Skip to main content

Review on Green Synthesis, Modification, Characterization, Properties, and Applications of Palladium Nanoparticles in Biomedical Applications

  • Chapter
  • First Online:
Interaction of Nanomaterials With Living Cells

Abstract

This book chapter deals with the study of the green synthesis, modification, characterization, properties, and application of palladium (Pd) nanoparticles (NPs). We discuss that these NPs can be synthesized from plant extracts, bacteria, algae, pine needles, glucose, and honey. Although these NPs have been identified as effective materials for their catalytic, electrical, optical, hydrogen sensing, and magnetic properties, however, these NPs are tremendous biomedical applications. The Pd NPs are synthesized by various synthetic methods such as the Suzuki coupling reaction, sol-gel method, laser ablation, and green synthesis from various plant extracts and microorganisms. The Pd NPs are characterized by using ultraviolet-visible (UV-Vis) spectroscopy, FTIR (Fourier transform infrared) spectroscopy, X-ray diffraction (XRD) analysis, energy-dispersive X-ray (EDX) analysis, scanning electron microscopy (SEM), transmission electron microscopy (TEM), etc. In this chapter, we will understand the different applications of Pd NPs, such as their catalytic activity, antibacterial properties, drug delivery potential, biomedical application, and vehicle for gene therapy and for fuel cell preparation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ahmed S, Ahmad M, Swami BL (2016) A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: a green expertise. J Adv Res 7(1):17–28

    Article  CAS  PubMed  Google Scholar 

  • Ameri A, Shakibaie M, Rahimi H-R, Adeli-Sardou M, Raeisi M, Najafifi A, Forootanfar H (2020) Rapid and facile microwave-assisted synthesis of palladium nanoparticles and evaluation of their antioxidant properties and cytotoxic effects against fibroblast-like (HSkMC) and human lung carcinoma (A549) cell lines. Biol Trace Elem Res 197:132–140

    Article  CAS  PubMed  Google Scholar 

  • Amrutham S, Maragoni V, Guttena V (2020) One-step green synthesis of palladium nanoparticles using neem gum (Azadirachta Indica): Characterization, reduction of Rhodamine 6G dye and free radical scavenging activity. Appl Nanosci 10:4505–4511

    Article  CAS  Google Scholar 

  • Astruc D (2007) Palladium nanoparticles as efficient green homogeneous and heterogeneous carbon−carbon coupling precatalysts: a unifying view. Inorg Chem 46(6):1884–1894

    Article  CAS  PubMed  Google Scholar 

  • Azizi S, Shahri MM, Rahman HS, Rahim RA, Rasedee A, Mohamad R (2017) Green synthesis palladium nanoparticles mediated by white tea (Camellia sinensis) extract with antioxidant, antibacterial, and antiproliferative activities toward the human leukemia (MOLT-4) cell line. Int J Nanomedicine 12:8841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bankar A, Joshi B, Kumar AR, Zinjarde S (2010) Banana peel extract mediated novel route for the synthesis of palladium nanoparticles. Mater Lett 64(18):1951–1953

    Article  CAS  Google Scholar 

  • Bell AT (2003) The impact of nanoscience on heterogeneous catalysis. Science 299(5613):1688–1691

    Article  CAS  PubMed  Google Scholar 

  • Beller M, Fischer H, Kühlein K, Reisinger C-P, Herrmann WA (1996) First palladium-catalyzed Heck reactions with efficient colloidal catalyst systems. J Organomet Chem 520:257

    Article  CAS  Google Scholar 

  • Bhakyaraj K, Kumaraguru S, Gopinath K, Sabitha V, Kaleeswarran PR, Karthika V, Arumugam A (2017) Eco-friendly synthesis of palladium nanoparticles using Melia azedarach leaf extract and their evaluation for antimicrobial and larvicidal activities. J Clust Sci 28:463–476

    Article  CAS  Google Scholar 

  • Bordbar M, Mortazavimanesh N (2017) Green synthesis of Pd/walnut shell nanocomposite using Equisetum arvense L. leaf extract and its application for the reduction of 4-nitrophenol and organic dyes in a very short time. Environ Sci Pollut Res 24:4093–4104

    Article  CAS  Google Scholar 

  • Buzea C, Pacheco II, Robbie K (2007) Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2(4):MR17–MR71

    Article  PubMed  Google Scholar 

  • Chen J, Shi W, Zhang X, Arandiyan H, Li D, Li J (2011) Roles of Li+ and Zr4+ Cations in the catalytic performances of Co1–xMXCr2O4 (M= Li, Zr; x= 0–0.2) for methane combustion. Environ Sci Technol 45(19):8491–8497

    Article  CAS  PubMed  Google Scholar 

  • Cheong S, Watt JD, Tilley RD (2010) Shape control of platinum and palladium nanoparticles for catalysis. Nanoscale 2(10):2045–2053

    Article  CAS  PubMed  Google Scholar 

  • Cookson J (2012) The preparation of palladium nanoparticles. Platin Met Rev 56(2):83–98

    Article  Google Scholar 

  • Cox AJ, Louderback JG, Apsel SE, Bloomfield LA (1994) Magnetism in 4d-transition metal clusters. Phys Rev B 49(17):12295

    Article  CAS  Google Scholar 

  • Crespo-Quesada M, Yarulin A, Jin M, Xia Y, Kiwi-Minsker L (2011) Structure sensitivity of alkynol hydrogenation on shape-and size-controlled palladium nanocrystals: Which sites are most active and selective? J Am Chem Soc 133(32):12787–12794

    Article  CAS  PubMed  Google Scholar 

  • Dai Y, Kumar VP, Zhu C, Wang H, Smith KJ, Wolf MO, MacLachlan MJ (2019) Bowtie‐shaped NiCo2O4 catalysts for low-temperature methane combustion. Adv Funct Mater 29(8):1807519

    Article  Google Scholar 

  • Devi TB, Ahmaruzzaman M (2016) Bio-inspired sustainable and green synthesis of plasmonic Ag/AgCl nanoparticles for enhanced degradation of organic compound from aqueous phase. Environ Sci Pollut Res 23:17702–17714

    Article  CAS  Google Scholar 

  • Dikshit PK, Kumar J, Das AK, Sadhu S, Sharma S, Singh S, Gupta PK, Kim BS (2021) Green synthesis of metallic nanoparticles: applications and limitations. Catalysts 11(8):902

    Article  CAS  Google Scholar 

  • Dimitratos N, Porta F, Prati L, Villa A (2005) Synergetic effect of platinum or palladium on gold catalyst in the selective oxidation of D-sorbitol. Catal lett 99:181–185

    Article  CAS  Google Scholar 

  • Durán N, Marcato PD, Durán M, Yadav A, Gade A, Rai M (2011) Mechanistic aspects in the biogenic synthesis of extracellular metal nanoparticles by peptides, bacteria, fungi, and plants. Appl Microbiol Biotechnol 90:1609–1624

    Article  PubMed  Google Scholar 

  • Fahmy SA, Preis E, Bakowsky U, Azzazy HMES (2020) Palladium nanoparticles fabricated by green chemistry: Promising chemotherapeutic, antioxidant and antimicrobial agents. Materials 13(17):3661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gąsecka M, Magdziak Z, Siwulski M, Mleczek M (2018) Profile of phenolic and organic acids, antioxidant properties and ergosterol content in cultivated and wild growing species of Agaricus. Eur Food Res Technol 244:259–268

    Article  Google Scholar 

  • Ghasempour R, Mortazavi SZ, Rahimi F (2010) Hydrogen sensing properties of multi-walled carbon nanotube films sputtered by Pd. Int J Hydrog Energy 35(9):4445–4449

    Article  CAS  Google Scholar 

  • Ghosh S, Nitnavare R, Dewle A, Tomar GB, Chippalkatti R, More P, Chopade BA (2015) Novel platinum–palladium bimetallic nanoparticles synthesized by Dioscorea bulbifera: Anticancer and antioxidant activities. Int J Nanomedicine 10:7477

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gil YG, Kang S, Chae A, Kim YK, Min DH, Jang H (2018) Synthesis of porous Pd nanoparticles by therapeutic Chaga extract for highly efficient tri-modal cancer treatment. Nanoscale 10(42):19810–19817

    Article  CAS  PubMed  Google Scholar 

  • Gour A, Jain NK (2019) Advances in green synthesis of nanoparticles. Artif Cells Nanomed Biotechnol 47(1):844–851

    Article  CAS  PubMed  Google Scholar 

  • Gupta R, Xie H (2018) Nanoparticles in daily life: Applications, toxicity and regulations. J Environ Pathol Toxicol Oncol 37(3):209–230

    Article  PubMed  PubMed Central  Google Scholar 

  • Gupta D, Dutta D, Kumar M, Barman PB, Sarkar CK, Basu S, Hazra SK (2014) A low temperature hydrogen sensor based on palladium nanoparticles. Sens Actuators B Chem 196:215–222

    Article  CAS  Google Scholar 

  • Hekmati M, Bonyasi F, Javaheri H, Hemmati S (2017) Green synthesis of palladium nanoparticles using Hibiscus sabdariffa L. flower extract: Heterogeneous and reusable Nanocatalyst in Suzuki coupling reactions. Appl Organomet Chem 31(11):e3757

    Article  Google Scholar 

  • Hodaei A, Ataie A, Mostafavi E (2015) Intermediate milling energy optimization to enhance the characteristics of barium hexaferrite magnetic nanoparticles. J Alloys Comp 640:162–168

    Article  CAS  Google Scholar 

  • Hong E, Kim C, Lim DH, Cho HJ, Shin CH (2018) Catalytic methane combustion over Pd/ZrO2 catalysts: effects of crystalline structure and textural properties. Appl Catal B Environ 232:544–552

    Article  CAS  Google Scholar 

  • Hu P, Yang H (2013) Insight into the physicochemical aspects of kaolins with different morphologies. Appl Clay Sci 74:58–65

    Article  CAS  Google Scholar 

  • Im Y, Lee C, Vasquez RP, Bangar MA, Myung NV, Menke EJ, Yun M (2006) Investigation of a single Pd nanowire for use as a hydrogen sensor. Small 2(3):356–358

    Article  CAS  PubMed  Google Scholar 

  • Iravani S, Korbekandi H, Mirmohammadi SV, Zolfaghari B (2014) Synthesis of silver nanoparticles: Chemical, physical and biological methods. Res Pharm Sci 9(6):385–406

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jia L, Zhang Q, Li Q, Song H (2009) The biosynthesis of palladium nanoparticles by antioxidants in Gardenia jasminoides Ellis: long lifetime Nanocatalysts for P-nitrotoluene hydrogenation. Nanotechnology 20(38):385601

    Article  PubMed  Google Scholar 

  • Johnston RL, Wilcoxon JP (eds) (2012) Metal Nanoparticles and Nanoalloys, Elsevier, Oxford, UK 3:2–302

    Google Scholar 

  • Kang S, Shin W, Kang K, Choi MH, Kim YJ, Kim YK, Jang H (2018) Revisiting of Pd nanoparticles in cancer treatment: all-round excellence of porous pd nanoplates in gene-thermo combinational therapy. ACS Appl Mater Interface 10(16):13819–13828

    Article  CAS  Google Scholar 

  • Karimi B, Enders D (2006) New N-heterocyclic carbene palladium complex/ionic liquid matrix immobilized on silica: Application as recoverable catalyst for the Heck reaction. Org Lett 8(6):1237–1240

    Article  CAS  PubMed  Google Scholar 

  • Kasthuri J, Kathiravan K, Rajendiran NJNR (2009) Phyllanthin-assisted biosynthesis of silver and gold nanoparticles: A novel biological approach. J Nanopart Res 11:1075–1085

    Article  CAS  Google Scholar 

  • Khanna P, Kaur A, Goyal D (2019) Algae-based metallic nanoparticles: Synthesis, characterization and applications. J Microbiol Methods 163:105656

    Article  CAS  PubMed  Google Scholar 

  • Kim YH, Yang X, Shi L, Lanham SA, Hilborn J, Oreffo RO, Dawson JI (2020) Bisphosphonate nanoclay edge-site interactions facilitate hydrogel self-assembly and sustained growth factor localization. Nat Commun 11(1):1365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klingensmith LM, Leadbeater NE (2003) Ligand-free palladium catalysis of aryl coupling reactions facilitated by grinding. Tetrahedron lett 44(4):765–768

    Article  CAS  Google Scholar 

  • Kora AJ, Rastogi L (2018) Green synthesis of palladium nanoparticles using gum ghatti (Anogeissus latifolia) and its application as an antioxidant and catalyst. Arab J Chem 11(7):1097–1106

    Article  CAS  Google Scholar 

  • Kumari MM, Aromal SA, Philip D (2013) Synthesis of monodispersed palladium nanoparticles using tannic acid and its optical non-linearity. Spectrochim Acta A Mol Biomol. Spectroscopy 103:130–133

    Article  Google Scholar 

  • Kuppusamy P, Yusoff MM, Maniam GP, Govindan N (2016) Biosynthesis of metallic nanoparticles using plant derivatives and their new avenues in pharmacological applications–An updated report. Saudi Pharm J 24(4):473–484

    Article  PubMed  Google Scholar 

  • Lakshmipathy R, Reddy BP, Sarada NC, Chidambaram K, Pasha SK (2015) Watermelon rind-mediated green synthesis of noble palladium nanoparticles: Catalytic application. Appl Nanosci 5:223–228

    Article  CAS  Google Scholar 

  • Lesani P, Babaei A, Ataie A, Mostafavi E (2016) Nanostructured MnCo2O4 synthesized via co-precipitation method for SOFC interconnect application. Int J Hydrogen Ener 41(45):20640–20649

    Article  CAS  Google Scholar 

  • Li C, Li W, Chen K, Ogunbiyi AT, Zhou Z, Xue F, Yuan L (2020) Palladium nanoparticles supported on surface-modified metal oxides for catalytic oxidation of lean methane. ACS Appl Nano Mater 3(12):12130–12138

    Article  CAS  Google Scholar 

  • Lim HD, Park KY, Gwon H, Hong J, Kim H, Kang K (2012) The potential for long-term operation of a lithium–oxygen battery using a non-carbonate-based electrolyte. Chem Commun 48(67):8374–8376

    Article  CAS  Google Scholar 

  • Litrán R, Sampedro B, Rojas TC, Multigner M, Sánchez-López JC, Crespo P, Fernández A (2006) Magnetic and microstructural analysis of palladium nanoparticles with different capping systems. Phys Rev B 73(5):054404

    Article  Google Scholar 

  • Macaskie LE, Mikheenko IP, Omajai JB, Stephen AJ, Wood J (2017) Metallic bionanocatalysts: potential applications as green catalysts and energy materials. Microb Biotechnol 10(5):1171–1180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malik P, Shankar R, Malik V, Sharma N, Mukherjee TK (2014) Green chemistry based benign routes for Nanoparticle synthesis. J Nanopart:2014

    Google Scholar 

  • Manikandan V, Velmurugan P, Park JH, Lovanh N, Seo SK, Jayanthi P, Oh BT (2016) Synthesis and antimicrobial activity of palladium nanoparticles from Prunus × yedoensis leaf extract. Mater Lett 185:335–338

    Article  CAS  Google Scholar 

  • Maurer-Jones MA, Gunsolus IL, Murphy CJ, Haynes CL (2013) Toxicity of engineered nanoparticles in the environment. Anal Chem 85(6):3036–3049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCloskey BD, Scheffler R, Speidel A, Bethune DS, Shelby RM, Luntz AC (2011) On the efficacy of electrocatalysis in nonaqueous Li–O2 batteries. J Am Chem Soc 133(45):18038–18041

    Article  CAS  PubMed  Google Scholar 

  • Mittal AK, Chisti Y, Banerjee UC (2013) Synthesis of metallic nanoparticles using plant extracts. Biotechnol Adv 31(2):346–356

    Article  CAS  PubMed  Google Scholar 

  • Mohana S, Sumathi S (2020) Multi-functional biological effects of palladium nanoparticles synthesized using Agaricus bisporus. J Clust Sci 31:391–400

    Article  CAS  Google Scholar 

  • Momeni S, Nabipour I (2015) A simple green synthesis of palladium nanoparticles with Sargassum alga and their electrocatalytic activities towards hydrogen peroxide. Appl Biochem Biotechnol 176:1937–1949

    Article  CAS  PubMed  Google Scholar 

  • Narayanan R, El-Sayed MA (2005) Catalysis with transition metal nanoparticles in colloidal solution: Nanoparticle shape dependence and stability. J Phys Chem B 109(26):12663–12676

    Article  CAS  PubMed  Google Scholar 

  • Nasrollahzadeh M, Sajadi SM (2016) Pd nanoparticles synthesized in situ with the use of Euphorbia granulate leaf extract: Catalytic properties of the resulting particles. J Colloid Interface Sci 462:243–251

    Article  CAS  PubMed  Google Scholar 

  • Nasrollahzadeh N, Sajjadi M, Dadashi J, Ghafuri H (2020) Pd-based nanoparticles: Plant-assisted biosynthesis, characterization, mechanism, stability, catalytic and antimicrobial activities. Adv Colloid Interf Sci 276:102103

    Article  CAS  Google Scholar 

  • National Nanotechnology Initiative (NNI). www.nano.gov

  • Ngnie G, Dedzo GK, Detellier C (2016) Synthesis and catalytic application of palladium nanoparticles supported on kaolinite-based nanohybrid materials. Dalton Trans 45(22):9065–9072

    Article  CAS  PubMed  Google Scholar 

  • Nishimura S (2001) Handbook of heterogeneous catalytic hydrogenation for organic synthesis. Wiley, New York, pp 213–215

    Google Scholar 

  • Nkosi SM, Anand K, Anandakumar S, Singh S, Chuturgoon AA, Gengan RM (2016) Design, synthesis, anticancer, antimicrobial activities and molecular docking studies of novel quinoline bearing dihydropyridines. J Photochem Photobiol B Biol 165:266–276

    Article  CAS  Google Scholar 

  • Ohtaka A, Yamaguchi T, Teratani T, Shimomura O, Nomura R (2011) Linear polystyrene-stabilized PdO nanoparticle-catalyzed Mizoroki-Heck reactions in water. Molecules 16(11):9067–9076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ong KG, Zeng K, Grimes CA (2002) A wireless, passive carbon nanotube-based gas sensor. IEEE Sensors J 2(2):82–88

    Article  CAS  Google Scholar 

  • Petla RK, Vivekanandhan S, Mishra M, Mohanty AK, Satyanarayana N (2012) Soybean (Glycine max) leaf extract based green synthesis of palladium nanoparticles. J Biomater Nanobiotechnol 3:14–19

    Article  CAS  Google Scholar 

  • Phan TTV, Huynh T-C, Manivasagan P, Mondal S, Oh J (2020) An up-to-date review on biomedical applications of palladium nanoparticles. Nano 10(1):66

    CAS  Google Scholar 

  • Pradeep T (ed) (2008) NANO: The essentials: understanding nanoscience and nanotechnology, 1st edn. McGraw-Hill Education, New Delhi, India

    Google Scholar 

  • Prasad SR, Padvi MN, Suryawanshi SS, Shaikh YI, Chaudhary LS, Samant AP, Prasad NR (2020) Bio-inspired synthesis of catalytically and biologically active palladium nanoparticles using Bos taurus urine. SN Appl Sci 2:754

    Article  CAS  Google Scholar 

  • Puja P, Kumar P (2019) A perspective on biogenic synthesis of platinum nanoparticles and their biomedical applications. Spectrochim Acta A Mol Biomol Spectroscopy 211:94–99

    Article  CAS  Google Scholar 

  • Reddy ALM, Ramaprabhu S (2008) Hydrogen adsorption properties of single-walled carbon nanotube—Nanocrystalline platinum composites. Int J Hydrog Energy 33(3):1028–1034

    Article  CAS  Google Scholar 

  • Sathishkumar M, Sneha K, Yun YS (2009) Palladium nanocrystal synthesis using Curcuma longa tuber extract. Int J Mater Sci 4(1):11–17

    Google Scholar 

  • Sathiskumar M, Sneha K, Kwak IS, Mao J, Tripathy SJ, Yun Y-S (2009) Phyto-crystallization of palladium through reduction process using Cinnamom zeylanicum bark extract. J Hazard Mater 171(1–3):400–404

    Article  Google Scholar 

  • Seshan K (ed) (2002) Handbook of thin film deposition techniques principles, methods, equipment and applications, 2nd edn. Noyes Publications, New York

    Google Scholar 

  • Shahverdi A-R, Shakibaie M, Nazari P (2011) In: Rai M, Duran N (eds) Metal nanoparticles in microbiology. German, Springer, Berlin, Heidelberg, pp 177–195

    Chapter  Google Scholar 

  • Shaik MR, Ali ZJQ, Khan M, Kuniyil M, Assal ME, Alkhathlan HZ, Al-Warthan A, Siddiqui MRH, Khan M, Adil SF (2017) Green synthesis and characterization of palladium Nanoparticles using Origanum vulgare L. extract and their catalytic activity. Molecules 22(1):165

    Article  PubMed  PubMed Central  Google Scholar 

  • Shamaila S, Sajjad AKL, N-u-L R, Farooqi SA, Jabeen N, Majeed S, Farooq I (2016) Advancements in nanoparticle fabrication by hazard free eco-friendly green routes. Appl Mater Today 5:150–199

    Article  Google Scholar 

  • Shanthi K, Vimala K, Gopi D, Kannan S (2015) Fabrication of a pH responsive DOX conjugated PEGylated palladium nanoparticle mediated drug delivery system: an in vitro and in vivo evaluation. RSC Adv 5(56):44998–45014

    Article  CAS  Google Scholar 

  • Shao C, Li W, Lin Q, Huang Q, Pi D (2017) Low temperature complete combustion of lean methane over cobalt–nickel mixed-oxide catalysts. Energ Technol 5(4):604–610

    Article  CAS  Google Scholar 

  • Sharmila G, Thirumarimurugan M, Sivakumar VM (2016) Optical, catalytic and antibacterial properties of phytofabricated CuO nanoparticles using Tecoma castanifolia leaf extract. Optik 127(19):7822–7828

    Article  CAS  Google Scholar 

  • Sharmila G, Haries S, Fathima MF, Geetha S, Kumar NM, Muthukumaran C (2017a) Enhanced catalytic and antibacterial activities of phytosynthesized palladium nanoparticles using Santalum album leaf extract. Powder Technol 320:22–26

    Article  CAS  Google Scholar 

  • Sharmila G, Fathima MF, Haries S, Geetha S, Kumar NM, Muthukumaran C (2017b) Green synthesis, characterization and antibacterial efficacy of palladium nanoparticles synthesized using Filicium decipiens leaf extract. J Mol Struct 1138:35–40

    Article  CAS  Google Scholar 

  • Shinohara T, Sato T, Taniyama T (2003) Surface ferromagnetism of Pd fine particles. Phys Rev Lett 91(19):197201

    Article  CAS  PubMed  Google Scholar 

  • Siddiqi KS, Husen A (2016) Green synthesis, characterization and uses of palladium/platinum nanoparticles. Nanoscale Res Lett 11:482

    Article  PubMed  PubMed Central  Google Scholar 

  • Sriramulu M, Shanmugam S, Ponnusamy VK (2020) Agaricus bisporus mediated biosynthesis of copper nanoparticles and its biological effects: an in-vitro study. Colloid Interface Sci Commun 35:100254

    Article  CAS  Google Scholar 

  • Tahir K, Nazir S, Li B, Ahmad A, Nasir T, Khan AU, Shah SAA, Khan ZUH, Yasin G, Hameed MU (2016) Sapium sebiferum leaf extract mediated synthesis of palladium nanoparticles and in vitro investigation of their bacterial and photocatalytic activities. J Photochem Photobiol B Biol 164:164–173

    Article  CAS  Google Scholar 

  • Taniyama T, Ohta E, Sato T (1997) Observation of 4d ferromagnetism in free-standing Pd fine particles. Europhys Lett 38(3):195

    Article  CAS  Google Scholar 

  • Teschner D, Borsodi J, Wootsch A, Révay Z, Havecker M, Knop-Gericke A, Jackson SD, Schlogl R (2008) The roles of subsurface carbon and hydrogen in palladium-catalyzed alkyne hydrogenation. Science 320(5872):86–89

    Article  CAS  PubMed  Google Scholar 

  • Thakkar KN, Mhatre SS, Parikh RY (2010) Biological synthesis of metallic nanoparticles. Nanomed Nanotechnol Bio Med 6:257–262

    Article  CAS  Google Scholar 

  • The Royal Society (2004) Nanoscience and nanotechnologies: opportunities and uncertainties. The Royal Society and The Royal Academy of Engineering, London, UK

    Google Scholar 

  • Theriot CM, Koenigsknecht MJ, Carlson PE, Hatton GE, Nelson AM, Li B, Huffnagle GB, Li ZJ, Young VB (2014) Antibiotic-induced shifts in the mouse gut microbiome and metabolome increase susceptibility to Clostridium difficile infection. Nat Commun 5:3114

    Article  PubMed  Google Scholar 

  • Tiwari G, Tiwari R, Sriwastawa B, Bhati L, Pandey S, Pandey P, Bannerjee SK (2012) Drug delivery systems: An updated review. Int J Pharm Investig 2(1):2–11

    Article  PubMed  PubMed Central  Google Scholar 

  • Ullah S, Ahmad A, Khan A, Zhang J, Raza M, Ur Rahman A, Tariq M, Zada S, Yuan Q (2018) Palladium nanoparticles synthesis, characterization using glucosamine as the reductant and stabilizing agent to explore their antibacterial & catalytic applications. Microb Pathog 125:150–157

    Article  CAS  PubMed  Google Scholar 

  • Vaghela H, Shah R, Pathan A (2018) Palladium nanoparticles mediated through bauhinia variegata: Potent in vitro anticancer activity against mcf-7 cell lines and antimicrobial assay. Curr Nanomater 3(3):168–177

    Article  CAS  Google Scholar 

  • Veisi H, Rashtiani A, Barjasteh V (2016) Biosynthesis of palladium nanoparticles using Rosa canina fruit extract and their use as a heterogeneous and recyclable catalyst for Suzuki–Miyaura coupling reactions in water. Appl Organomet Chem 30(4):231–235

    Article  CAS  Google Scholar 

  • Vigushin DM, Ali S, Pace PE, Mirsaidi N, Ito K, Adcock I, Coombes RC (2001) Trichostatin A is a histone deacetylase inhibitor with potent antitumor activity against breast cancer in vivo. Clin Cancer Res 7(4):971–976

    CAS  PubMed  Google Scholar 

  • Wilson OM, Knecht MR, Garcia-Martinez JC, Crooks RM (2006) Effect of Pd nanoparticle size on the catalytic hydrogenation of allyl alcohol. J Am Chem Soc 128:4510–4511

    Article  CAS  PubMed  Google Scholar 

  • Wu P, Meng L, Wang H, Zhou J, Xu G, Wang S, Xi L, Chen G, Wang B, Zhu T, Lu Y (2005) Role of hTERT in apoptosis of cervical cancer induced by histone deacetylase inhibitor. Biochem Biophys Res Commun 335(1):36–44

    Article  CAS  PubMed  Google Scholar 

  • Xiao C, Ding H, Shen C, Yang T, Hui C, Gao HJ (2009) Shape-controlled synthesis of palladium nanorods and their magnetic properties. J Phys Chem C 113(31):13466–13469

    Article  CAS  Google Scholar 

  • Yadi M, Mostafavi E, Saleh B, Davaran S, Aliyeva I, Khalilov R, Milani M (2018) Current developments in green synthesis of metallic nanoparticles using plant extracts. Artif Cells Nanomed Biotechnol 46(sup3):S336–S343

    Article  PubMed  Google Scholar 

  • Yenumula VR, Nagadesi PK (2018) Biogenic synthesis of engineered platinum nanomaterial: A review. Int J Sci Eng Dev Res 3(4):216–220

    Google Scholar 

  • Yin H, Liu S, Zhang C, Bao J, Zheng Y, Han M, Dai Z (2014) Well-coupled graphene and Pd-based bimetallic nanocrystals nanocomposites for electrocatalytic oxygen reduction reaction. ACS Appl Mater Interfaces 6(3):2086–2094

    Article  CAS  PubMed  Google Scholar 

  • Zahoor A, Christy M, Jeon JS, Lee YS, Nahm KS (2015) Improved lithium oxygen battery performance by addition of palladium nanoparticles on manganese oxide nanorod catalysts. J Solid State Electrochem 19:1501–1509

    Article  CAS  Google Scholar 

  • Zakaria Z, Kamarudin SK (2016) Direct conversion technologies of methane to methanol: an overview. Renew Sust Energ Rev 65:250–261

    Article  CAS  Google Scholar 

  • Zhang QM, Li H, Poh M, Xia F, Cheng ZY, Xu H, Huang C (2002) An all-organic composite actuator material with a high dielectric constant. Nature 419(6904):284–287

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Xiao F, Xi J, Sun T, Xiao S, Wang H, Liu Y (2014) Encapsulating Pd nanoparticles in double-shelled graphene@carbon hollow spheres for excellent chemical catalytic property. Sci Rep 4(1):4053

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang XF, Yan Q, Shen W, Gurunathan S (2016) Trichostatin A enhances the apoptotic potential of palladium nanoparticles in human cervical cancer cells. Int J of mol sci 17(8):1354

    Article  Google Scholar 

  • Zhou P, Dai Z, Fang M, Huang X, Bao J, Gong J (2007) Novel dendritic palladium nanostructure and its application in biosensing. J Phy Chem C 111(34):12609–12616

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aruna Kumar Barick .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pradhan, R.K., Mohapatra, P., Shubhadarshinee, L., Jali, B.R., Barick, A.K., Mohapatra, P. (2023). Review on Green Synthesis, Modification, Characterization, Properties, and Applications of Palladium Nanoparticles in Biomedical Applications. In: Sheikh, F.A., Majeed, S., Beigh, M.A. (eds) Interaction of Nanomaterials With Living Cells. Springer, Singapore. https://doi.org/10.1007/978-981-99-2119-5_21

Download citation

Publish with us

Policies and ethics