Skip to main content
Log in

A Simple Green Synthesis of Palladium Nanoparticles with Sargassum Alga and Their Electrocatalytic Activities Towards Hydrogen Peroxide

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

This study presents the synthesis of palladium nanoparticles (PdNPs) using the extract derived from the marine alga, Sargassum bovinum, collected from Persian Gulf area. Water-soluble compounds that exist in the marine alga extract were the main cause of the reduction of palladium ions to Pd nanoparticles. The basic properties of PdNPs produced in this method were confirmed by UV–visible spectroscopy, transmission electron microscopy (TEM), X-ray diffraction (XRD), energy-dispersive X-ray (EDX) analysis, and Fourier transform infrared spectroscopy (FTIR). TEM confirmed the monodispersed and octahedral shape of PdNPs within the size ranges from 5 to 10 nm. Catalytic performance of the biosynthetic PdNPs was investigated by electrochemical reduction of hydrogen peroxide (H2O2). PdNP-modified carbon ionic liquid electrode (PdNPs/CILE) was developed as a nonenzymatic sensor for the determination of hydrogen peroxide. Amperometric measurements showed that PdNPs/CILE is a reliable sensor for the detection of hydrogen peroxide in the range of 5.0 μM–15.0 mM with a sensitivity of 284.35 mAmM−1 cm−2 and a detection limit of 1.0 μM. Moreover, PdNPs/CILE exhibits a wide linear range, high sensitivity and selectivity, and excellent stability for the detection of H2O2 in aqueous solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kainz, Q. M., Linhardt, R., Grass, R. N., Vilé, G., Pérez-Ramírez, J., Stark, W. J., & Reiser, O. (2014). Palladium nanoparticles supported on magnetic carbon-coated cobalt nanobeads: highly active and recyclable catalysts for alkene hydrogenation. Advanced Functional Materials, 24, 2020–2027.

    Article  CAS  Google Scholar 

  2. Li, Y., Dai, Y., Yang, Z., & Li, T. (2014). Controllable synthesis of palladium nanoparticles and their catalytic abilities in Heck and Suzuki reactions. Inorganica Chimica Acta, 414, 59–62.

    Article  CAS  Google Scholar 

  3. Safavi, A., & Momeni, S. (2012). Highly efficient degradation of azo dyes by palladium/hydroxyapatite/Fe3O4 nanocatalyst. Journal of Hazardous Materials, 201–202, 125–131.

    Article  Google Scholar 

  4. Jukk, K., Kongi, N., Matisen, L., Kallio, T., Kontturi, K., & Tammeveski, K. (2014). Electroreduction of oxygen on palladium nanoparticles supported on nitrogen-doped graphene nanosheets. Electrochimica Acta, 137, 206–212.

    Article  CAS  Google Scholar 

  5. Safavi, A., Maleki, N., Farjami, F., & Farjami, E. (2009). Electrocatalytic oxidation of formaldehyde on palladium nanoparticles electrodeposited on carbon ionic liquid composite electrode. Journal of Electroanalytical Chemistry, 626, 75–79.

    Article  CAS  Google Scholar 

  6. Liu, Y., Sun, G., Jiang, C., Zheng, X. T., Zheng, L., & Li, C. M. (2014). Highly sensitive detection of hydrogen peroxide at a carbon nanotube fiber microelectrode coated with palladium nanoparticles. Mikrochimica Acta, 181, 63–70.

    Article  CAS  Google Scholar 

  7. Jiang, F., Yue, R., Du, Y., Xu, J., & Yang, P. (2013). A one-pot ‘green’ synthesis of Pd-decorated PEDOT nanospheres for nonenzymatic hydrogen peroxide sensing. Biosensors and Bioelectronics, 44, 127–131.

    Article  CAS  Google Scholar 

  8. Bian, X., Guo, K., Liao, L., Xiao, J., Kong, J., Ji, C., & Liu, B. (2012). Nanocomposites of palladium nanoparticle-loaded mesoporous carbon nanospheres for the electrochemical determination of hydrogen peroxide. Talanta, 99, 256–261.

    Article  CAS  Google Scholar 

  9. Jamal, M., Hasan, M., Mathewson, A., & Razeeb, K. M. (2012). Non-enzymatic and highly sensitive H2O2 sensor based on Pd nanoparticle modified gold nanowire array electrode. Journal of the Electrochemical Society, 159, B825–B829.

    Article  CAS  Google Scholar 

  10. Tang, Y., Cao, Y., Wang, S., Shena, G., & Yu, R. (2009). Surface attached-poly(acrylic acid) network as nanoreactor to in-situ synthesize palladium nanoparticles for H2O2 sensing. Sensors Actuat B, 137, 736–740.

    Article  CAS  Google Scholar 

  11. Rastogi, P. K., Ganesan, V., & Krishnamoorthi, S. (2014). Palladium nanoparticles decorated gaur gum based hybrid material for electrocatalytic hydrazine determination. Electrochimica Acta, 125, 593–600.

    Article  CAS  Google Scholar 

  12. Shavel, A., Cadavid, D., Ibanez, M., Correte, A., & Cabot, A. (2012). Continuous production of Cu2ZnSnS4 nanocrystals in a flow reactor. Journal of the American Chemical Society, 134, 1438–1441.

    Article  CAS  Google Scholar 

  13. Maleki, N., Safavi, A., Farjami, E., & Tajabadi, F. (2008). Palladium nanoparticle decorated carbon ionic liquid electrode for highly efficient electrocatalytic oxidation and determination of hydrazine. Analitica Chimica Acta, 611, 151–155.

    Article  CAS  Google Scholar 

  14. Albrecht, M. A., Evans, C. W., & Raston, C. L. (2006). Green chemistry and the health implications of nanoparticles. Green Chemistry, 8, 417–432.

    Article  CAS  Google Scholar 

  15. Kulkarni, N., Muddapur, U. (2014). Biosynthesis of metal nanoparticles: a review. Journal Nanotechnology 510246.

  16. Asmathunisha, N., & Kathiresan, K. (2013). A review on biosynthesis of nanoparticles by marine organisms. Colloids and Surfaces, B: Biointerfaces, 103, 283–287.

    Article  CAS  Google Scholar 

  17. Inbakandan, D., Venkatesan, R., & Ajmal, K. S. (2010). Biosynthesis of gold nanoparticles utilizing marine sponge Acanthella elongate (Dendy, 1905). Colloids and Surfaces, B: Biointerfaces, 81, 634–639.

    Article  CAS  Google Scholar 

  18. Liu, L., Heinrich, M., Myers, S., & Dworjanyn, S. A. (2012). Towards a better understanding of medicinal uses of the brown seaweed Sargassum in traditional Chinese medicine: a phytochemical and pharmacological review. Journal of Ethnopharmacology, 142, 591–619.

    Article  Google Scholar 

  19. Yende, S., Harle, U., & Chaugule, B. (2014). Therapeutic potential and health benefits of Sargassum species. Pharmacognosy Reviews, 8, 1–7.

    Article  Google Scholar 

  20. Singaravelu, G., Arockiamary, J. S., Ganesh, K. V., & Govindaraju, K. (2007). A novel extracellular synthesis of monodisperse gold nanoparticles using marine alga Sargassum wightii Greville. Colloids and Surfaces. B: Biointerfaces, 57, 97–101.

    Article  CAS  Google Scholar 

  21. Mata, Y. N., Torres, E., Blázquez, M. L., Ballester, A., González, F., & Mũnoz, J. A. (2009). Gold(III) biosorption and bioreduction with the brown alga fucus vesiculosus. Journal of Hazardous Materials, 166, 612–618.

    Article  CAS  Google Scholar 

  22. Ramakritinan, C. M., Kaarunya, E., Shankar, S., & Kumaraguru, A. K. (2013). Antibacterial effects of Ag, Au and bimetallic (Ag-Au) nanoparticles synthesized from red algae. Solid State Phenomena, 201, 211–230.

    Article  Google Scholar 

  23. Vivek, M., Kumar, P. S., Steffi, S., & Sudha, S. (2011). Biogenic silver nanoparticles by Gelidiella acerosa extract and their antifungal effects. Avicenna Journal of Medical Biotechnology, 3, 143–148.

    CAS  Google Scholar 

  24. Schröfel, A., Kratošová, G., Bohunická, M., Dobročka, E., & Vávra, I. (2011). Biosynthesis of gold nanoparticles using diatoms-silica gold and EPS-gold bio nanocomposite formation. Journal of Nanoparticle Research, 13, 3207–3216.

    Article  Google Scholar 

  25. Yang, X., Li, Q., Wang, H., Huang, J., Lin, L., Wang, W., Sun, D., Su, Y., Opiyo, J. B., Hong, L., Wang, Y., He, N., & Jia, L. (2010). Green synthesis of palladium nanoparticles using broth of Cinnamomum camphora leaf. Journal of Nanoparticle Research, 12, 1589–1598.

    Article  CAS  Google Scholar 

  26. Sathishkumar, M., Sneha, K., Kwak, I. S., Mao, J., Tripathy, S. J., & Yun, Y.-S. (2009). Phyto-crystallization of palladium through reduction process using Cinnamomum zeylanicum bark extract. Journal of Hazardous Materials, 171, 400–404.

    Article  CAS  Google Scholar 

  27. Jia, L., Zhang, Q., Li, Q., & Song, H. (2009). The biosynthesis of palladium nanoparticles by antioxidants in Gardenia jasminoides Ellis: long lifetime nanocatalysts for p-nitrotoluene hydrogenation. Nanotechnology, 20, 385601.

    Article  Google Scholar 

  28. Kriz, K., Anderlund, M., & Kriz, D. (2001). Real-time detection of L-ascorbic acid and hydrogen peroxide in crude food samples employing a reversed sequential differential measuring technique of the SIRE technology based biosensor. Biosensors and Bioelectronics, 16, 363–369.

    Article  CAS  Google Scholar 

  29. Wang, J. (2008). Electrochemical glucose biosensors. Chemical Reviews, 108, 814–825.

    Article  CAS  Google Scholar 

  30. Safavi, A., Maleki, N., & Farjami, E. (2009). Electrodeposited silver nanoparticles on carbon ionic liquid electrode for electrocatalytic sensing of hydrogen peroxide. Electroanalysis, 21, 1533–1538.

    Article  CAS  Google Scholar 

  31. Huang, J., Wang, D., Hou, H., & You, T. (2008). Electrospun palladium nanoparticle-loaded carbon nanofibers and their electrocatalytic activities towards hydrogen peroxide and NADH. Advanced Functional Materials, 18, 441–448.

    Article  CAS  Google Scholar 

  32. Pandey, P. C., & Pandey, A. K. (2012). Surface modification using Prussian blue–gold (I)–palladium nanocomposite: towards bioelectrocatalytic probing of hydrogen peroxide. BioNanoScience, 2, 127–134.

    Article  Google Scholar 

  33. Aziz, M. A., & Kawde, A.-N. (2013). Nanomolar amperometric sensing of hydrogen peroxide using a graphite pencil electrode modified with palladium nanoparticles. Mikrochimica Acta, 180, 837–843.

    Article  Google Scholar 

  34. Li, M., Xu, S., Tang, M., Liu, L., Gao, F., & Wang, Y. (2011). Direct electrochemistry of horseradish peroxidase on graphene-modified electrode for electrocatalytic reduction towards H2O2. Electrochimica Acta, 56, 1144–1149.

    Article  CAS  Google Scholar 

  35. Liu, H., Duan, C., Su, X., Dong, X., Huang, Z., Shen, W., & Zhu, Z. (2014). A hemoglobin encapsulated titania nanosheet modified reduced graphene oxide nanocomposite as a mediator-free biosensor. Sensors and Actuators B: Chemical, 203, 303–310.

    Article  CAS  Google Scholar 

  36. Safavi, A., & Farjami, F. (2010). Hydrogen peroxide biosensor based on a myoglobin/hydrophilic room temperature ionic liquid film. Analytical Biochemistry, 402, 20–25.

    Article  CAS  Google Scholar 

  37. Yang, F., Cheng, K., Wu, T., Zhang, Y., Yin, J., Wang, G., & Cao, D. (2013). Au-Pd nanoparticles supported on carbon fiber cloth as the electrocatalyst for H2O2 electroreduction in acid medium. Journal of Power Sources, 233, 252–258.

    Article  CAS  Google Scholar 

  38. Maleki, N., Safavi, A., & Tajabadi, F. (2006). High-performance carbon composite electrode based on an ionic liquid as a binder. Analytical Chemistry, 78, 3820–3826.

    Article  CAS  Google Scholar 

  39. Safavi, A., Momeni, S., & Tohidi, M. (2012). Silver-palladium nanoalloys modified carbon ionic liquid electrode with enhanced electrocatalytic activity towards formaldehyde oxidation. Electroanalysis, 24, 1981–1988.

    Article  CAS  Google Scholar 

  40. Yonezawa, T., Imamura, K., & Kimizuka, N. (2001). Direct preparation and size control of palladium nanoparticle hydrosols by water-soluble isocyanide ligands. Langmuir, 17, 4701–4703.

    Article  CAS  Google Scholar 

  41. Zhang, X., Yin, H., Wang, J., Chang, L., Gao, Y., Liu, W., & Tang, Z. (2013). Shape-dependent electrocatalytic activity of monodispersed palladium nanocrystals toward formic acid oxidation. Nanoscale, 5, 8392–8397.

    Article  CAS  Google Scholar 

  42. Shao, P., Chen, X., & Sun, P. (2014). Chemical characterization, antioxidant and antitumor activity of sulfated polysaccharide from Sargassum horneri. Carbohydrate Polymers, 105, 260–269.

    Article  CAS  Google Scholar 

  43. Bo, X., Bai, J., Ju, J., & Guo, L. (2010). A sensitive amperometric sensor for hydrazine and hydrogen peroxide based on palladium nanoparticles/onion-like mesoporous carbon vesicle. Analitica Chimica Acta, 675, 29–35.

    Article  CAS  Google Scholar 

  44. Nandini, S., Nalini, S., Manjunatha, R., Shanmugam, S., Melo, J. S., & Suresh, G. S. (2013). Electrochemical biosensor for the selective determination of hydrogen peroxide based on the co-deposition of palladium, horseradish peroxidase on functionalized-graphene modified graphite electrode as composite. Journal of Electroanalytical Chemistry, 689, 233–242.

    Article  CAS  Google Scholar 

  45. Kong, L., Lu, X., Bian, X., Zhang, W., & Wang, C. (2010). A one-pot synthetic approach to prepare palladium nanoparticles embedded hierarchically porous TiO2 hollow spheres for hydrogen peroxide sensing. Journal of Solid State Chemistry, 183, 2421–2425.

    Article  CAS  Google Scholar 

  46. You, J.-M., Jeong, Y. N., Ahmed, M. S., Kim, S. K., Choi, H. C., & Jeon, S. (2011). Reductive determination of hydrogen peroxide with MWCNTs-Pd nanoparticles on a modified glassy carbon electrode. Biosensors and Bioelectronics, 26, 2287–2291.

    Article  CAS  Google Scholar 

  47. Zhang, W.-J., Bai, L., Lu, L.-M., & Chen, Z. (2012). A novel and simple approach for synthesis of palladium nanoparticles on carbon nanotubes for sensitive hydrogen peroxide detection. Colloids and Surfaces, B: Biointerfaces, 97, 145–149.

    Article  CAS  Google Scholar 

  48. Sun, A., Sheng, Q., & Zheng, J. (2012). A hydrogen peroxide biosensor based on direct electrochemistry of hemoglobin in palladium nanoparticles/graphene–chitosan nanocomposite film. Applied Biochemistry and Biotechnology, 166, 764–773.

    Article  CAS  Google Scholar 

  49. Chen, X.-M., Cai, Z.-X., Huang, Z.-Y., Oyama, M., Jiang, Y.-Q., & Chen, X. (2013). Ultrafine palladium nanoparticles grown on graphene nanosheets for enhanced electrochemical sensing of hydrogen peroxide. Electrochimica Acta, 97, 398–403.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Momeni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Momeni, S., Nabipour, I. A Simple Green Synthesis of Palladium Nanoparticles with Sargassum Alga and Their Electrocatalytic Activities Towards Hydrogen Peroxide. Appl Biochem Biotechnol 176, 1937–1949 (2015). https://doi.org/10.1007/s12010-015-1690-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1690-3

Keywords

Navigation