Skip to main content
Log in

Improved lithium oxygen battery performance by addition of palladium nanoparticles on manganese oxide nanorod catalysts

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The need for an alternative electrocatalyst to replace Pt-based noble materials is a major concern of the Li–air battery technology. In this work, α-MnO2 nanorods are synthesized by a simple hydrothermal technique and are modified with palladium (Pd) nanoparticles to form Pd-deposited α-MnO2 (Pd/α-MnO2) nanostructures. The physical characteristics of the thus prepared materials are analyzed by X-ray diffraction (XRD), SEM, and Brunauer–Emmett–Teller (BET) techniques. These analyses confirmed the successful synthesis of 8∼10-nm-sized Pd nanoparticles deposited on 82∼85-nm-sized α-MnO2 nanorods. The catalytic activities of the synthesized Pd/α-MnO2 nanostructure for oxygen reduction reaction and evolution reaction were studied by measuring linear sweeping voltammograms in aqueous solution. The as-prepared material exhibited high electrocatalytic activities which were comparable to that of the commercial Pt/C catalysts. The Pd/α-MnO2 nanostructures were then examined as a bifunctional electrocatalyst in the air cathode of Li–air batteries in non-aqueous media. The Li–air batteries fabricated with the Pd/α-MnO2 catalyst deliver a high discharge capacity with low overpotential compared to the other batteries without Pd deposition or any catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Girishkumar G, McCloskey B, Luntz AC, Swanson S, Wilcke W (2010) J Phys Chem Lett 1:2193–2203

    Article  CAS  Google Scholar 

  2. Park M, Sun H, Lee H, Lee J, Cho J (2012) Adv Energy Mater 2(7):780–800

    Article  CAS  Google Scholar 

  3. Bruce PG, Freunberger SA, Hardwick LJ, Tarascon JM (2012) Nat Mater 11:19–29

    Article  CAS  Google Scholar 

  4. Imanishi N, Yamamoto O (2014) Mater today 17:24–30

    Article  CAS  Google Scholar 

  5. Zahoor A, Christy M, Hwang YJ, Nahm KS, J Electrochem Sci Technol 3(1):14–23

  6. Jung H, Hassoun J, Park J, Sun Y, Scrosati B (2012) Nat Chem 4:579–585

    Article  CAS  Google Scholar 

  7. Laoire CO, Mukerjee S, Abraham KM, Plichta EJ, Hendrickson MA (2009) J Phys Chem C 113(46):20127–20134

    Article  CAS  Google Scholar 

  8. Mo Y, Ong SP, Ceder G (2011) Phys Rev B 84:205446. doi:10.1103/PhysRevB.84.205446

    Article  Google Scholar 

  9. Debart A, Bao J, Armstrong G, Bruce PG (2007) J Power Sources 174:1177

    Article  CAS  Google Scholar 

  10. Horn YS, Park S, Xiao J, Zhang J, Wang Y, Liu (2012) J ACS Catal 2(5):844–857

    Article  Google Scholar 

  11. Su D, Kim H, Kim W, Wang G (2013) J Power Sources 244:488–493

    Article  CAS  Google Scholar 

  12. Thapa A, Shin T, Ida S, Sumanasekera GU, Sunkara MK, Ishihara T J Power Sources 220: 211–216

  13. Lu YC, Xu Z, Gasteiger HA, Chen S, Schifferli KH, Horn YS (2010) J Am Chem Soc 132(35):12170–12171

    Article  CAS  Google Scholar 

  14. Lu YC, Gasteiger HA, Horn YS (2011) J Am Chem Soc 133(47):19048–19051

    Article  CAS  Google Scholar 

  15. Oloniyo O, Kumar S, Scott K (2012) J Electron Mater 41(5):921–927

    Article  CAS  Google Scholar 

  16. Debart A, Paterson AJ, Bao J, Bruce PG (2008) Angew Chem 120:4597–4600

    Article  Google Scholar 

  17. Truong TT, Liu Y, Ren Y, Trahey L, Sun Y (2012) ACS Nano 6(9):8067–8077

    Article  CAS  Google Scholar 

  18. Zahoor A, Jeon JS, Jang HS, Christy M, Nahm KS (2014) Science of Advanced Materials

  19. Zahoor A, Jang HS, Jeon JS, Christy M, Hwang YJ, Nahm KS (2014) RSC Adv 4:8973–8977

    Article  CAS  Google Scholar 

  20. Cheng F, Su Y, Liang J, Tao Z, Chen J (2010) Chem Mater 22:898–905

    Article  CAS  Google Scholar 

  21. Neburchilov V, Wang H, Martin JJ, Qu W (2010) J Power Sources 195:1271–1291

    Article  CAS  Google Scholar 

  22. Lu J, Lei Y, Lau KC, Luo X, Du P, Wen J, Assary RS, Das U, Miller DJ, Elam JW, Albishri HM, El-Hady D, Sun YK, Curtiss LA, Amine K, Nature commun A nanostructured cathode architecture for low charge overpotential in lithium-oxygen batteries. DOI:10.1038/ncomms3383

  23. Thapa A, Hidaka Y, Hagiwara H, Ida S, Ishihara T (2011) J Electrochem Soc 158(12):A1483–A1489

    Article  CAS  Google Scholar 

  24. Ding K (2010) Int J Electrochem Sci 5:668–681

    CAS  Google Scholar 

  25. Sun W, Hsu A, Chen R (2011) J Power Sources 196:4491–4498

    Article  CAS  Google Scholar 

  26. Salker AV, Kunkalekar RK (2009) Catal Commun 10:1776–1780

    Article  CAS  Google Scholar 

  27. Thapa A, Ishihara T (2011) J Power Sources 196:7016–7020

    Article  CAS  Google Scholar 

  28. Zhang M, Xu Q, Sang L, Ding F, Liu X, Jiao L (2014) Trans Nonferrous Metals Soc China 24:164–170

    Article  CAS  Google Scholar 

  29. Jung KN, Riaz A, Lee SB, Lim TH, Park SJ, Song RH, Yoon S, Shin KH, Lee JW (2013) J Power Sources 244:328–335

    Article  CAS  Google Scholar 

  30. Thapa A, Saimen K, Ishihara T (2010) Electrochem Solid-State Lett 13(11):A165–A167

    Article  CAS  Google Scholar 

  31. Zhu J, Su Y, Cheng F, Chen J (2007) J Power Sources 166:331–336

    Article  CAS  Google Scholar 

  32. Niazi AR, Li SK, Wang YC, Liu JX, Hu ZY, Usman Z (2014) Trans Nonferrous Metals Soc China 24:136145

    Article  Google Scholar 

  33. Balaish M, Kraytsberg A, Ein-El Y (2014) Phys Chem Chem Phys 16:2801–2822

    Article  CAS  Google Scholar 

  34. McCloskey BD, Bethune DS, Shelby RM, Girishkumar G, Luntz AC (2011) J Phys Chem Lett 2(10):1161–1166

    Article  CAS  Google Scholar 

  35. Bryantsev VS, Giordani V, Walker W, Blanco M, Zecevic S, Sasaki K, Uddin J, Addison D, Chase GV (2011) J Phys Chem A 115:12399–12409

    Article  CAS  Google Scholar 

  36. McCloskey BD, Scheffler R, Speidel A, Bethune DS, Shelby RM, Luntz AC (2011) J Am Chem Soc 133:18038–18041

    Article  CAS  Google Scholar 

  37. Bethune DS, Shelby RM, Girishkumar G, Luntz AC, McCloskey BD (2011) J Phys Chem Lett 2:1161–1166

    Article  Google Scholar 

  38. Lim HD, Park KY, Gwon H, Hong J, Kim H, Kang K (2012) Chem Commun 48:8374–8376

    Article  CAS  Google Scholar 

  39. Hou J, Yang M, Ellis MW, Moorec RB, Yid B (2012) Phys Chem Chem Phys 14:13487–13501

    Article  CAS  Google Scholar 

  40. Wang X, Li Y (2002) J Am Chem Soc 124(12):2880–2881

    Article  CAS  Google Scholar 

  41. Zahoor A, Christy M, Hwang YJ, Lim YR, Kim P, Nahm KS (2014) Appl Catal B Environ 147:633–641

    Article  CAS  Google Scholar 

  42. Lu YC, Gasteiger H, Horn YS (2011) J Am Chem Soc 133:19048–19051

    Article  CAS  Google Scholar 

  43. Peng Z, Freunberger SA, Hardwick LJ, Chen Y, Giordani V, Bardé F, Novák P, Graham D, Tarascon JM, Bruce PG (2011) Angew Chem Int Ed 50:6351–6355

    Article  CAS  Google Scholar 

  44. Norskov JK, Rossmeisel J, Logadottir A, Lindqvist L, Kitchin JR, Bligaard T, Jonsson H (2004) J Phys Chem B 108:17886–17892

    Article  CAS  Google Scholar 

  45. Wang YX, Balbuena PB (2005) J Phys Chem B 109:18902–18906

    Article  CAS  Google Scholar 

  46. Lima FHB, Calegaro ML, Ticianelli EA (2007) Electrochim Acta 52:3732–3738

    Article  CAS  Google Scholar 

  47. Ida S, Thapa AK, Hidaka Y, Okamoto Y, Matsuka M, Hagiwara H, Ishihara T (2012) J Power Sources 203:159–164

    Article  CAS  Google Scholar 

  48. Zhang GQ, Zheng JP, Liang R, Zhang C, Wang B, Au M, Hendrickson M, Plichta EJ (2011) J Electrochem Soc 158:A822–A827

    Article  CAS  Google Scholar 

  49. Ogasawara T, Debart A, Holzapfel M, Novak P, Bruce PG (2006) J Am Chem Soc 128:1390–1393

    Article  CAS  Google Scholar 

  50. Padbury R, Zhang X (2011) J Power Sources 196(10):4436–4444

    Article  CAS  Google Scholar 

  51. Xu D, Wang ZI, Xu JJ, Zhang LL, Zhang XB (2012) Chem Commun 48:6948–6950

    Article  CAS  Google Scholar 

  52. Han X, Hu Y, Yang J, Cheng F, Chen J (2014) Chem Commun 50:1497–1499

    Article  CAS  Google Scholar 

  53. Choi R, Jung J, Kim G, Song K, Kim Y, Jung S, Han Y, Song H, Kang Y (2014) Energy Environ Sci 7:1362–1368

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Human Resources Development program (No. 20114030200060) of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government Ministry of Trade, Industry and Energy. This work is also supported by the Basic Science Research Program through the National Research Foundation (NRF) funded by the Ministry of Education (No. 2013R1A1A2012656).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yun Sung Lee or Kee Suk Nahm.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zahoor, A., Christy, M., Jeon, J.S. et al. Improved lithium oxygen battery performance by addition of palladium nanoparticles on manganese oxide nanorod catalysts. J Solid State Electrochem 19, 1501–1509 (2015). https://doi.org/10.1007/s10008-015-2739-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-015-2739-5

Keywords

Navigation