Skip to main content

Spinach (Spinacia oleracea L.) Breeding: From Classical to Genomics-Centric Approach

  • Chapter
  • First Online:
Smart Plant Breeding for Vegetable Crops in Post-genomics Era

Abstract

The nutritious leafy vegetable, spinach (Spinacia oleracea L.) having diploid chromosome numbers, 2n = 2× = 12, is a versatile wind-pollinated crop which is rich in health-promoting minerals and vitamins. Majority of the spinach plants are dioecious in nature and it is gaining popularity throughout the world owing to nutrient content of this economically important cool season leafy crop. This crop is effected by several devastating biotic and abiotic stresses which need to be managed using the modern biotechnological tools. In this context, the breeding for overcoming these problems have gained momentum in the post-genomics era. Hence, numerous quantitative trait loci (QTLs), genes, and molecular markers linked with different phenotypic traits like leaf shape, flowering traits, nutritional traits, etc., have been identified in the past decades. But, still there is an urgent need to breed spinach for decreasing the anti-nutritional factors like oxalates, consumption of which can cause health issues. In the post-genomics era, plethora of genomic and sequence resources of spinach have been made available, which have the potential to accelerate spinach breeding program. Development of downy mildew-resistant cultivars of Spinach via introgression of NBS-LRR (nucleotide-binding site leucine-rich repeat) genes from wild allies have been made successful. In the past decade, the genomics have provided insight into sex evolution in spinach and various candidate miRNAs (micro RNAs) related to sex forms in spinach have been identified. In this chapter, we have provided detailed overview of progress made in spinach genetic improvement in the post-genomics era.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abolghasemi R, Maryam H, Nematollah E, Shui W, Aboozar S (2021) Transcriptome architecture reveals genetic networks of bolting regulation in spinach. BMC Plant Biol 21(1):179. https://doi.org/10.1186/s12870-021-02956-0

    Article  Google Scholar 

  • Awika HO, Bedre R, Yeom J, Marconi TG, Enciso J, Mandadi KK, Jung J, Avila CA (2019b) Developing growth-associated molecular markers via high-throughput phenotyping in Spinach. Plant Genome 12(3):190027

    Article  Google Scholar 

  • Awika HO, Cochran K, Joshi V, Bedre R, Mandadi KK, Avila CA (2020) Single-marker and haplotype-based association analysis of anthracnose (Colletotrichum dematium) resistance in spinach (Spinacia oleracea). Plant Breed 139(2):402–418

    Article  Google Scholar 

  • Awika HO, Marconi TG, Bedre R, Mandadi KK, Avila CA (2019a) Minor alleles are associated with white rust (Albugo occidentalis) susceptibility in spinach (Spinacia oleracea). Hort Res 1:6

    Google Scholar 

  • Bagheri R, Bashir H, Ahmad J, Iqbal M, Qureshi MI (2015) Spinach (Spinacia oleracea L.) modulates its proteome differentially in response to salinity, cadmium and their combination stress. Plant Physiol Biochem 97:235–245

    Article  Google Scholar 

  • Bhattarai G, Shi A (2021) Research advances and prospects of spinach breeding, genetics, and genomics. Veg Res 1(1):1–8. https://doi.org/10.48130/VR-2021-0009

    Article  Google Scholar 

  • Bhattarai G, Shi A, Kandel DR, Solís-Gracia N, da Silva JA, Avila CA (2021) Genome-wide simple sequence repeats (SSR) markers discovered from whole-genome sequence comparisons of multiple spinach accessions. Sci Rep 11(1):1–6

    Google Scholar 

  • Black MC, Dainello FJ (1986) Comparison of percent leaf-area with white rust lesions and 2 other methods for evaluating partial resistance to Albugo occidentalis in spinach. In: Phytopathology, vol 76, no 10. St. Paul, MN: American Phytopathological Society, pp 1087–1087

    Google Scholar 

  • Bock H (1539) Kreu¨ter Buch. Wendel Rihel, Strassburg, np. https://reader.digitale-sammlungen.de/de/fs1/object/display/bsb11069345_00001.html

  • Bohn T, Davidsson L, Walczyk T, Hurrell RF (2004) Fractional magnesium absorption is significantly lower in human subjects from a meal served with an oxalate-rich vegetable, spinach, as compared with a meal served with kale, a vegetable with a low oxalate content. Br J Nutr 91:601–606

    Article  Google Scholar 

  • Boswell VR (1949) Garden peas and spinach from the Middle East. Reprint of ‘Our Vegetable Travelers’. Natl Geogr:96:2

    Google Scholar 

  • Bowers JL (1972) Spinach breeding program for disease resistance in Arkansas. Proc Ark State Hort Soc 93:53–54

    Google Scholar 

  • Brady SM, Long TA, Benfey PN (2006) Unraveling the dynamic transcriptome. Plant Cell 18:2101–2111

    Article  Google Scholar 

  • Brandenberger LP, Morelock TE, Correll JC (1992) Evaluation of spinach germplasm for resistance to a new race (race 4) of Peronospora farinosa f. sp. spinaciae. HortScience 27(10):1118–1189

    Article  Google Scholar 

  • Brenner S, Johnson M, Bridgham J, Golda G, Lloyd DH, Johnson D, Luo S, McCurdy S, Foy M, Ewan M, Roth R, George D, Eletr S, Albrecht G, Vermaas E, Williams SR, Moon K, Burcham T, Pallas M, DuBridge RB, Kirchner J, Fearon K, Mao J, Corcoran K (2000) Gene expression analysis by massively parallel signature sequencing (MPSS) on microbead arrays. Nat Biotechnol 18(6):630–634. https://doi.org/10.1038/76469

    Article  Google Scholar 

  • Bunea A, Andjelkovic M, Socaciu C, Bobis O, Neacsu M, Verhé R, Van Camp J (2008) Total and individual carotenoids and phenolic acids content in fresh, refrigerated and processed spinach (Spinacia oleracea L.). Food Chem 108:649–656

    Article  Google Scholar 

  • Burnet M, Lafontaine PJ, Hanson AD (1995) Assay, purification, and partial characterization of choline monooxygenase from spinach. J Plant Physiol 108(2):581–588

    Article  Google Scholar 

  • Cai X, Sun X, Xu C, Sun H, Wang X, Ge C, Zhang Z, Wang Q, Fei Z, Jiao C, Wang Q (2021) Reference genome and resequencing of 305 accessions provide insights into spinach evolution, domestication and genetic basis of agronomic traits. Nat Commun. https://doi.org/10.1101/2021.08.11.455939

  • Cai X, Xu C, Wang X, Wang S, Zhang Z, Fei Z, Wang Q (2018) Construction of genetic linkage map using genotyping-by-sequencing and identification of QTLs associated with leaf color in spinach. Euphytica 214(12):1–1

    Article  Google Scholar 

  • Chan-Navarrete R, Dolstra O, van Kaauwen M, Lammerts van Bueren ET, van der Linden CG (2016) Genetic map construction and QTL analysis of nitrogen use efficiency in spinach (Spinacia oleracea L.). Euphytica 208(3):621–636

    Article  Google Scholar 

  • Charlesworth B, Charlesworth D (1978) A model for the evolution of dioecy and gynodioecy. Am Nat 112(988):975–997

    Article  Google Scholar 

  • Charlesworth D (2019) Young sex chromosomes in plants and animals. New Phytol 224(3):1095–1097

    Article  Google Scholar 

  • Chitwood J, Shi A, Mou B, Evans M, Clark J, Motes D, Chen P, Hensley D (2016) Population structure and association analysis of bolting, plant height, and leaf erectness in spinach. HortScience 51(5):481–486

    Article  Google Scholar 

  • Chod J (1985) Susceptibility of some spinach cultivars and hybrids to beet mosaic virus, beet yellows virus and cucumber mosaic virus. Zeszyty Problemowe Postepov Nauk Rolnicyyeh 291:89

    Google Scholar 

  • Chun OK, Kim D-O, Smith N, Schroeder D, Han JT, Lee CY (2005) Daily consumption of phenolics and total antioxidant capacity from fruit and vegetables in the American diet. J Sci Food Agric 85:1715–1724

    Article  Google Scholar 

  • Cirkova-Georgieva M, Pesevska V, Petrovska V, Vesova N (1970) The carotene content of some populations of spinach (Spinacia oleracea L.) in Macedonia. Godisen Zbornik na Zemjodelsko-Sumarskiot Fakultet na Univerzitetot-Skopje, Zemjodelstvo 24:65–70

    Google Scholar 

  • Clark TA, Sugnet CW, Ares M Jr (2002) Genome wide analysis of mRNA processing in yeast using splicing specific microarrays. Science 296:907–910

    Article  Google Scholar 

  • Cloonan N, Forrest AR, Kolle G, Gardiner BB, Faulkner GJ, Brown MK et al (2008) Stem cell transcriptome profiling via massive scale mRNA sequencing. Nat Methods 5:613–619

    Article  Google Scholar 

  • Correll JC, Bluhm BH, Feng C, Lamour K, Du Toit LJ, Koike ST (2011) Spinach: better management of downy mildew and white rust through genomics. Eur J Plant Pathol 129(2):193–205

    Article  Google Scholar 

  • Correll JC, Morelock TE, Black MC, Koike ST, Brandenberger LP, Dainello FJ (1994) Economically important diseases of spinach. Plant Dis 78:653–660

    Article  Google Scholar 

  • David L, Huber W, Granovskaia M, Toedling J, Palm CJ, Bofkin L et al (2006) A high-resolution map of transcription in the yeast genome. Proc Natl Acad Sci U S A 103:5320–5325

    Article  Google Scholar 

  • De Visser J (2015) The challenges of spinach breeding. International Spinach Conference, Yuma, 24–25 February 2015

    Google Scholar 

  • Dohm JC, Minoche AE, Holtgräwe D, Capella-Gutiérrez S, Zakrzewski F, Tafer H, Rupp O, Sörensen TR, Stracke R, Reinhardt R, Goesmann A (2014) The genome of the recently domesticated crop plant sugar beet (Beta vulgaris). Nature 505(7484):546–549

    Article  Google Scholar 

  • du Toit LJ, Derie ML, Hernandez-Perez P (2005) Verticillium wilt in spinach seed production. Plant Dis 89(1):4–11

    Article  Google Scholar 

  • Ermer T, Eckardt K-U, Aronson PS, Knauf F (2016) Oxalate, inflammasome, and progression of kidney disease. Curr Opin Nephrol Hypertens 25(4):363–371

    Article  Google Scholar 

  • Fagioni M, D’Amici GM, Timperio AM, Zolla L (2009) Proteomic analysis of multiprotein complexes in the thylakoid membrane upon cadmium treatment. J Proteome Res 8(1):310–326

    Article  Google Scholar 

  • FAOSTAT (2019) Statistics division of the Food and Agriculture Organization (FAO) of the United Nations. Rome. https://www.fao.org/faostat

  • Ferreira JF, Sandhu D, Liu X, Halvorson JJ (2018) Spinach (Spinacea oleracea L.) response to salinity: nutritional value, physiological parameters, antioxidant capacity, and gene expression. Agriculture 8(10):163

    Article  Google Scholar 

  • Fujito S, Takahata S, Suzuki R, Hoshino Y, Ohmido N, Onodera Y (2015) Evidence for a common origin of homomorphic and heteromorphic sex chromosomes in distinct Spinacia species. Genes Genom Genet 5:1663–1673

    Google Scholar 

  • Gao W, Li S, Li Z, Huang Y, Deng C, Lu L (2014) Detection of genome DNA methylation change in spinach induced by 5-azaC. Mol Cell Probes 28(4):163–166

    Article  Google Scholar 

  • Gerhard DS, Wagner L, Feingold EA, Shenmen CM, Grouse LH, Schuler G et al (2004) The status, quality, and expansion of NIH full length cDNA project: the mammalian gene collection. Genome Res 14:2121–2127

    Article  Google Scholar 

  • Göl Ş, Göktay M, Allmer J, Doğanlar S, Frary A (2017) Newly developed SSR markers reveal genetic diversity and geographical clustering in spinach (Spinacia oleracea). Mol Genet Genomics 292(4):847–855

    Article  Google Scholar 

  • Gomase VS, Tagore S (2008) Transcriptomics. Curr Drug Metab 9:245–249

    Article  Google Scholar 

  • Goode MJ, Morelock TE, Bowers JL (1988) Fall Green spinach. HortScience 23:931

    Article  Google Scholar 

  • Greville RK (1824) Flora Edinensis. Edinburgh, William Blackwood, p 468

    Google Scholar 

  • Groben R, Wricke G (1998) Occurrence of microsatellites in spinach sequences from computer databases and development of polymorphic SSR markers. Plant Breed 117:271–274

    Article  Google Scholar 

  • Gyawali S, Bhattarai G, Shi A, Kik C, du Toit LJ (2021) Genetic diversity, structure, and selective sweeps in Spinacia turkestanica associated with the domestication of cultivated spinach. Front Genet 8:2469

    Google Scholar 

  • Hassler M (2018) World plants: synonymic checklists of the vascular plants of the world (version April 2018). In: Roskov Y, Abucay L, Orrell T, Nicolson D, Flann C, Bailly N, Kirk P, Bourgoin T, DeWalt RE, Decock W, De Wever A (eds) Species 2000 & ITIS Catalogue of Life, 2018 Annual Checklist. Species 2000, Naturalis, Leiden. www.catalogueoflife.org/annual-checklist/2018. Accessed 2 May 2019

  • Heaney RP, Weaver CM, Recker RR (1988) Calcium absorbability from spinach. Am J Clin Nutr 47:707–709

    Article  Google Scholar 

  • Henning JA, Gent DH, Twomey MC, Townsend MS, Pitra NJ, Matthews PD (2016) Genotyping-by-sequencing of a bi-parental mapping population segregating for downy mildew resistance in hop (Humulus lupulus L.). Euphytica 208(3):545–559

    Article  Google Scholar 

  • Hibino T, Waditee R, Araki E, Ishikawa H, Aoki K, Tanaka Y, Takabe T (2002) Functional characterization of choline monooxygenase, an enzyme for betaine synthesis in plants. J Biol Chem 277(44):41352–41360

    Article  Google Scholar 

  • Hirakawa H, Toyoda A, Itoh T, Suzuki Y, Nagano AJ, Sugiyama S, Onodera Y (2021) A spinach genome assembly with remarkable completeness, and its use for rapid identification of candidate genes for agronomic traits. DNA Res 28(3):dsab004

    Article  Google Scholar 

  • Holt RA, Jones S (2008) The new paradigm of flow cell sequencing. Genome Res 18:839–846

    Article  Google Scholar 

  • Howard LR, Pandjaitan N, Morelock T, Gil MI (2002) Antioxidant capacity and phenolic content of spinach as affected by genetics and growing season. J Agric Food Chem 50(21):5891–5896

    Article  Google Scholar 

  • Hu M, Polyak K (2006) Serial analysis of gene expression. Nat Protoc 1(4):1743–1760

    Article  Google Scholar 

  • Hulse-Kemp AM, Bostan H, Chen S, Ashrafi H, Stoffel K, Sanseverino W, Li L, Cheng S, Schatz MC, Garvin T, du Toit LJ (2021) An anchored chromosome-scale genome assembly of spinach improves annotation and reveals extensive gene rearrangements in euasterids. The Plant Genome 10:e20101

    Google Scholar 

  • Imadi SR, Kazi AG, Ahanger MA, Gucel S, Ahmad P (2015) Plant transcriptomics and responses to environmental stress: an overview. J Genet 94(3):525–537

    Article  Google Scholar 

  • Irish BM (2004) New races of the downy mildew pathogen of spinach, identification of molecular markers for disease resistance, and molecular diversity of spinach germplasm. University of Arkansas

    Google Scholar 

  • Irish BM, Correll JC, Koike ST, Morelock TE (2007) Three new races of the spinach downy mildew pathogen identified by a modified set of spinach differentials. Plant Dis 91(11):1392–1396

    Article  Google Scholar 

  • Jabeen M, Akram NA, Ashraf M, Aziz A (2019) Assessment of biochemical changes in spinach (Spinacea oleracea L.) subjected to varying water regimes. Sains Malaysiana 48(3):533–541

    Article  Google Scholar 

  • Janick J, Stevenson E (1955) Genetics of the monoecious character in spinach. Genetics 40(4):429

    Article  Google Scholar 

  • Janick JA (1954) genetic study of the heterogametic nature of the staminate plant in spinach (Spinacia oleracea L.). Proc Am Soc Hort Sci 63:444–446

    Google Scholar 

  • Joshi V, Joshi M, Penalosa A (2020) Comparative analysis of tissue-specific transcriptomic responses to nitrogen stress in spinach (Spinacia oleracea). PLoS One 15(5):e0232011

    Article  Google Scholar 

  • Joshi V, Penalosa A, Joshi M, Rodriguez S (2021) Regulation of oxalate metabolism in spinach revealed by RNA-Seq-Based transcriptomic analysis. Int J Mol Sci 22(10):5294

    Article  Google Scholar 

  • Kelsay JL, Prather ES (1983) Mineral balances of human subjects consuming spinach in a low-fiber diet and in a diet containing fruits and vegetables. Am J Clin Nutr 38:12–19

    Article  Google Scholar 

  • Khattak JZK, Christiansen JL, Torp AM, Andersen SB (2007) Genic microsatellite markers for discrimination of spinach cultivars. Plant Breed 126:454–456

    Article  Google Scholar 

  • Khattak JZK, Torp AM, Andersen SB (2006) A genetic linkage map of Spinacia oleracea and localization of a sex determination locus. Euphytica 148:311–318

    Article  Google Scholar 

  • Kodzius R, Kojima M, Nishiyori H, Nakamura M, Fukuda S, Taqami M et al (2006) CAGE: cap analysis of gene expression. Nat Methods 3:211–222

    Article  Google Scholar 

  • Koh E, Charoenprasert S, Mitchell AE (2012) Effect of organic and conventional cropping systems on ascorbic acid, vitamin C, flavonoids, nitrate, and oxalate in 27 varieties of spinach (Spinacia oleracea L.). J Agric Food Chem 60(12):3144–3150

    Article  Google Scholar 

  • Koike ST, Gladders P, Paulus AO (2007) Vegetable diseases: a color handbook. Gulf Professional Publishing

    Google Scholar 

  • Komai F, Masuda K (2004) Plasticity in sex expression of spinach (Spinacia oleracea) regenerated from root tissues. Plant Cell Tissue Organ Cult 78:285–287

    Article  Google Scholar 

  • Krarup C, Moreira I (1998) Hortalizas de estacio’n frı’a. Biologı’a y diversidad cultural. Universidad Cato’lica de Chile, Santiago, CL

    Google Scholar 

  • La Haye Yergeau O, Samson G (2021) Uncoupling effect of lipid peroxidation in spinach thylakoids exposed to peroxyl radicals generated by 2, 2′-azobis (2-amidinopropane) dihydrochloride. Botany 99(12):763–772

    Article  Google Scholar 

  • Laufer B (1919) Sino-Iranica; Chinese Contributions to the History of Civilization in Ancient Iran, with Special Reference to the History of Cultivated Plants and Products. Field Museum of Natural History, Chicago, pp 392–398

    Google Scholar 

  • Lester GE, Makus DJ, Hodges DM (2010) Relationship between fresh-packaged spinach leaves exposed to continuous light or dark and bioactive contents: effects of cultivar, leaf size, and storage duration. J Agric Food Chem 58(5):2980–2987

    Article  Google Scholar 

  • Li SF, Wang BX, Guo YJ, Deng CL, Gao WJ (2018) Genome-wide characterization of microsatellites and genetic diversity assessment of spinach in the Chinese germplasm collection. Breed Sci 68(4):455–464

    Article  Google Scholar 

  • Liu B, Feng C, Correll J, Stein L, Cochran K, du Toit L (2018) Texas spinach leaf spots: pathogen diagnosis and disease management. International Spinach Conference, Murcia, Spain, 14–15 February 2018

    Google Scholar 

  • Ma J, Shi A, Mou B, Evans M, Clark JR, Motes D, Correll JC, Xiong H, Qin J, Chitwood J, Weng Y (2016) Association mapping of leaf traits in spinach (Spinacia oleracea L.). Plant Breed 135(3):399–404

    Article  Google Scholar 

  • Mogren L, Reade J, Monaghan J (2012) Potential for controlled abiotic stress as a quality enhancer of baby leaf spinach. In: II International Symposium on Horticulture in Europe (pp. 407–412)

    Google Scholar 

  • Mohebodini M, Sabaghnia N, Behtash F, Janmohammadi M (2017) Principal component analysis of some quantitative and qualitative traits in Iranian spinach landraces. Proc Latv Acad Sci 71:307–310

    Google Scholar 

  • Morelock TE (1999) Spinach. In: Wehner TC (ed) Vegetable cultivar descriptions for North America List 25, vol 34. HortScience, Dordrecht, pp 987–988

    Google Scholar 

  • Morelock TE, Correll JC (2008a) Spinach. In: Prohens J, Nuez F (eds) Vegetables I: asteraceae, brassicaceae, chenopodicaceae, and cucurbitaceae. Springer, New York, pp 189–218

    Chapter  Google Scholar 

  • Morelock TE, Correll JC (2008b) Spinach. In: Vegetables I. Springer, New York, NY, pp 189–218

    Chapter  Google Scholar 

  • Mou B (2008a) Evaluation of oxalate concentration in the U.S. spinach germplasm collection. HortScience 43:1690–1693

    Article  Google Scholar 

  • Mou B (2008b) Evaluation of oxalate concentration in the US spinach germplasm collection. HortScience 43(6):1690–1693

    Article  Google Scholar 

  • Mou B (2008c) Leafminer resistance in spinach. HortScience 43(6):1716–1719

    Article  Google Scholar 

  • Mou B, Koike ST, Du Toit LJ (2008) Screening for resistance to leaf spot diseases of spinach. HortScience 43(6):1706–1710

    Article  Google Scholar 

  • Mou B (2007a) Leafminer-resistant spinach germplasm 03-04-9. HortScience 42:699–700

    Article  Google Scholar 

  • Mou B (2007b) Leafminer-resistant spinach germplasm 03-04-63. HortScience 42:1717–1718

    Article  Google Scholar 

  • Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5:621–628

    Article  Google Scholar 

  • Nagalakshmi U, Wang Z, Waern K, Shou C, Raha D, Gerstein M et al (2008) The transcriptional landscape of the yeast genome defined by RNA sequencing. Science 320:1344–1349

    Article  Google Scholar 

  • Nali C (1998) A novel threat for spinach in Italy: a new race of downy mildew. Adv Hortic Sci:179–182

    Google Scholar 

  • Noonan SC, Savage G (1999) Oxalate content of foods and its effect on humans. Asia Pac J Clin Nutr 8:64–74

    Article  Google Scholar 

  • Nowrousian M (2007) Of patterns and pathways: microarray technologies for the analysis of filamentous fungi. Fungal Biol Rev 21:171–178

    Article  Google Scholar 

  • O’Brien MJ, Winters HF (1977). Evaluation of spinach accessions and cultivars for resistance to Fusarium [oxysporum] wilt, 1: Greenhouse-bench method [Fungal pathogens]. J Am Soc Hortic Sci

    Google Scholar 

  • Okazaki Y, Takahata S, Hirakawa H, Suzuki Y, Onodera Y (2019) Molecular evidence for recent divergence of X-and Y-linked gene pairs in Spinacia oleracea L. PLoS One 14(4):e0214949

    Article  Google Scholar 

  • Okoniewski MJ, Miller CJ (2006) Hybridization interactions between probesets in short oligo microarrays lead to spurious correlations. BMC Bioinformatics 7:276

    Article  Google Scholar 

  • Ors S, Suarez DL (2016) Salt tolerance of spinach as related to seasonal climate. Hortic Sci 43(1):33–41

    Article  Google Scholar 

  • Ors S, Suarez DL (2017) Spinach biomass yield and physiological response to interactive salinity and water stress. Agric Water Manag 190:31–41

    Article  Google Scholar 

  • Pandey SC, Kalloo G (1993) Spinach. In: Kalloo G, Bergh BO (eds) Genetic improvement of vegetable crops. Elsevier, pp 325–336

    Chapter  Google Scholar 

  • Pandjaitan N, Howard LR, Morelock T, Gil MI (2005) Antioxidant capacity and phenolic content of spinach as affected by genetics and maturation. J Agric Food Chem 53:8618–8623

    Article  Google Scholar 

  • Pannell JR, Gerchen J (2018) Sex determination: sterility genes out of sequence. Curr Biol 28(2):R80–R83

    Article  Google Scholar 

  • Qian W, Fan G, Liu D, Zhang H, Wang X, Wu J, Xu Z (2017) Construction of a high-density genetic map and the X/Y sex-determining gene mapping in spinach based on largescale markers developed by specific-locus amplified fragment sequencing (SLAF-seq). BMC Genomics 18:1

    Article  Google Scholar 

  • Qian W, Feng CD, Zhang HL, Liu W, Xu DH, Correll JC, Xu ZS (2016) First report of race diversity of the spinach downy mildew pathogen, Peronospora effusa, in China. Plant Dis 100(6):1248–1248

    Article  Google Scholar 

  • Qin J, Shi A, Mou B, Grusak MA, Weng Y, Ravelombola W, Bhattarai G, Dong L, Yang W (2017a) Genetic diversity and association mapping of mineral element concentrations in spinach leaves. BMC Genomics 18:941

    Article  Google Scholar 

  • Qin J, Shi A, Mou B, Grusak MA, Weng Y, Ravelombola W, Bhattarai G, Dong L, Yang W (2017b) Genetic diversity and association mapping of mineral element concentrations in spinach leaves. BMC Genomics 18(1):1–4

    Article  Google Scholar 

  • Rendón-Anaya M, Herrera-Estrella A (2018) The advantage of parallel selection of domestication genes to accelerate crop improvement. Genome Biol 19:147

    Article  Google Scholar 

  • Ribera A, Bai Y, Wolters AM, van Treuren R, Kik C (2020) A review on the genetic resources, domestication and breeding history of spinach (Spinacia oleracea L.). Euphytica 216(3):1–21

    Article  Google Scholar 

  • Roberts JL, Moreau R (2016) Functional properties of spinach (Spinacia oleracea L.) phytochemicals and bioactives. Food Funct 7:3337–3353

    Article  Google Scholar 

  • Rosa JT (1925) Sex expression in spinach. Hilgardia 1:259–274

    Article  Google Scholar 

  • Royce TE, Rozowsky JS, Gerstein MB (2007) Toward a universal microarray: prediction of gene expression through nearest neighbor probe sequence identification. Nucleic Acid Res 35:e99

    Article  Google Scholar 

  • Rubatzky VE, Yamaguchi M (1997) Spinach, table beets, and other vegetable chenopods. In: World Vegetables. Springer, Boston, MA, pp 457–473

    Chapter  Google Scholar 

  • Rueda D, Awika HO, Bedre R, Kandel DR, Mandadi KK, Crosby K, Avila CA (2021) Phenotypic diversity and association mapping of ascorbic acid content in Spinach. Front Genet 12:752313

    Article  Google Scholar 

  • Ryder EJ (1979) Leafy salad vegetables, AVI, West Port, Conn., 195

    Google Scholar 

  • Sabaghnia N, Asadi-Gharneh HA, Janmohammadi M (2014) Genetic diversity of spinach (Spinacia oleracea L.) landraces collected in Iran using some morphological traits. Acta Agric Slov 103:101–111

    Article  Google Scholar 

  • Santamaria P (2006) Nitrate in vegetables: toxicity, content, intake and EC regulation. J Sci Food Agric 86:10–17

    Article  Google Scholar 

  • Scheewe P, Reimann-Philipp R (1986) Resistance to Race 1, 2 and 3 of Peronospora spinaciae in a synthetic variety of spinach (Spinacia oleracea L.), Z. Pflanzenzucht. 96, 154

    Google Scholar 

  • Scheffer SJ, Wijesekara A, Visser D, Hallett RH (2001) Polymerase chain reaction restriction fragment-length polymorphism method to distinguish Liriomyza huidobrensis from L. langei (Diptera: Agromyzidae) applied to three recent leafminer invasions. J Econ Entomol 94:1177–1182

    Article  Google Scholar 

  • Schmidt HE, Schubert L (1980) Results and problems in breeding garden pea (Pisum sativum L.), spinach (Spinacia oleracea L.) and tomato (Lycopersicon esculentum Mill.) for resistance to viruses. Archiv Phytopathologie Pflanzenschutz 16(2):77–88

    Article  Google Scholar 

  • Schmitz-Linneweber C, Maier RM, Alcaraz J-P, Cottet A, Herrmann RG, Mache R (2001) The plastid chromosome of spinach (Spinacia oleracea): complete nucleotide sequence and gene organization. Plant Mol Biol 45:307–315

    Article  Google Scholar 

  • She H, Qian W, Zhang H, Liu Z, Wang X, Wu J, Feng C, Correll JC, Xu Z (2018) Fine mapping and candidate gene screening of the downy mildew resistance gene RPF1 in Spinach. Theor Appl Genet 131(12):2529–2541

    Article  Google Scholar 

  • She H, Xu Z, Zhang H, Li G, Wu J, Wang X, Li Y, Liu Z, Qian W (2021) Identification of a male-specific region (MSR) in Spinacia oleracea. Hortic Plant J 7(4):341–346

    Article  Google Scholar 

  • Shi A, Bhattarai G, Xiong H, Avila CA, Feng C, Liu B, Joshi V, Stein L, Mou B, du Toit LJ, Correll JC (2022) Genome-wide association study and genomic prediction of white rust resistance in USDA GRIN spinach Germplasm. Hort Res

    Google Scholar 

  • Shi A, Mou B (2016) Genetic diversity and association analysis of leafminer (Liriomyza langei) resistance in spinach (Spinacia oleracea). Genome 59(8):581–588

    Article  Google Scholar 

  • Shi A, Mou B, Correll J, Koike ST, Motes D, Qin J, Weng Y, Yang W (2016a) Association analysis and identification of SNP markers for Stemphylium leaf spot (Stemphylium botryosum f. sp. spinacia) resistance in spinach (Spinacia oleracea). Am J Plant Sci 7(12):1600

    Article  Google Scholar 

  • Shi A, Mou B, Correll J, Motes D, Weng Y, Qin J, Yang W (2016b) SNP association analysis of resistance to Verticillium wilt (‘Verticillium dahliae’ Kleb.) in spinach. Aust J Crop Sci 10(8):1188–1196

    Article  Google Scholar 

  • Shi A, Mou B, Correll JC (2016c) Association analysis for oxalate concentration in spinach. Euphytica 212(1):17–28

    Article  Google Scholar 

  • Shi A, Qin J, Mou B, Correll J, Weng Y, Brenner D, Feng C, Motes D, Yang W, Dong L, Bhattarai G (2017) Genetic diversity and population structure analysis of spinach by single-nucleotide polymorphisms identified through genotyping-by-sequencing. PLoS One 12(11):e0188745

    Article  Google Scholar 

  • Shiraki T, Kondo S, Katayama S, Waki K, Kasukawa T, Kawaji H, Kodzius R, Watahiki A, Nakamura M, Arakawa T, Fukuda S (2003) Cap analysis gene expression for high-throughput analysis of transcriptional starting point and identification of promoter usage. Proc Natl Acad Sci U S A 100(26):15776–15781

    Article  Google Scholar 

  • Simoons FJ (1990) Food in China. A cultural and historical inquiry. CRC Press, Boston, pp 139–140

    Google Scholar 

  • Sivtsev MV, Sizov SS (1972) Contents of carbohydrates and pigments in leaves of male and female spinach as an index of their productivity. Ref Zh 55:542

    Google Scholar 

  • Smith P, Zahara M (1956) New spinach immune to mildew: hybrid variety developed by plant breedng program intended for use where Viroflay is adapted, produces comparable yield. Hilgardia 10(7):15–15

    Google Scholar 

  • Smith PG (1950) Downy mildew immunity in spinach. Phytopathology 40:65–68

    Google Scholar 

  • Sneep J (1982) The domestication of spinach and the breeding history of its varieties. Euphytica 13(Suppl 2):1–27

    Google Scholar 

  • Strickler SR, Bombarely A, Mueller LA (2012) Designing a transcriptome next-generation sequencing project for a nonmodel plant species. Am J Bot 99:257–266

    Article  Google Scholar 

  • Tan KC, Ipcho SVS, Trengove RD, Oliver RP, Solomon PS (2009) Assessing the impact of transcriptomics, proteomics and metabolomics on fungal phytopathology. Mol Plant Pathol 10:703–715

    Article  Google Scholar 

  • Tiso M, Schechter AN (2015) Nitrate reduction to nitrite, nitric oxide and ammonia by gut bacteria under physiological conditions. PLoS One 10:1–18

    Google Scholar 

  • Tronickova E, Bohmova J, Prugar J (1965) Some chemical characters of the spinach collection. Ved Prace Vyzak Ustav rostlin Vyrob Draze Ruzyni 8:115

    Google Scholar 

  • Uotila P (1997) Chenopodiaceae. Spinacia. In: Rechinger KH (ed) Flora Iranica. ADEVA, Graz, pp 59–63

    Google Scholar 

  • Van der Vossen HAM (2004) Spinacia oleracea. In: Grubben GJH, Denton OA (eds) Plant resources of tropical Africa 2: vegetables. Backhuys Publishers, Wageningen, pp 513–515

    Google Scholar 

  • Van Treuren R, de Groot L, Hisoriev H, Khassanov F, Farzaliyev V, Melyan G, Gabrielyan I, van Soest L, Tulmans C, Courand D, de Visser J, Kimura R, Boshoven JC, Janda T, Goossens R, Verhoef M, Dijkstra J, Kik C (2019) Acquisition and regeneration of Spinacia turkestanica and S. tetrandra to improve a spinach gene bank collection. Genet Resour Crop Evol 67:549–559. https://doi.org/10.1007/s10722-019-00792-8

    Article  Google Scholar 

  • Vera JC, Wheat CW, Fescemyer HW, Frilander MJ, Crawford DL, Hanski I et al (2008) Rapid transcriptome characterization for a nonmodel organism using 454 pyrosequencing. Mol Ecol 17:1636–1647

    Article  Google Scholar 

  • Villarroel-Zeballos MI, Feng C, Iglesias A, du Toit LJ, Correll JC (2012) Screening for resistance to Verticillium wilt in spinach and isolation of Verticillium dahliae from seed of spinach accessions. HortScience 47(9):1297–1303

    Article  Google Scholar 

  • Vincent H, Wiersema J, Kell S, Fielder H, Dobbie S, Castañeda-Álvarez NP, Guarina L, Eastwood R, Leόn B, Maxted N (2013) A prioritized crop wild relative inventory to help underpin global food security. Biol Conserv 167:265–275

    Article  Google Scholar 

  • Wadlington WH, Sandoya-Miranda GV, Miller CF, Villegas J, Raid RN (2018) Stemphylium Leaf Spot in spinach: chemical and breeding solutions for this threatening disease in Florida. In: Proceedings of the Florida State Horticultural Society, vol 131. Florida State Horticultural Society, pp 151–158

    Google Scholar 

  • Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10:57–63

    Article  Google Scholar 

  • Wang M, Li W, Fang C, Xu F, Liu Y, Wang Z, Yang R, Zhang M, Liu S, Lu S, Lin T, Tang J, Wang Y, Wang H, Lin H, Zhu B, Chen M, Kong F, Liu B, Zeng D, Jackson SA, Chu C, Tian Z (2018a) Parallel selection on a dormancy gene during domestication of crops from multiple families. Nat Genet 50:1435–1441

    Article  Google Scholar 

  • Wang X, Cai X, Xu C, Zhao Q, Ge C, Dai S, Wang QH (2018) Diversity of nitrate, oxalate, vitamin C and carotenoid contents in different spinach accessions and their correlation with various morphological traits. J Hortic Sci Biotechnol 93(4):409–415

    Article  Google Scholar 

  • Weretilnyk EA, Hanson AD (1988) Betaine aldehyde dehydrogenase polymorphism in spinach: genetic and biochemical characterization. Biochem Genet 1:143–151

    Article  Google Scholar 

  • Wurtzel O, Sapra R, Chen F, Zhu Y, Simmons BA, Sorek R (2010) A single-base resolution map of an archaeal transcriptome. Genome Res 20(1):133–141

    Article  Google Scholar 

  • Xu C, Jiao C, Zheng Y, Sun H, Liu W, Cai X, Wang X, Liu S, Xu Y, Mou B, Dai S (2015) De novo and comparative transcriptome analysis of cultivated and wild spinach. Sci Rep 5(1):1–9

    Google Scholar 

  • Xu C, Jiao C, Sun H, Cai X, Wang X, Ge C, Zheng Y, Liu W, Sun X, Xu Y, Deng J (2017) Draft genome of spinach and transcriptome diversity of 120 Spinacia accessions. Nat Commun 8(1):15275

    Article  Google Scholar 

  • Yamada K, Lim J, Dale JM, Chen H, Shinn P, Palm CJ et al (2003) Emperical analysis of transcriptional activity in the Arabidopsis genome. Science 302:842–846

    Article  Google Scholar 

  • Yamamoto K, Oda Y, Haseda A, Fujito S, Mikami T, Onodera Y (2014) Molecular evidence that the genes for dioecism and monoecism in Spinacia oleracea L. are located at different loci in a chromosomal region. Heredity 112(3):317–324

    Article  Google Scholar 

  • Yan J, Yu L, Xuan J, Lu Y, Lu S, Zhu W (2016) De novo transcriptome sequencing and gene expression profiling of spinach (Spinacia oleracea L.) leaves under heat stress. Sci Rep 6(1):19473. https://doi.org/10.1038/srep19473

    Article  Google Scholar 

  • Zuccarini P, Savé R (2016) Three species of arbuscular mycorrhizal fungi confer different levels of resistance to water stress in Spinacia oleracea L. Plant Biosyst – An International Journal Dealing with all Aspects of Plant Biology 150(5):851–854. https://doi.org/10.1080/11263504.2014.994575

    Article  Google Scholar 

  • Zhang W, Wang X, Yu Q, Ming R, Jiang J (2008) DNA methylation and heterochromatinization in the male-specific region of the primitive Y chromosome of papaya. Genome Res 18(12):1938–1943

    Article  Google Scholar 

  • Zhao Q, Chen W, Bian J, Xie H, Li Y, Xu C, Ma J, Guo S, Chen J, Cai X, Wang X (2018) Proteomics and phosphoproteomics of heat stress-responsive mechanisms in spinach. Front Plant Sci 9:800

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Das, A., Rout, B.M., Datta, S., Singh, S., Munshi, A.D., Dey, S.S. (2023). Spinach (Spinacia oleracea L.) Breeding: From Classical to Genomics-Centric Approach. In: Singh, S., Sharma, D., Sharma, S.K., Singh, R. (eds) Smart Plant Breeding for Vegetable Crops in Post-genomics Era . Springer, Singapore. https://doi.org/10.1007/978-981-19-5367-5_6

Download citation

Publish with us

Policies and ethics