Skip to main content

Applicability of Fungal Xylanases in Food Biotechnology

  • Chapter
  • First Online:
Fungi and Fungal Products in Human Welfare and Biotechnology
  • 572 Accesses

Abstract

The purpose of food processing is to produce better-quality foods having good organoleptic properties. For centuries, enzymes have been in use for food processing. In the last three decades, xylan-hydrolyzing enzymes have been explored for their utility in food processing industries. Xylanases find applications in the bioconversion of lignocellulosics, fruit juice extraction and clarification, extraction of edible oils, saccharifying agro-residues, improving the quality of bread, and wine making. The use of xylanases in generating xylooligosaccharides (XOs) as prebiotics, which are known to modulate the gut microbiota, received significant attention in the recent years. The discovery of several microbial xylanases has enriched the CAZy database that accounts for more than 5000 different GH-10 and GH-11 xylanases from prokaryotic as well as eukaryotic microbes. This review focuses on the applications of microbial xylanases in food processing industries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arranz-Otaegui A, Carretero LG et al (2018) Archaeobotanical evidence reveals the origins of bread 14,400 years ago in northeastern Jordan. Proc Natl Acad Sci U S A 115:7925–7930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Diamond J (2002) Evolution, consequences and future of plant and animal domestication. Nature 418:700–707

    Article  CAS  PubMed  Google Scholar 

  3. Dubreuil L, Nadel D (2015) The development of plant food processing in the Levant: insights from use-wear analysis of early epipalaeolithic ground stone tools. Philos Trans R Soc B Biol Sci 370(1682):20140357

    Article  Google Scholar 

  4. Gurung N, Ray S et al (2013) A broader view: microbial enzymes and their relevance in industries, medicine, and beyond. BioMed Res Int 2013

    Google Scholar 

  5. Kirk O, Borchert TV et al (2002) Industrial enzyme applications. Curr Opin Biotechnol 13:345–351

    Article  CAS  PubMed  Google Scholar 

  6. Whitehurst RJ, van Oort M (2009) Enzymes in food technology. Wiley-Blackwell, Singapore, pp 1–368

    Google Scholar 

  7. Scheller HV, Ulvskov P (2010) Hemicelluloses. Ann. Rev. Plant Biol 61:263–289

    Article  CAS  Google Scholar 

  8. Chemical structure of xylans and their interaction in the plant cell walls. Progress in Biotechnology https://agris.fao.org

  9. Bhardwaj RL, Pandey S (2011) Juice blends—a way of utilization of under-utilized fruits, vegetables, and spices: a review. Crit Rev Food Sci Nutr 51:563–570. https://doi.org/10.1080/10408391003710654

    Article  CAS  PubMed  Google Scholar 

  10. Alagöz D, Varan NE et al (2022) Immobilization of xylanase on differently functionalized silica gel supports for orange juice clarification. Process Biochem 113:270–280

    Article  Google Scholar 

  11. Altınel B, Ünal SS (2017) The effects of certain enzymes on the rheology of dough and the quality characteristics of bread prepared from wheat meal. J Food Sci Technol 54:1628–1637

    Article  PubMed  PubMed Central  Google Scholar 

  12. Anand A, Kumar V et al (2013) Characteristics of thermostable endoxylanase and β-xylosidase of the extremely thermophilic bacterium Geobacillus thermodenitrificans TSAA1 and its applicability in generating xylooligosaccharides and xylose from agro-residues. Extremophiles 17(3):357–366

    Article  CAS  PubMed  Google Scholar 

  13. Kubicek CP (2020) Application of Trichoderma enzymes in the food and feed industries. Trichoderma and Gliocladium 2:341–356

    Google Scholar 

  14. Awalgaonkar G, Sarkar S et al (2015) Xylanase as a processing aid for papads, an Indian traditional food based on black gram. LWT Food Sci Technol 62:1148–1153

    Article  CAS  Google Scholar 

  15. Ayyappan P, Abirami A et al (2016) Physicochemical properties of cookies enriched with xylooligosaccharides. Food Sci Technol Int 22:420–428

    Article  CAS  PubMed  Google Scholar 

  16. Bala A, Singh B (2017) Concomitant production of cellulase and xylanase by thermophilic mould Sporotrichum thermophile in solid state fermentation and their applicability in bread making. World J Microbiol Biotechnol 33:1–10

    Article  CAS  Google Scholar 

  17. de Vries RP, Vankuyk PA et al (2002) The Aspergillus niger faeB gene encodes a second feruloyl esterase involved in pectin and xylan degradation and is specifically induced in the presence of aromatic compounds. Biochem J 363(2):377–386

    Article  PubMed  PubMed Central  Google Scholar 

  18. Garg G, Singh A, Kaur A et al (2016) Microbial pectinases: an ecofriendly tool of nature for industries. 3 Biotech 6:1–13

    Article  Google Scholar 

  19. Gowdhaman D, Ponnusami V (2015) Production and optimization of xylooligosaccharides from corncob by Bacillus aerophilus KGJ2 xylanase and its antioxidant potential. Int J Biol Macromol 79:595–600

    Article  CAS  PubMed  Google Scholar 

  20. Poutanen K (1997) Enzymes: an important tool in the improvement of the quality of cereal foods. Trends Food Sci Technol 8:300–306

    Article  Google Scholar 

  21. Raweesri P, Riangrungrojana P et al (2008) α-L-Arabinofuranosidase from Streptomyces sp. PC22: purification, characterization and its synergistic action with xylanolytic enzymes in the degradation of xylan and agricultural residues. Bioresour Technol 99:8981–8986

    Article  CAS  PubMed  Google Scholar 

  22. Mitreva-Dautova M, Roze E et al (2007) A symbiont-independent Endo-1,4-β-xylanase from the plant-parasitic nematode Meloidogyne incognita. Mol Plant-Microbe Interact 19:521–529. https://doi.org/10.1094/MPMI-19-0521

    Article  CAS  Google Scholar 

  23. Marcellin E, Nielsen LK (2018) Advances in analytical tools for high throughput strain engineering. Curr Opin Biotechnol 54:33–40

    Article  CAS  PubMed  Google Scholar 

  24. Verma D, Satyanarayana T (2012) Molecular approaches for ameliorating microbial xylanases. Bioresour Technol 117:360–367

    Article  CAS  PubMed  Google Scholar 

  25. Bajpai P (2014) Industrial applications of xylanases. Xylanolytic Enzymes:69–104

    Google Scholar 

  26. Eneyskaya EV, Brumer H, Backinowsky LV, Ivanen DR, Kulminskaya AA et al (2003) Enzymatic synthesis of β-xylanase substrates: transglycosylation reactions of the β-xylosidase from Aspergillus sp. Carbohydr Res 338:313–325

    Article  CAS  PubMed  Google Scholar 

  27. Kim YW, Fox DT et al (2006) Glycosynthase-based synthesis of xylo-oligosaccharides using an engineered retaining xylanase from Cellulomonas fimi. Org Biomol Chem 4(10):2025–2032

    Article  CAS  PubMed  Google Scholar 

  28. Rozie H, Somers W et al (1992) Crosslinked xylan as an affinity adsorbent for endo-xylanases. Carbohydr Polym 17:19–28

    Article  Google Scholar 

  29. Wong KK, Tan LU et al (1988) Multiplicity of beta-1,4-xylanase in microorganisms: functions and applications. Microbiol Rev 52(3):305–317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Dobberstein J, Emeis CC (1991) Purification and characterization of β-xylosidase from Aureobasidium pullulans. Appl Microbiol Biotechnol 35(2):210–215

    Article  CAS  Google Scholar 

  31. Zimmermann W, Winter B et al (1988) Xylanolytic enzyme activities produced by mesophilic and thermophilic actinomycetes grown on graminaceous xylan and lignocellulose. FEMS Microbiol Lett 55:181–185

    Article  CAS  Google Scholar 

  32. Tamburini E, Costa S et al (2015) Optimized production of xylitol from xylose using a hyper-acidophilic Candida tropicalis. Biomol Ther 5:1979–1989

    CAS  Google Scholar 

  33. Gilbert HJ (2010) The biochemistry and structural biology of plant Cell Wall deconstruction. Plant Physiol 153:444–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gilbert HJ, Stålbrand H et al (2008) How the walls come crumbling down: recent structural biochemistry of plant polysaccharide degradation. Curr Opin Plant Biol 11:338–348

    Article  CAS  PubMed  Google Scholar 

  35. Rogowski A, Baslé A et al (2014) Evidence that GH115 α-Glucuronidase activity, which is required to degrade plant biomass, is dependent on conformational flexibility. J Biol Chem 289:53–64

    Article  CAS  PubMed  Google Scholar 

  36. Kumar V, Verma D, Satyanarayana T (2013) Extremophilic bacterial xylanases: production, characteristics and applications. Curr Biotechnol 2:380–399

    Article  CAS  Google Scholar 

  37. Kaji A, Saheki T (1975) Endo-arabinanase from Bacillus subtilis F-11. Biochim et Biophys Acta (BBA) - Enzymol 410:354–360

    Article  CAS  Google Scholar 

  38. Kurakake M, Kanbara Y et al (2014) Characteristics of α-L-arabinofuranosidase from Streptomyces sp I10-1 for production of L-arabinose from corn hull arabinoxylan. Appl Biochem Biotechnol 172:2650–2660

    Article  CAS  PubMed  Google Scholar 

  39. Xu Z, Li S et al (2014) L-arabinose isomerase and its use for biotechnological production of rare sugars. Appl Microbiol Biotechnol 98:8869–8878

    Article  CAS  PubMed  Google Scholar 

  40. Rennie EA, Scheller HV (2014) Xylan biosynthesis. Curr Opin Biotechnol 26:100–107

    Article  CAS  PubMed  Google Scholar 

  41. Nakamura AM, Nascimento AS et al (2017) Structural diversity of carbohydrate esterases. Biotechnol Res Innov 1:35–51

    Article  Google Scholar 

  42. Adesioye FA, Makhalanyane TP et al (2016) Phylogeny, classification and metagenomic bioprospecting of microbial acetyl xylan esterases. Enzym Microb Technol 93–94:79–91

    Article  Google Scholar 

  43. Zhang J, Siika-Aho M et al (2011) The role of acetyl xylan esterase in the solubilization of xylan and enzymatic hydrolysis of wheat straw and giant reed. Biotechnol Biofuels 4(1):1–10

    Article  CAS  Google Scholar 

  44. Wainø M, Ingvorsen K (2003) Production of β-xylanase and β-xylosidase by the extremely halophilic archaeon Halorhabdus utahensis. Extremophiles 7:87–93

    Article  PubMed  Google Scholar 

  45. Winterhalter C, Liebl W (1995) Two extremely thermostable xylanases of the Hyperthermophilic bacterium Thermotoga maritima MSB8. Appl Environ Microbiol 61:1810–1815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Min SY, Kim BG et al (2002) Purification, characterization, and cDNA cloning of xylanase from fungus Trichoderma strain SY. J Microbiol Biotechnol 12:890–894

    CAS  Google Scholar 

  47. Béra-Maillet C, Devillard E et al (2005) Xylanases and carboxymethylcellulases of the rumen protozoa Polyplastron multivesiculatum Eudiplodinium maggii and Entodinium sp. FEMS Microbiol Lett 244:149–156

    Article  PubMed  Google Scholar 

  48. Jensen JK, Busse-Wicher M et al (2018) Identification of an algal xylan synthase indicates that there is functional orthology between algal and plant cell wall biosynthesis. New Phytol 218:1049–1060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Yamaura I, Koga T et al (1997) Purification and some properties of Endo-l,4-β-d-xylanase from a fresh-water Mollusc, Pomacea insularus (de Ordigny). Biosci Biotechnol Biochem 61:615–620

    Article  CAS  PubMed  Google Scholar 

  50. Glass HJ, Stark JR (1995) Carbohydrate digestion in the European lobster Homarus Gammarus (L.). J Crustac Biol 15:424–433

    Article  Google Scholar 

  51. Bae HJ, Kim HJ et al (2008) Production of a recombinant xylanase in plants and its potential for pulp biobleaching applications. Bioresour Technol 99:3513–3519

    Article  CAS  PubMed  Google Scholar 

  52. Saranraj P, Naidu MA (2014) Microbial pectinases: a review. Global J Trad Med Syst. wwwresearchgatenet

  53. Harris AD, Ramalingam C (2010) Xylanases and its application in food industry: a review. J Exp Sci 1:1–11

    Google Scholar 

  54. Berg P (2008) Asilomar 1975: DNA modification secured. Nature 455(7211):290–291

    Article  CAS  PubMed  Google Scholar 

  55. Donohoue PD, Barrangou R et al (2018) Advances in industrial biotechnology using CRISPR-Cas systems. Trends Biotechnol 36:134–146

    Article  CAS  PubMed  Google Scholar 

  56. Sanjivkumar M, Silambarasan TS et al (2017) Biosynthesis, purification and characterization of β-1,4-xylanase from a novel mangrove associated actinobacterium Streptomyces olivaceus (MSU3) and its applications. Protein Expr Purif 130:1–12

    Article  CAS  PubMed  Google Scholar 

  57. Otero DM, Cadaval CL et al (2015) Screening of yeasts capable of producing cellulase-free xylanase. Afr J Biotechnol 14:1961–1969

    Article  CAS  Google Scholar 

  58. Deswal D, Gupta R et al (2014) Fungal pretreatment improves amenability of lignocellulosic material for its saccharification to sugars. Carbohydr Polym 99:264–269

    Article  CAS  PubMed  Google Scholar 

  59. Guan GQ, Zhao PX et al (2016) Production and partial characterization of an alkaline xylanase from a novel fungus Cladosporium oxysporum. BioMed Res Int 2016:4575024. https://doi.org/10.1155/2016/4575024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ramanjaneyulu G, Reddy BR (2016) Optimization of xylanase production through response surface methodology by Fusarium sp. BVKT R2 isolated from forest soil and its application in saccharification. Front Microbiol 7(SEP):1450

    PubMed  PubMed Central  Google Scholar 

  61. Chadha BS, Kaur B et al (2019) Thermostable xylanases from thermophilic fungi and bacteria: current perspective. Bioresour Technol 277:195–203

    Article  CAS  PubMed  Google Scholar 

  62. Polizeli MLTM, Rizzatti ACS et al (2005) Xylanases from fungi: properties and industrial applications. Appl Microbiol Biotechnol 67:577–591

    Article  CAS  PubMed  Google Scholar 

  63. Maheshwari R, Bharadwaj G et al (2000) Thermophilic fungi: their physiology and enzymes. Microbiol Mol Biol Rev 64:461–488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Wang J, Rosell CM et al (2002) Effect of the addition of different fibres on wheat dough performance and bread quality. Food Chem 79:221–226

    Article  CAS  Google Scholar 

  65. Courtin CM, Delcour JA (2002) Arabinoxylans and endoxylanases in wheat flour bread-making. J Cereal Sci 35:225–243

    Article  CAS  Google Scholar 

  66. Goesaert H, Slade L et al (2009) Amylases and bread firming – an integrated view. J Cereal Sci 50:345–352

    Article  CAS  Google Scholar 

  67. Courtin CM, Delcour JA (2001) Relative activity of Endoxylanases towards water-extractable and water-unextractable Arabinoxylan. J Cereal Sci 33(3):301–312

    Article  CAS  Google Scholar 

  68. Faurot AL, Saulnier L et al (1995) Large scale isolation of water-soluble and water-insoluble pentosans from wheat flour. LWT Food Sci Technol 28:436–441

    Article  CAS  Google Scholar 

  69. Hoffmann RA, Roza M, Maat J et al (1991) Structural characteristics of the warm-water-soluble arabinoxylans from the tailings of the soft wheat variety Kadet. Carbohydr Polym 16(3):275–289

    Article  CAS  Google Scholar 

  70. Izydorczyk MS, Biliaderis CG (1995) Cereal arabinoxylans: advances in structure and physicochemical properties. Carbohydr Polym 28(1):33–48

    Article  CAS  Google Scholar 

  71. Trogh I, Courtin CM et al (2004) The combined use of hull-less barley flour and xylanase as a strategy for wheat/hull-less barley flour breads with increased arabinoxylan and (1→3,1→4)-β-D-glucan levels. J Cereal Sci 40:257–267

    Article  CAS  Google Scholar 

  72. Delcour JA, van Win H et al (1998) Distribution and structural variation of Arabinoxylans in common wheat mill streams. J Agric Food Chem 47:271–275

    Article  Google Scholar 

  73. Peressini D, Sensidoni A (2009) Effect of soluble dietary fibre addition on rheological and breadmaking properties of wheat doughs. J Cereal Sci 49:190–201

    Article  CAS  Google Scholar 

  74. Martínez-Anaya MA, Jiménez T (1997) Functionality of enzymes that hydrolyse starch and non-starch polysaccharide in breadmaking. Zeitschrift für Lebensmitteluntersuchung und -Forschung A 205:209–214

    Article  Google Scholar 

  75. Leys S, de Bondt Y et al (2019) Sensitivity of the Bacillus subtilis Xyn a xylanase and its mutants to different xylanase inhibitors determines their activity profile and functionality during bread making. J Agric Food Chem 67:11198–11209

    Article  CAS  PubMed  Google Scholar 

  76. Collins T, Gerday C et al (2005) Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiol Rev 29:3–23

    Article  CAS  PubMed  Google Scholar 

  77. Gebruers K, Brijs K et al (2004) Properties of TAXI-type endoxylanase inhibitors. Biochim Biophys Acta 1696:213–221

    Article  CAS  PubMed  Google Scholar 

  78. Juge N, Payan F et al (2004) XIP-I, a xylanase inhibitor protein from wheat: a novel protein function. Biochim Biophys Acta 1696(2):203–211

    Article  CAS  PubMed  Google Scholar 

  79. Flatman R, McLauchlan WR et al (2002) Interactions defining the specificity between fungal xylanases and the xylanase-inhibiting protein XIP-I from wheat. Biochem J 365(Pt 3):773–781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Gebruers K, Debyser W et al (2001) Triticum aestivum L. endoxylanase inhibitor (TAXI) consists of two inhibitors, TAXI I and TAXI II, with different specificities. Biochem J 353(Pt 2):239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Joye IJ, Lagrain B et al (2009) Use of chemical redox agents and exogenous enzymes to modify the protein network during breadmaking – a review. J Cereal Sci 50:11–21

    Article  CAS  Google Scholar 

  82. Almeida EL, Chang YK (2012) Effect of the addition of enzymes on the quality of frozen pre-baked French bread substituted with whole wheat flour. LWT 49:64–72

    Article  CAS  Google Scholar 

  83. Katina K, Salmenkallio-Marttila M et al (2006) Effects of sourdough and enzymes on staling of high-fibre wheat bread. LWT Food Sci Technol 39:479–491

    Article  CAS  Google Scholar 

  84. Stojceska V, Ainsworth P (2008) The effect of different enzymes on the quality of high-fibre enriched brewer’s spent grain breads. Food Chem 110(4):865–872

    Article  CAS  PubMed  Google Scholar 

  85. Oliveira DS, Telis-Romero J et al (2014) Effect of a Thermoascus aurantiacus thermostable enzyme cocktail on wheat bread qualitiy. Food Chem 143:139–146

    Article  CAS  PubMed  Google Scholar 

  86. Liu W, Brennan MA et al (2017) Effect of cellulase, xylanase and α-amylase combinations on the rheological properties of Chinese steamed bread dough enriched in wheat bran. Food Chem 234:93–102

    Article  CAS  PubMed  Google Scholar 

  87. Liu X, Yan Q et al (2022) Biochemical characterization of a novel glycoside hydrolase family 11 xylanase from Chaetomium sp. suitable for bread making. Process Biochem 117:1–9

    Article  CAS  Google Scholar 

  88. O’Shea N, Kilcawley KN et al (2016) Influence of α-amylase and xylanase on the chemical, physical and volatile compound properties of wheat bread supplemented with wholegrain barley flour. Eur Food Res Technol 242:1503–1514

    Article  Google Scholar 

  89. Yegin S, Altinel B et al (2018) A novel extremophilic xylanase produced on wheat bran from Aureobasidium pullulans NRRL Y-2311-1: effects on dough rheology and bread quality. Food Hydrocoll 81:389–397

    Article  CAS  Google Scholar 

  90. Ahmad Z, Butt MS et al (2014) Effect of Aspergillus niger xylanase on dough characteristics and bread quality attributes. J Food Sci Technol 51:2445–2453

    Article  CAS  PubMed  Google Scholar 

  91. Leys S, Pauly A et al (2016) Modification of the secondary binding site of xylanases illustrates the impact of substrate selectivity on bread making. J Agric Food Chem 64:5400–5409

    Article  CAS  PubMed  Google Scholar 

  92. Malik VS, Hu FB (2019) Sugar-sweetened beverages and Cardiometabolic health: an update of the evidence. Nutrients 11:1840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Crowe-White K, Parrott JS et al (2017) Metabolic impact of 100% fruit juice consumption on antioxidant/oxidant status and lipid profiles of adults: an evidence-based review. Crit Rev Food Sci Nutr 57:152–162

    Article  CAS  PubMed  Google Scholar 

  94. Liska DA, Kelley M et al (2019) 100% fruit juice and dental health: a systematic review of the literature. Frontiers. Public Health 7(JUN):190

    Google Scholar 

  95. Pepin A, Stanhope KL et al (2019) Are fruit juices healthier than sugar-sweetened beverages? A Review. Nutrients 11:1006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Siebert KJ (2009) Chapter 2 Haze in Beverages. Adv Food Nutr Res 57:53–86

    Article  CAS  PubMed  Google Scholar 

  97. Pinelo M, Zeuner B et al (2010) Juice clarification by protease and pectinase treatments indicates new roles of pectin and protein in cherry juice turbidity. Food Bioprod Process 88:259–265

    Article  CAS  Google Scholar 

  98. Adiguzel G, Faiz O et al (2019) A novel endo-β-1,4-xylanase from Pediococcus acidilactici GC25; purification, characterization and application in clarification of fruit juices. Int J Biol Macromol 129:571–578

    Article  CAS  PubMed  Google Scholar 

  99. Suryawanshi RK, Jana UK et al (2019) Immobilization of Aspergillus quadrilineatus RSNK-1 multi-enzymatic system for fruit juice treatment and mannooligosaccharide generation. Food Chem 289:95–102

    Article  CAS  PubMed  Google Scholar 

  100. Dhiman SS, Garg G et al (2011) Characterization of statistically produced xylanase for enrichment of fruit juice clarification process. New Biotechnol 28:746–755

    Article  CAS  Google Scholar 

  101. Kumar L, Nagar S et al (2014) Immobilization of xylanase purified from Bacillus pumilus VLK-1 and its application in enrichment of orange and grap juices. J Food Sci Technol 51:1737–1749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Rosmine E, Sainjan NC et al (2017) Statistical optimisation of xylanase production by estuarine Streptomyces sp. and its application in clarification of fruit juice. J Genet Eng Biotechnol 15:393–401

    Article  PubMed  PubMed Central  Google Scholar 

  103. Bajaj BK, Manhas K (2012) Production and characterization of xylanase from Bacillus licheniformis P11(C) with potential for fruit juice and bakery industry. Biocatal Agric Biotechnol 1:330–337

    Article  CAS  Google Scholar 

  104. Jiang L, Hua D et al (2010) Aqueous enzymatic extraction of peanut oil and protein hydrolysates. Food Bioprod Process 88:233–238

    Article  CAS  Google Scholar 

  105. Revilla I, González-SanJosé ML (1998) Methanol release during fermentation of red grapes treated with pectolytic enzymes. Food Chem 63:307–312

    Article  CAS  Google Scholar 

  106. Joutei KA, Chahdi FO et al (2003) Electronic microscopy examination of the influence of purified enzymatic activities on grape skin cell wall. OENO One 37:23–30

    Article  CAS  Google Scholar 

  107. Nagai M, Ozawa A et al (2000) Purification and characterization of acid-stable protopectinase produced by aspergillus awamori in solid-state fermentation. Biosci Biotechnol Biochem 64:1337–1344

    Article  CAS  PubMed  Google Scholar 

  108. Lin J, Massonnet M et al (2019) The genetic basis of grape and wine aroma. Horticul Res 6:81

    Article  CAS  Google Scholar 

  109. Shin KS, Lee JH (2019) Acetaldehyde contents and quality characteristics of commercial alcoholic beverages. Food Sci Biotechnol 28(4):1027–1036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Tavernini L, Ottone C et al (2020) Entrapment of enzyme aggregates in chitosan beads for aroma release in white wines. Int J Biol Macromol 154:1082–1090

    Article  CAS  PubMed  Google Scholar 

  111. Wu J, Johnson LA et al (2009) Demulsification of oil-rich emulsion from enzyme-assisted aqueous extraction of extruded soybean flakes. Bioresour Technol 100:527–533

    Article  CAS  PubMed  Google Scholar 

  112. Dickey LC, Kurantz MJ et al (2008) Oil separation from wet-milled corn germ dispersions by aqueous oil extraction and aqueous enzymatic oil extraction. Ind Crop Prod 27(3):303–307

    Article  CAS  Google Scholar 

  113. Aachary AA, Prapulla SG (2011) Xylooligosaccharides (XOS) as an emerging prebiotic: microbial synthesis, utilization, structural characterization, bioactive properties, and applications. Compr Rev Food Sci Food Saf 10:2–16

    Article  CAS  Google Scholar 

  114. Jain I, Kumar V et al (2015) Xylooligosaccharides: an economical prebiotic from agroresidues and their health benefits. Indian J Exp Biol 53:131–142

    PubMed  Google Scholar 

  115. Otieno DO, Ahring BK (2012) A thermochemical pretreatment process to produce xylooligosaccharides (XOS), arabinooligosaccharides (AOS) and mannooligosaccharides (MOS) from lignocellulosic biomasses. Bioresour Technol 112:285–292

    Article  CAS  PubMed  Google Scholar 

  116. Yang R, Xu S et al (2005) Aqueous extraction of corncob xylan and production of xylooligosaccharides. LWT Food Sci Technol 38:677–682

    Article  CAS  Google Scholar 

  117. Verma D, Satyanarayana T (2012) Cloning, expression and applicability of thermo-alkali-stable xylanase of Geobacillus thermoleovorans in generating xylooligosaccharides from agro-residues. Bioresour Technol 107:333–338

    Article  CAS  PubMed  Google Scholar 

  118. Verma D, Anand A et al (2013) Thermostable and alkalistable endoxylanase of the extremely thermophilic bacterium Geobacillus thermodenitrificans TSAA1: cloning, expression, characteristics and its applicability in generating xylooligosaccharides and fermentable sugars. Appl Biochem Biotechnol 170:119–130

    Article  CAS  PubMed  Google Scholar 

  119. Kumar V, Satyanaana T (2014) Production of thermo-alkali-stable xylanase by a novel polyextremophilic Bacillus halodurans TSEV1 in cane molasses medium and its applicability in making whole wheat bread. Bioprocess Biosyst Eng 37:1043–1053

    Article  CAS  PubMed  Google Scholar 

  120. Chapla D, Pandit P et al (2012) Production of xylooligosaccharides from corncob xylan by fungal xylanase and their utilization by probiotics. Bioresour Technol 115:215–221

    Article  CAS  PubMed  Google Scholar 

  121. Reddy SS, Krishnan C (2015) Production of xylooligosaccharides in SSF by Bacillus subtilis KCX006 producing β-xylosidase-free endo-xylanase and multiple xylan debranching enzymes.Preparative Bioche. Biotechnol 46(1):49–55

    Google Scholar 

  122. Kawaguti HY, Manrich E et al (2006) Production of isomaltulose using Erwinia sp. D12 cells: culture medium optimization and cell immobilization in alginate. Biochem Eng J 29:270–277

    Article  CAS  Google Scholar 

  123. Romero-Fernández M, Moreno-Perez S et al (2018) Designing continuous flow reaction of xylan hydrolysis for xylooligosaccharides production in packed-bed reactors using xylanase immobilized on methacrylic polymer-based supports. Bioresour Technol 266:249–258

    Article  PubMed  Google Scholar 

  124. Gonçalves TA, Damásio ARL et al (2012) Functional characterization and synergic action of fungal xylanase and arabinofuranosidase for production of xylooligosaccharides. Bioresour Technol 119:293–299

    Article  PubMed  Google Scholar 

  125. Liu MQ, Dai XJ et al (2014) Immobilization of Aspergillus niger xylanase a on Fe3O4-coated chitosan magnetic nanoparticles for xylooligosaccharide preparation. Catal Commun 55:6–10

    Article  CAS  Google Scholar 

  126. de Oliveira Nascimento CE, de Oliveira Simões LC et al (2022) Application of a recombinant GH10 endoxylanase from Thermoascus aurantiacus for xylooligosaccharide production from sugarcane bagasse and probiotic bacterial growth. J Biotechnol 347:1–8

    Article  Google Scholar 

  127. Samanta AK, Kolte AP et al (2016) Value addition of corn husks through enzymatic production of xylooligosaccharides. Braz Arch Biol Technol 59:1–8

    Article  Google Scholar 

  128. Ismail SA, Nour SA et al (2022) Valorization of corn cobs for xylanase production by Aspergillus flavus AW1 and its application in the production of antioxidant oligosaccharides and removal of food stain. Biocatal Agric Biotechnol 41:102311

    Article  CAS  Google Scholar 

  129. Yang H, Wang K et al (2011) Production of xylooligosaccharides by xylanase from Pichia stipitis based on xylan preparation from triploid Populas tomentosa. Bioresour Technol 102:7171–7176

    Article  CAS  PubMed  Google Scholar 

  130. Dilokpimol A, Nakai H et al (2011) Enzymatic synthesis of β-xylosyl-oligosaccharides by transxylosylation using two β-xylosidases of glycoside hydrolase family 3 from Aspergillus nidulans FGSC A4. Carbohydr Res 346:421–429

    Article  CAS  PubMed  Google Scholar 

  131. Kurakake M, Fujii T et al (2005) Characteristics of transxylosylation by β-xylosidase from aspergillus awamori K4. Biochim Biophys Acta Gen Subj 1726:272–279

    Article  CAS  Google Scholar 

  132. Yang X, Shi P et al (2014) Two xylose-tolerant GH43 bifunctional β-xylosidase/α-arabinosidases and one GH11 xylanase from Humicola insolens and their synergy in the degradation of xylan. Food Chem 148:381–387

    Article  CAS  PubMed  Google Scholar 

  133. Cintra LC, Fernandes AG et al (2017) Characterization of a recombinant xylose tolerant β-xylosidase from Humicola grisea var. thermoidea and its use in sugarcane bagasse hydrolysis. Int J Biol Macromol 105:262–271

    Article  CAS  PubMed  Google Scholar 

  134. Pozo-Rodríguez A, Méndez-Líter JA et al (2022) A fungal versatile GH10 endoxylanase and its glycosynthase variant: synthesis of xylooligosaccharides and glycosides of bioactive phenolic compounds. Int J Mol Sci 23:1383

    Article  PubMed  PubMed Central  Google Scholar 

  135. Walia A, Guleria S et al (2017) Microbial xylanases and their industrial application in pulp and paper biobleaching: a review. 3 Biotech 7:1–12

    Article  Google Scholar 

  136. Christakopoulos P, Katapodis P et al (2003) Antimicrobial activity of acidic xylo-oligosaccharides produced by family 10 and 11 endoxylanases. Int J Biol Macromol 31:171–175

    Article  CAS  PubMed  Google Scholar 

  137. Xavier FD, Bezerra GS et al (2018) Evaluation of the simultaneous production of xylitol and ethanol from sisal fiber. Biomol Ther 8:2. https://doi.org/10.3390/biom8010002

    Article  CAS  Google Scholar 

  138. Dasgupta D, Bandhu S et al (2017) Challenges and prospects of xylitol production with whole cell bio-catalysis: a review. Microbiol Res 197:9–21

    Article  CAS  PubMed  Google Scholar 

  139. Pariza MW, Johnson EA (2001) Evaluating the safety of microbial enzyme preparations used in food processing: update for a new century. Regul Toxicol Pharmacol 33(2):173–186

    Article  CAS  PubMed  Google Scholar 

  140. Ladics GS, Sewalt V (2018) Industrial microbial enzyme safety: what does the weight-of-evidence indicate? Regul Toxicol Pharmacol 98:151–154

    Article  CAS  PubMed  Google Scholar 

  141. Sewalt V, Shanahan D et al (2016) The generally recognized as safe (GRAS) process for industrial microbial enzymes. Ind Biotechnol 12:295–302

    Article  Google Scholar 

  142. Olempska-Beer ZS, Merker RI et al (2006) Food-processing enzymes from recombinant microorganisms—a review. Regul Toxicol Pharmacol 45:144–158

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

One of us (TS) thanks University Grants Commission and Indo-US Science & Technology Forum, New Delhi, for partial financial assistance while writing this review.

Conflict of Interest

The authors do not have any conflicting, competing and financial interests.

Author Contributions

TS planned the structure and outlines of the review and corrected the manuscript. RK and DV together assembled the contents to give a shape to the review. SS read and made valuable suggestions.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, R., Verma, D., Sharma, S., Satyanarayana, T. (2023). Applicability of Fungal Xylanases in Food Biotechnology. In: Satyanarayana, T., Deshmukh, S.K. (eds) Fungi and Fungal Products in Human Welfare and Biotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-19-8853-0_16

Download citation

Publish with us

Policies and ethics