Skip to main content
Log in

A genetic linkage map of Spinacia oleracea and localization of a sex determination locus

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

A genetic map of Spinach (Spinacia oleracea) was constructed in a classical back cross population using 101 AFLP and 9 microsatellite markers. The map was divided into seven linkage groups with a total length of 585 cM and an average distance between the markers of 5.18 cM. The linkage map was constructed with LOD 3.5, but was quite stable with seven linkage groups remaining until LOD 7.0. Gender segregated 1 male to 1 female in the mapping population and was mapped to a small area of one linkage group with a distance of 1.9 cM to a microsatellite marker termed SO4. This small chromosomal region co-segregating with sex determination in the species is in contrast to previous reports on a heterologous XY chromosome system in spinach. Microsatellite markers used as anchors in the map construction were isolated from sequences of known nuclear encoded genes in spinach. This enabled simultaneous positioning on the map of these genes: Rubisco activase (Rca), Photosytem 1 subunit V (PsaG), Protein Kinase (Pk), Nitrate reductase (Nir), ferrodoxin:thioredoxin reductase (Ftr), Ribosomal protein L1 (Rps22), Choline monooxygenase (Cmo), Pseudogene for BZIP protein (Bzip), Glycerol-3-phosphate acyltransferase (Act1) and stromal ascorbate peroxidase, thylakoid-bound ascorbate peroxidase (Apx2). Spinach has a small genome, which makes it suitable for basic genomic studies and many physiologically important genes have been cloned from the species. The present map anchored with user friendly microsatellite markers will be useful for future studies of physiology and genetics of the species as well as studies of the nature of gender determination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ainsworth, C.C., J. Lu, M. Winfield & J. Parker, 1999. Sex determination by X: autosome dosage: Rumex acetosa (Sorrel). In: Ainsworth, C.C. (Ed.), Sex determination in plants, pp. 121–136. Bios Scientific Publisher Oxford.

  • Ainsworth, C., 2000. Boys and Girls come out to play: The Molecular Biology of Dioecious Plants. Ann Bot 86: 211–221.

    Article  Google Scholar 

  • Bemis, W.P. & G.B. Wilson, 1953. A new hypothesis explaining the genetics of sex determination in Spinacea oleracea L. J Hered 44: 91–95.

    Google Scholar 

  • Christiansen, M.J., S.B. Andersen & R. Ortiz, 2002. Diversity changes in an intensively bred wheat germplasm during the 20th century. Mol Breed 9: 1–11.

    Article  Google Scholar 

  • Dressler, O., 1973. Erfarungen bei der Vermehrung und Züchtung monözischer Spinatsorten (Spinacia oleracea L.). Z PflZücht 70: 108–128.

    Google Scholar 

  • Durand, B. & R. Durand, 1991. Sex determination and reproductive organ differentiation in Mercurialis. Plant Sci 80: 49–65.

    Article  Google Scholar 

  • Ellis, J.R. & J. Janick, 1960. The chromosomes of Spinacia oleracea. Am J Bot 47: 210–214.

    Article  Google Scholar 

  • Farbos, I., J. Veuskens, B. Vyskot, M. Oliveira, S. Hinnisdaels, A. Aghmir, A. Mouras & I. Negrutiu, 1999. Sexual dimorphism in white campion: Deletion on the Y chromosome results in a floral asexual phenotype. Genetics 151: 1187–1196.

    PubMed  CAS  Google Scholar 

  • Filatov, D.A., F. Monéger, I. Negrutiu & D. Charlesworth, 2000. Low variability in a Y-linked plant gene and its implications for Y-chromosome evolution. Nature 404: 388–390.

    Article  PubMed  CAS  Google Scholar 

  • Grant, S., A. Houben, B. Vyskot, J. Siroky, W.H. Pan, J. Macas & H. Saedler, 1994. Genetics of sex determination in flowering plants. Dev Genetics 15: 214–230.

    Article  Google Scholar 

  • Groben, R. & G. Wricke, 1998. Occurrence of microsatellites in spinach sequences from computer databases and development of polymorphic SSR markers. Plant Breed 117: 271–274.

    Article  CAS  Google Scholar 

  • Gunter, L.E., G.T. Roberts, K. Lee, F.W. Larimer & G.A. Tuskan, 2003. The development of two flanking SCAR markers linked to a sex determination locus in Salix viminalis L. J Hered 94: 185–189.

    Article  PubMed  CAS  Google Scholar 

  • Guttman, D.S. & D. Charlesworth, 1998. An X- linked gene with a degenerate Y-linked homologue in a dioecious plant. Nature 393: 263–266.

    Article  PubMed  CAS  Google Scholar 

  • Haanstra, J.P.W., C. Wye, H. Verbakel, F. Meijer-Dekens, P. van den Berg, P. Odinot, A.W. van Heusden, S. Tanksley, P. Lindhout & J. Peleman, 1999. An integrated high-density RFLP-AFLP map of tomato based on two Lycopersicon esculentum × L. pennellii F2 Populations. Theor Appl Genet 99: 254-271.

    Article  CAS  Google Scholar 

  • Haga, T., 1935. Sex and Chromosomes in Spinacia oleracea L. Jpn J Genet 10: 218–222.

    Article  Google Scholar 

  • Haldane, J.B.S., 1919. The combination of linkage values and the calculation of distances between the loci of linked factors. J Genet 8: 299–309.

    Google Scholar 

  • Iizuka, M. & J. Janick, 1963. Sex Chromosome Translocations in Spinacia oleracea. Genetics 48: 273–282.

    PubMed  CAS  Google Scholar 

  • Iizuka, M. & J. Janick, 1966. The synthesis of heteromorphic sex chromosomes in spinach. J Hered 57: 182–184.

    Google Scholar 

  • Iizuka, M. & J. Janick, 1971. Sex Chromosome variation in Spinacia oleracea L. J Hered 62: 349–352.

    Google Scholar 

  • Janick, J. & E.C. Stevenson, 1955. Genetics of the monoecious character in spinach. Genetics 40: 429–437.

    PubMed  CAS  Google Scholar 

  • Jeuken, M., R. van Wijk, J. Peleman & P. Lindhout, 2001. An integrated interspecific AFLP map of lettuce (Lactuca) based on two L. sativa x L. saligna F2 populations. Theor Appl Genet 103: 638–647.

    Article  CAS  Google Scholar 

  • Jiang, C. & K.C. Sink, 1997. RAPD and SCAR markers linked to the sex expression locus M in asparagus. Euphytica 94: 329-333.

    Article  CAS  Google Scholar 

  • Khadka, D.K., A. Nejidat, M. Tal & A. Golan-Goldhirsh, 2002. DNA markers for sex: Molecular evidence for gender dimorphism in dioecious Mercurialis annua L. Mol Breed 9: 251–257.

    Article  CAS  Google Scholar 

  • Lardon, A., S. Georgiev, A. Aghmir, G. Le Merrer & I. Negrutiu, 1999. Sexual dimorphism in white campion: complex control of carpel number is revealed by Y chromosome deletions. Genetics 151: 1173–1185.

    PubMed  CAS  Google Scholar 

  • Liu, Z., P.H. Moore, H. Ma, C.M. Ackerman, M. Ragiba, Q. Yu, H.M. Pearl, M.S. Kim, J.W. Charlton, J.I. Stiles, F.T. Zee, A.H. Paterson & R. Ming, 2004. A primitive Y chromosome in papaya marks incipient sex chromosome evolution. Nature 427: 348–352.

    Article  PubMed  CAS  Google Scholar 

  • Louis, J.P., 1989. Genes for the regulation of the sex differentiation and male-fertility in Mercurialis annua L. J Hered 80: 104-111.

    Google Scholar 

  • Löptien, H. 1979. Identification of the sex-chromosome pair in asparagus (Asparagus officinalis L.) Z PflZücht 82: 162–173.

    Google Scholar 

  • Ma, H., P.H. Moore, Z. Liu, M.S. Kim, Q. Yu, M.M.M. Fitch, T. Sekioka, A.H. Paterson & R. Ming, 2004. High-density linkage mapping revealed suppression of recombination at the sex determination locus in papaya. Genetics 166: 419–436.

    Article  PubMed  CAS  Google Scholar 

  • Pannell, J., 1997. Mixed genetic and environmental sex determination in an androdioecious population of Mercurialis annua. Heredity 78: 50–56.

    PubMed  CAS  Google Scholar 

  • Parker, J.S., 1990. Sex chromosomes and sexual differentiation in flowering plants. Chromosomes Today 10: 187–198.

    CAS  Google Scholar 

  • Qi, X., P. Stam & P. Lindhout, 1998. Use of locus-specific AFLP markers to construct a high density molecular map in barley. Theor Appl Genet 96: 376–384.

    Article  CAS  Google Scholar 

  • Ramanna, M.S., 1976. Are there heteromorphic sex chromosomes in spinach (Spinacia oleracea L.)? Euphytica 25: 277–284.

    Article  Google Scholar 

  • Reamon-Büttner, S.M., J. Schondelmaier & C. Jung, 1998. AFLP markers tightly linked to the sex locus in Asparagus officinalis L. Mol breed 4: 91–98.

    Article  Google Scholar 

  • Rozen, S. & H.J. Skaletsky, 2000. Primer3 on the WWW for general users and for biologist programmers. In: S. Krawetz & S. Miseners (Eds.), Bioinformatics Methods and Protocols: Methods in Molecular Biology, pp. 365-386. Humana Press, Totowa, NJ.

  • Seefelder, S., H. Ehrmaier, G. Schweizer & E. Seigner, 2000. Male and female genetic linkage map of hops, Humulus lupulus. Plant Breed 119: 249–255.

    Article  CAS  Google Scholar 

  • Semerikov, V., U. Lagercrantz, V. Tsarouhas, A. Rönnberg-Wästljung, C. Alström-Rapaport & M. Lascoux. 2003. Genetic mapping of sex linked mark Bers in Salix Viminalis L. Heredity 91: 293–299.

    Article  PubMed  CAS  Google Scholar 

  • Sharp, P.J., M. Kreis, P.R. Shewry & M.D. Gale, 1988. Location of ß-amylase sequences in wheat and its relatives. Theor Appl Genet 75: 286–290.

    Article  CAS  Google Scholar 

  • Siemonsma, J.S. & K. Piluek, 1993. Plant Resources of South-East Asia No 8., Vegetables. pp. 266–268. Pudoc Scientific Publishers, Wageningen, the Netherlands.

  • Siljak-Yakovlev, S., S. Benmalek, M. Cerbah, T.C. de la Peña, N. Bounaga, S.C. Brown & A. Sarr, 1996. Chromosomal sex determination and heterochromatin stucture in date palm. Sex plant reprod 9: 127–132.

    Article  Google Scholar 

  • Sondur, S.N., R.M. Manshardt & J.I. Stiles, 1996. A genetic linkage map of papaya based on randomly amplified polymorphic DNA markers. Theor Appl Genet 93: 547–553.

    Article  CAS  Google Scholar 

  • Song, Q.J., L.F. Marek, R.C. Shoemaker, K.G. Lark, V.C. Concibido, X. Delannay, J.E. Specht & P.B. Cregan, 2004. A new integrated genetic linkage map of the soybean. Theor Appl Genet 109: 122–128.

    Article  PubMed  CAS  Google Scholar 

  • Spada, A., E. Caporali, G. Marziani, P. Portaluppi, F.M. Restivo, F. Tassi & A. Falavigna, 1998. A genetic map of Asparagus officinalis based on integrated RFLP, RAPD and AFLP molecular markers. Theor Appl Genet 97: 1083–1089.

    Article  CAS  Google Scholar 

  • Sugimoto, Y., 1948. Studies on the breeding of spinach. 2. Sex expression and genetical explanation. Hort Assoc Japan J 17: 77-83.

    Article  Google Scholar 

  • Temnykh, S., G. DeClerck, A. Lukashova, L. Lipovich, S. Cartinhour & S. McCouch, 2001. Computational and experimental analysis of microsatellites in rice (Oryza sativa L.): frequency, length variation, transposon associations, and genetic marker potential. Genome Res 11: 1441–1452.

    Article  PubMed  CAS  Google Scholar 

  • Torp, A.M., A.L. Hansen & S.B. Andersen, 2001. Chromosomal regions associated with green plant regeneration in wheat (Triticum aestivum L.) anther culture. Euphytica 119: 377–387.

    Article  CAS  Google Scholar 

  • Utz, H.F. & A.E. Melchinger, 1996. PlabQTL: A program for composite interval mapping of QTL. J. Agric. Genomics 2: http://www.cabi-publishing.org/jag/papers96/paper196/index p196.html.

  • Van Ooijen, J.W. & R.E. Voorrips, 2001. JoinMap® 3.0, Software for the calculation of genetic linkage maps. Plant Research International, Wageningen, the Netherlands.

  • Vos, P., R. Hogers, M. Bleeker, M. Reijans, T. van de Lee, M. Hornes, A. Frijters, J. Pot, J. Peleman, M. Kuiper & M. Zabeau, 1995. AFLP: a new technique for DNA fingerprinting. Nucl Acids Res 23: 4407–4414.

    Article  PubMed  CAS  Google Scholar 

  • Vuylsteke, M., R. Mank, R. Antonise, E. Bastiaans, M.L. Senior, C.W. Stuber, A.E. Melchinger, T. Lübberstedt, X.C. Xia, P. Stam, M. Zabeau & M. Kuiper, 1999. Two high-density AFLP linkage maps of Zea mays L: analysis of distribution of AFLP markers. Theor Appl Genet 99: 921–935.

    Article  CAS  Google Scholar 

  • Young, W.P., J.M. Schupp & P. Keim, 1999. DNA methylation and AFLP marker distribution in the soybean genome. Theor Appl Genet 99: 785–792.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sven B. Andersen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khattak, J.Z.K., Torp, A.M. & Andersen, S.B. A genetic linkage map of Spinacia oleracea and localization of a sex determination locus. Euphytica 148, 311–318 (2006). https://doi.org/10.1007/s10681-005-9031-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-005-9031-1

Keywords

Navigation