article  CAS  PubMed Central  Google Scholar 

  • Liang C, Zheng G, Li W, Wang Y, Hu B, Wang H, Wu H, Qian Y, Zhu XG, Tan DX, Chen SY (2015) Melatonin delays leaf senescence and enhances salt stress tolerance in rice. J Pineal Res 59:91–101

    CAS  PubMed  Google Scholar 

  • Lim PO, Kim HJ, Gil-Nam H (2007) Leaf senescence. Ann Rev Plant Biol 58:115–136

    CAS  Google Scholar 

  • Liu J, Yang J, Zhang H, Cong L, Zhai R, Yang C, Wang Z, Ma F, Xu L (2019) Melatonin inhibits ethylene synthesis via nitric oxide regulation to delay postharvest senescence in pears. J Agric Food Chem 67:2279–2288. https://doi.org/10.1021/acs.jafc.8b06580

    Article  CAS  PubMed  Google Scholar 

  • Ly D, Kang K, Choi JY, Ishihara A, Back K, Lee SG (2008) HPLC analysis of serotonin, tryptamine, tyramine, and the hydroxycinnamic acid amides of serotonin and tyramine in food vegetables. J Med Food 11:385–389

    CAS  PubMed  Google Scholar 

  • Mahal HS, Sharma HS, Mukherjee T (1999) Antioxidant properties of melatonin: a pulse radiolysis study. Free RadicBiol Med 26:557–565

    CAS  Google Scholar 

  • Majidinia M, Reiter RJ, Shakouri SK (2018) The role of melatonin, a multitasking molecule, in retarding the processes of ageing. Ageing Res Rev 47:198–213

    CAS  PubMed  Google Scholar 

  • Maronde E, Stehle JH (2007) The mammalian pineal gland: known facts, unknown facets. Trends Endocrinol Metab 18:142–149

    CAS  PubMed  Google Scholar 

  • Martinez V, Nieves-Cordones M, Lopez-Delacalle M, Rodenas R, Mestre TC, Garcia-Sanchez F, Rubio F, Nortes PA, Mittler R, Rivero RM (2018) Tolerance to stress combination in tomato plants: new insights in the protective role of melatonin. Molecules 23:535. https://doi.org/10.3390/molecules23030535

    Article  CAS  PubMed Central  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Ann Rev Plant Biol 59:651–681

    CAS  Google Scholar 

  • Murch SJ, Saxena PK (2006) A melatonin-rich germplasm line of St John’s wort (Hypericum perforatum L). J Pineal Res 41:284–287. https://doi.org/10.1111/j.1600-079x.2006.00367.x

    Article  CAS  PubMed  Google Scholar 

  • Murch SJ, KrishnaRaj S, Saxena PK (2000) Tryptophan is a precursor for melatonin and serotonin biosynthesis in in vitro regenerated St. John’s wort (Hypericum perforatum L. cv. Anthos) plants. Plant Cell Rep 19:698–704

    CAS  PubMed  Google Scholar 

  • Ozgur R, Uzilday B, Turkan I, Sekmen AH (2017) The effects of melatonin on transcriptional profile of unfolded protein response genes under endoplasmic reticulum stress in Arabidopsis thaliana. Plant Mol Biol Rep 35:188–202

    CAS  Google Scholar 

  • Padumanonda T, Johns J, Sangkasat A, Tiyaworanant S (2014) Determination of melatonin content in traditional Thai herbal remedies used as sleeping aids. J Pharm Sci 22:6

    Google Scholar 

  • Pape C, Lüning K (2006) Quantification of melatonin in phototrophic organisms. J Pineal Res 41:157–165

    CAS  PubMed  Google Scholar 

  • Park S, Kang K, Lee K, Choi D, Kim YS, Back K (2009) Induction of serotonin biosynthesis is uncoupled from the coordinated induction of tryptophan biosynthesis in pepper fruits (Capsicum annuum) upon pathogen infection. Planta 230:1197

    CAS  PubMed  Google Scholar 

  • Park S, Lee DE, Jang H, Byeon Y, Kim YS, Back K (2013) Melatonin-rich transgenic rice plants exhibit resistance to herbicide-induced oxidative stress. J Pineal Res 54:258–263

    CAS  PubMed  Google Scholar 

  • Poeggeler B, Reiter RJ, Hardeland R, Tan DX, Barlow-Walden LR (1996) Melatonin and structurally-related, endogenous indoles act as potent electron donors and radical scavengers in vitro. Redox Rep 2:179–184

    CAS  PubMed  Google Scholar 

  • Posmyk MM, Janas KM (2009) Melatonin in plants. Acta Physiol Plant 31:1

    CAS  Google Scholar 

  • Posmyk MM, Kuran H, Marciniak K, Janas KM (2008) Presowing seed treatment with melatonin protects red cabbage seedlings against toxic copper ion concentrations. J Pineal Res 45:24–31

    CAS  PubMed  Google Scholar 

  • Qiao Y, Ren J, Yin L, Liu Y, Deng X, Liu P, Wang S (2020) Exogenous melatonin alleviates PEG-induced short-term water deficiency in maize by increasing hydraulic conductance. BMC Plant Bio 20:1–14

    Google Scholar 

  • Ragab AS, Van Fleet J, Jankowski B, Park JH, Bobzin SC (2006) Detection and quantitation of resveratrol in tomato fruit (Lycopersicon esculentum Mill.). J Agric Food Chem 54:7175–7179

    CAS  PubMed  Google Scholar 

  • Reiter RJ (1991) Pineal melatonin: cell biology of its synthesis and of its physiological interactions. Endocr Rev 12:151–180

    CAS  PubMed  Google Scholar 

  • Reiter RJ (2000) Melatonin: mechanisms and actions as an antioxidant. Curr Topics Biophy 24:171–183

    CAS  Google Scholar 

  • Reiter RJ, Poeggeler B, Dun-xian T, Chen LD, Manchester LC, Guerrero JM (1993) Antioxidant capacity of melatonin: a novel action not requiring a receptor. Neuroendocrinol Lett 15:103–116

    CAS  Google Scholar 

  • Reiter RJ, Tan DX, Osuna C, Gitto E (2000) Actions of melatonin in the reduction of oxidative stress. J Biomed Sci 7:444–458

    CAS  PubMed  Google Scholar 

  • Roberts JE, HU DN, Martinez L, Chignell CF (2000) Photophysical studies on melatonin and its receptor agonists. J Pineal Res 29:94–99

    CAS  PubMed  Google Scholar 

  • Romero A, Ramos E, deLosRíos C, Egea J, DelPino J, Reiter RJ (2014) A review of metal-catalyzed molecular damage: protection by melatonin. J Pineal Res 56:343–370

    CAS  PubMed  Google Scholar 

  • Sadak MS (2016) Mitigation of salinity adverse effects on wheat by grain priming with melatonin. Int J Chem Tech Res 9:85–97

    CAS  Google Scholar 

  • Shi H, Chan Z (2014) The cysteine2/histidine2-type transcription factor zinc finger of arabidopsis thaliana 6-activated C-repeat-binding factor pathway is essential for melatonin-mediated freezing stress resistance in Arabidopsis. J Pineal Res 57:185–191

    CAS  PubMed  Google Scholar 

  • Shi H, Reiter RJ, Tan DX, Chan Z (2015a) INDOLE-3-ACETIC ACID INDUCIBLE 17 positively modulates natural leaf senescence through melatonin-mediated pathway in Arabidopsis. J Pineal Res 58(1):26–33

    CAS  PubMed  Google Scholar 

  • Shi H, Tan DX, Reiter RJ, Ye T, Yang F, Chan Z (2015b) Melatonin induces class A1 heat-shock factors (HSFA 1 s) and their possible involvement of thermotolerance in Arabidopsis. J Pineal Res 58:335–342

    CAS  PubMed  Google Scholar 

  • Simopoulos AP, Tan DX, Manchester LC, Reiter RJ (2005) Purslane: a plant source of omega-3 fatty acids and melatonin. J Pineal Res 39:331–332

    CAS  PubMed  Google Scholar 

  • Sliwinski T, Rozej W, Morawiec-Bajda A, Morawiec Z, Reiter R, Blasiak J (2007) Protective action of melatonin against oxidative DNA damage—chemical inactivation versus base-excision repair. Mutat Res, Genet Toxicol Environ Mutagen 634:220–227

    CAS  Google Scholar 

  • Srinivasan V, Pandi-Perumal SR, Maestroni GJM, Esquifino AI, Hardeland R, Cardinali DP (2005) Role of melatonin in neurodegenerative diseases. Neurotox Res 7:293–318

    CAS  PubMed  Google Scholar 

  • Stasica P, Ulanski P, Rosiak J (1998) Reactions of melatonin with radicals in deoxygenated aqueous solution. J Radioanal Nucl Chem 232:107–113

    CAS  Google Scholar 

  • Stehle JH, Saade A, Rawashdeh O, Ackermann K, Jilg A, Sebestény T, Maronde E (2011) A survey of molecular details in the human pineal gland in the light of phylogeny, structure, function and chronobiological diseases. J Pineal Res 51:17–43

    CAS  PubMed  Google Scholar 

  • Szafrańska K, Reiter RJ, Posmyk MM (2016) Melatonin application to Pisumsativum L seeds positively influences the function of the photosynthetic apparatus in growing seedlings during paraquat-induced oxidative stress. Front Plant Sci 7:1663

    PubMed  PubMed Central  Google Scholar 

  • Tan DX (1993) Melatonin: a potent, endogenous hydroxyl radical scavenger. Endocr J 1:57–60

    Google Scholar 

  • Tan DX, Manchester LC, Reiter RJ, Plummer BF, Limson J, Weintraub ST, Qi W (2000) Melatonin directly scavenges hydrogen peroxide: a potentially new metabolic pathway of melatonin biotransformation. Free Radical Bio Med 29:1177–1185

    CAS  Google Scholar 

  • Tan DX, Manchester LC, Burkhardt S, Sainz RM, Mayo JC, Kohen R, Shohami E, Huo YS, Hardeland R, Reiter RJ (2001) N 1-acetyl-N 2-formyl-5-methoxykynuramine, a biogenic amine and melatonin metabolite, functions as a potent antioxidant. FASEB J 15:2294–2296

    CAS  PubMed  Google Scholar 

  • Tan DX, Reiter RJ, Manchester LC, Yan MT, El-SawiM Sainz RM, Mayo JC, Kohen R, Allegra MC, Hardeland R (2002) Chemical and physical properties and potential mechanisms: melatonin as a broad spectrum antioxidant and free radical scavenger. Curr Top Med Chem 2:181–197

    CAS  PubMed  Google Scholar 

  • Tan DX, Manchester LC, Helton P, Reiter RJ (2007) Phytoremediative capacity of plants enriched with melatonin. Plant Signa lBehav 2:514–516

    Google Scholar 

  • Tan DX, Hardeland R, Manchester LC, Rosales-Corral S, Coto-Montes A, Boga JA, Reiter RJ (2012) Emergence of naturally occurring melatonin isomers and their proposed nomenclature. J Pineal Res 53:113–121

    CAS  PubMed  Google Scholar 

  • Tan DX, Manchester LC, Esteban-Zubero E, Zhou Z, Reiter RJ (2015) Melatonin as a potent and inducible endogenous antioxidant: synthesis and metabolism. Molecules 20:18886–18906

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tan DX, Hardeland R, Back K, Manchester LC, Alatorre-Jimenez MA, Reiter RJ (2016) On the significance of an alternate pathway of melatonin synthesis via 5-methoxytryptamine: comparisons across species. J Pineal Res 61:27–40

    CAS  PubMed  Google Scholar 

  • Thomas JC, Adams DG, Nessler CL, Brown JK, Bohnert HJ (1995) Tryptophan decarboxylase, tryptamine, and reproduction of the whitefly. Plant Physiol 109:717–720. https://doi.org/10.1104/pp.109.2.717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tiryaki I, Keles H (2012) Reversal of the inhibitory effect of light and high temperature on germination of Phacelia tanacetifolia seeds by melatonin. J Pineal Res 52:332–339

    CAS  PubMed  Google Scholar 

  • Van-Tassel DL, O’neill SD (2001) Putative regulatory molecules in plants: evaluating melatonin. J Pineal Res 31:1–7

    CAS  PubMed  Google Scholar 

  • Wan J, Zhang P, Wang R, Sun L, Ju Q, Xu J (2018) Comparative physiological responses and transcriptome analysis reveal the roles of melatonin and serotonin in regulating growth and metabolism in Arabidopsis. BMC Plant Biol 18:362

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang P, Yin L, Liang D, Li C, Ma F, Yue Z (2012) Delayed senescence of apple leaves by exogenous melatonin treatment: toward regulating the ascorbate–glutathione cycle. J Pineal Res 53:11–20

    PubMed  Google Scholar 

  • Wang P, Sun X, Chang C, Feng F, Liang D, Cheng L, Ma F (2013a) Delay in leaf senescence of Malus hupehensis by long-term melatonin application is associated with its regulation of metabolic status and protein degradation. J Pineal Res 55:424–434. https://doi.org/10.1111/jpi.1209

    Article  CAS  PubMed  Google Scholar 

  • Wang P, Sun X, Li C, Wei Z, Liang D, Ma F (2013b) Long-term exogenous application of melatonin delays drought-induced leaf senescence in apple. J Pineal Res 54:292–302

    CAS  PubMed  Google Scholar 

  • Wang L, Zhao Y, Reiter RJ, He C, Liu G, Lei Q, Zuo B, Zheng XD, Li Q, Kong J (2014) Changes in melatonin levels in transgenic ‘Micro-Tom’tomato overexpressing ovine AANAT and ovine HIOMT genes. J Pineal Res 56:134–142

    CAS  PubMed  Google Scholar 

  • Wang LY, Liu JL, Wang WX, Sun Y (2016) Exogenous melatonin improves growth and photosynthetic capacity of cucumber under salinity-induced stress. Photosynthetica 54:19–27

    Google Scholar 

  • Weeda S, Zhang N, Zhao X, Ndip G, Guo Y, Buck GA, Fu C, Ren S (2014) Arabidopsis transcriptome analysis reveals key roles of melatonin in plant defense systems. PLoS ONE 9:93462

    Google Scholar 

  • Wei W, Li QT, Chu YN, Reiter RJ, Yu XM, Zhu DH, Zhang WK, Ma B, Lin Q, Zhang JS, Chen SY (2014) Melatonin enhances plant growth and abiotic stress tolerance in soybean plants. J Exp Bot 66:695–707. https://doi.org/10.1093/jxb/eru392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei J, Li DX, Zhang JR, Shan C, Rengel Z, Song ZB, Chen Q (2018) Phytomelatonin receptor PMTR 1-mediated signaling regulates stomatal closure in Arabidopsis thaliana. J Pineal Res 65:12500

    Google Scholar 

  • Wen D, Gong B, Sun S, Liu S, Wang X, Wei M, Yang F, Li Y, Shi Q (2016) Promoting roles of melatonin in adventitious root development of Solanum lycopersicum L by regulating auxin and nitric oxide signaling. Front Plant Sci 7:718

    PubMed  PubMed Central  Google Scholar 

  • Wolf K, Kolář J, Witters E, van Dongen W, van Onckelen H, Macháčková I (2001) Daily profile of melatonin levels in Chenopodium rubrum L. depends on photoperiod. J Plant Physiol 158:1491–1493

    CAS  Google Scholar 

  • Xia H, Ni Z, Pan D (2017) Effects of exogenous melatonin on antioxidant capacity in Actinidia seedlings under salt stress. In: IOP conference series: earth environ sci, vol 1. IOP Publishing, p 012024

  • Xu W, Cai SY, Zhang Y, Wang Y, Ahammed GJ, Xia XJ, Shi K, Zhou YH, Yu JQ, Reiter RJ, Zhou J (2016) Melatonin enhances thermotolerance by promoting cellular protein protection in tomato plants. J Pineal Res 61:457–469

    CAS  PubMed  Google Scholar 

  • Yang XL, Xu H, Li D, Gao X, Li TL, Wang R (2018) Effect of melatonin priming on photosynthetic capacity of tomato leaves under low-temperature stress. Photosynthetica. https://doi.org/10.1007/s11099-017-0748-6

    Article  Google Scholar 

  • Yang WJ, Du YT, Zhou YB, Chen J, Xu ZS, Ma YZ, Chen M, Min DH (2019) Overexpression of TaCOMT improves melatonin production and enhances drought tolerance in transgenic Arabidopsis. Int J MolSci 20:652. https://doi.org/10.3390/ijms20030652

    Article  CAS  Google Scholar 

  • Ye J, Wang S, Deng X, Yin L, Xiong B, Wang X (2016) Melatonin increased maize (Zea mays L.) seedling drought tolerance by alleviating drought-induced photosynthetic inhibition and oxidative damage. Acta Physiol Plant 38:48

    Google Scholar 

  • Ye T, Hao YH, Yu L, Shi H, Reiter RJ, Feng YQ (2017) A simple, rapid method for determination of melatonin in plant tissues by UPLC coupled with high resolution Orbitrap mass spectrometry. Front Plant Sci 8:64

    PubMed  PubMed Central  Google Scholar 

  • Zeng Liu, Cai JS, Li JJ, Gy Lu, Li CS, Fu GP, Zhang XK, Liu QY, Zou XL, Cheng Y (2018) Exogenous application of a low concentration of melatonin enhances salt tolerance in rapeseed (Brassica napus L.) seedlings. J Integ Agri 17:328–335

    CAS  Google Scholar 

  • Zettersten C, Co M, Wende S, Turner C, Nyholm L, Sjōberg PJ (2009) Identification and characterization of polyphenolic antioxidants using on-line liquid chromatography, electrochemistry, and electrospray ionization tandem mass spectrometry. Anal Chem 81:8968–8977

    CAS  PubMed  Google Scholar 

  • Zhang L, Jia J, Xu Y, Wang Y, Hao J, Li T (2012) Production of transgenic nicotianasylvestrisplants expressing melatonin synthetase genes and their effect on UV-B-induced DNA damage. In Vitro Cell Dev Bio Plant 48:275–282

    CAS  Google Scholar 

  • Zhang N, Zhao B, Zhang HJ, Weeda S, Yang C, Yang ZC, Ren S, Guo YD (2013) Melatonin promotes water-stress tolerance, lateral root formation, and seed germination in cucumber (Cucumis sativus L.). J Pineal Res 54:15–23. https://doi.org/10.1111/j.1600-079x.2012.01015.x

    Article  CAS  PubMed  Google Scholar 

  • Zhang N, Sun Q, Zhang H, Cao Y, Weeda S, Ren S, Guo YD (2015) Roles of melatonin in abiotic stress resistance in plants. J Exp Bot 66:647–656. https://doi.org/10.1093/jxb/eru336

    Article  CAS  PubMed  Google Scholar 

  • Zhang N, Sun Q, Li H, Li X, Cao Y, Zhang H, Li S, Zhang L, Qi Y, Ren S, Zhao B (2016) Melatonin improved anthocyanin accumulation by regulating gene expressions and resulted in high reactive oxygen species scavenging capacity in cabbage. Front Plant Sci 7:197. https://doi.org/10.3389/fpls.2016.00197

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang N, Zhang HJ, Sun QQ, Cao YY, Li X, Zhao B, Wu P, Guo YD (2017a) Proteomic analysis reveals a role of melatonin in promoting cucumber seed germination under high salinity by regulating energy production. Sci Rep 7:503

    PubMed  PubMed Central  Google Scholar 

  • Zhang YP, Yang SJ, Chen YY (2017b) Effects of melatonin on photosynthetic performance and antioxidants in melon during cold and recovery. Bio Plant 61:571–578. https://doi.org/10.1007/s10535-017-0717-8

    Article  CAS  Google Scholar 

  • Zhao Y, Tan DX, Lei Q, Chen H, Wang L, Li QT, Gao Y, Kong J (2013) Melatonin and its potential biological functions in the fruits of sweet cherry. J Pineal Res 55:79–88

    CAS  PubMed  Google Scholar 

  • Zhao D, Yu Y, Shen Y, Liu Q, Zhao Z, Sharma R, Reiter RJ (2019) Melatonin synthesis and function: evolutionary history in animals and plants. Front Endocrinol 10:249

    Google Scholar 

  • Zheng X, Tan DX, Allan AC, Zuo B, Zhao Y, Reiter RJ, Wang L, Wang Z, Guo Y, Zhou J, Shan D (2017) Chloroplastic biosynthesis of melatonin and its involvement in protection of plants from salt stress. Sci Rep 7:41236

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zuo BX, Zheng XD, He PL, Wang L, Lei Q, Feng C et al (2014) Overexpression of MzASMT improves melatonin production and enhances drought tolerance in transgenic Arabidopsis thaliana plants. J Pineal Res 57:408–417. https://doi.org/10.1111/jpi.12180

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

Tanveer Ahmad Khan acknowledges financial support from CSIR-UGC (Council of Scientific & Industrial Research, University Grants Commission) New Delhi, India as Junior Research fellowship under Ref. No. (553/CSIR-UGC NET) at Aligarh Muslim University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qazi Fariduddin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, T.A., Fariduddin, Q., Nazir, F. et al. Melatonin in business with abiotic stresses in plants. Physiol Mol Biol Plants 26, 1931–1944 (2020). https://doi.org/10.1007/s12298-020-00878-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12298-020-00878-z

Keywords

Navigation