Skip to main content

Emerging Trends of Nanoparticles in Sustainable Agriculture: Current and Future Perspectives

  • Chapter
  • First Online:
Plant and Nanoparticles

Abstract

Nanotechnology in agriculture is emerging at an escalating rate, owing to its excellent properties in plant growth and development. In the present era where climate change is most commonly observed, the global patterns of agriculture are observing unprecedented challenges. For achieving food quality and yields, nano-engineering is a novel tool that maintains sustainable crop production. Due to the disastrous effects of chemical fertilizers, there is a need to switch to safer alternatives. Nano-technology enables safe crop production by improving efficiency and reducing losses. This technology has been predominantly entered into wider areas of fertilizers and pesticides for synthesizing agrochemicals based-nanoparticles. Because of their critical and direct/indirect approach in management and regulatory inputs (herbicides, pesticides, fungicides, etc.), nanotools like nano-biosensors also support avant-garde agriculture farms. Therefore, plant biology and nanotechnology together have a great impact on the environment due to their innovative characteristics in agriculture, to meet the urgent needs of food with environmental sustainability. In this chapter, we have mainly focused on nanoparticle interactions among plants, their uptake, mobilization, and metabolic actions. Moreover, the bioactive compounds in plants possess many functions that are also modulated by nanoparticles. Therefore, nanoparticles function as elicitors in the plant’s secondary metabolism. We have envisaged the multidisciplinary actions of nanoparticles with plant nanotechnology, biotechnology, genetic engineering and pushed it towards agriculture sector, as well as plant research. In particular, we have depicted the role of nanoparticles in enhancing bioactive compounds of plants, thereby improving crop productivity through boosting the nutraceutical and nutrients of plants. Here, we have also reviewed the nanoparticle abilities toward plant protection and stress management against numerous adverse conditions. This chapter will enable the researchers to understand the nanotechnology blend in agriculture, thereby designing the specific nanoparticles according to the agriculture needs as well as standards for promoting sustainable agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fatima, F., Hashim, A., & Anees, S. (2020). Efficacy of nanoparticles as nanofertilizer production: a review. Environmental Science and Pollution Research, 17, 1–2.

    CAS  Google Scholar 

  2. Bindraban, P. S., Dimkpa, C. O., & Pandey, R. (2020). Exploring phosphorus fertilizers and fertilization strategies for improved human and environmental health. Biology and Fertility of Soils, 56(3), 299–317.

    Article  CAS  Google Scholar 

  3. Dwivedi, S., Saquib, Q., Al-Khedhairy, A. A., & Musarrat, J. (2016). Understanding the role of nanomaterials in agriculture. In Microbial inoculants in sustainable agricultural productivity (pp. 271–288). Springer.

    Chapter  Google Scholar 

  4. Lv, M., Liu, Y., Geng, J., Kou, X., Xin, Z., & Yang, D. (2018). Engineering nanomaterials-based biosensors for food safety detection. Biosensors & Bioelectronics, 106, 122–128.

    Article  CAS  Google Scholar 

  5. Pandey, G. (2018). Challenges and future prospects of agri-nanotechnology for sustainable agriculture in India. Environmental Technology and Innovation, 11, 299–307.

    Article  Google Scholar 

  6. Vermeulen, S. J., Aggarwal, P. K., Ainslie, A., Angelone, C., Campbell, B. M., Challinor, A. J., Hansen, J. W., Ingram, J. S., Jarvis, A., Kristjanson, P., & Lau, C. (2012). Options for support to agriculture and food security under climate change. Environmental Science & Policy, 15(1), 136–144.

    Article  Google Scholar 

  7. Zhao, L., Lu, L., Wang, A., Zhang, H., Huang, M., Wu, H., Xing, B., Wang, Z., & Ji, R. (2020). Nano-biotechnology in agriculture: Use of nanomaterials to promote plant growth and stress tolerance. Journal of Agricultural and Food Chemistry, 68(7), 1935–1947.

    Article  CAS  PubMed  Google Scholar 

  8. Chen, Y. W., Lee, H. V., Juan, J. C., & Phang, S. M. (2016). Production of new cellulose nanomaterial from red algae marine biomass Gelidium elegans. Carbohydrate Polymers, 151, 1210–1219.

    Article  CAS  PubMed  Google Scholar 

  9. Smita, S., Gupta, S. K., Bartonova, A., Dusinska, M., Gutleb, A. C., & Rahman, Q. (2012). Nanoparticles in the environment: assessment using the causal diagram approach. Environmental Health, 11(1), S13.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Sharma, V. K., Filip, J., Zboril, R., & Varma, R. S. (2015). Natural inorganic nanoparticles–formation, fate, and toxicity in the environment. Chemical Society Reviews, 44(23), 8410–8423.

    Article  CAS  PubMed  Google Scholar 

  11. Sharma, D., Kanchi, S., & Bisetty, K. (2019). Biogenic synthesis of nanoparticles: A review. Arabian Journal of Chemistry, 12(8), 3576–3600.

    Article  CAS  Google Scholar 

  12. Ghozlan, H. A., Abouelkheir, S. S., & Sabry, S. A. (2018). Microbial fabrication of magnetic nanoparticles and their applications. In Magnetic nanostructured materials (pp. 117–136). Elsevier.

    Chapter  Google Scholar 

  13. Strambeanu, N., Demetrovici, L., & Dragos, D. (2015). Natural sources of nanoparticles. In Nanoparticles’ promises and risks (pp. 9–19). Springer.

    Google Scholar 

  14. Griffin, S., Masood, M. I., Nasim, M. J., Sarfraz, M., Ebokaiwe, A. P., Schäfer, K. H., Keck, C. M., & Jacob, C. (2018). Natural nanoparticles: A particular matter inspired by nature. Antioxidants, 7(1), 3.

    Article  CAS  Google Scholar 

  15. Buzea, C., Pacheco, I. I., & Robbie, K. (2007). Nanomaterials and nanoparticles: sources and toxicity. Biointerphases, 2(4), MR17-MR71.

    Article  Google Scholar 

  16. Jeevanandam, J., Barhoum, A., Chan, Y. S., Dufresne, A., & Danquah, M. K. (2018). Review on nanoparticles and nanostructured materials: History, sources, toxicity and regulations. Beilstein Journal of Nanotechnology, 9(1), 1050–1074.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Barnard, A. S., & Guo, H. (Eds.). (2012). Nature’s nanostructures. CRC Press.

    Google Scholar 

  18. Klaine, S. J., Alvarez, P. J., Batley, G. E., Fernandes, T. F., Handy, R. D., Lyon, D. Y., Mahendra, S., McLaughlin, M. J., & Lead, J. R. (2008). Nanomaterials in the environment: Behavior, fate, bioavailability, and effects. Environmental Toxicology and Chemistry, 27(9), 1825–1851.

    Article  CAS  PubMed  Google Scholar 

  19. Sadik, O. A. (2013). Anthropogenic nanoparticles in the environment. Environmental Science: Processes & Impacts, 15(1), 19–20.

    CAS  Google Scholar 

  20. Biswas, P., & Wu, C. Y. (2005). Nanoparticles and the environment. Journal of the Air & Waste Management Association (1995), 55(6), 708–746.

    Article  CAS  Google Scholar 

  21. Bundschuh, M., Filser, J., Lüderwald, S., McKee, M. S., Metreveli, G., Schaumann, G. E., Schulz, R., & Wagner, S. (2018). Nanoparticles in the environment: Where do we come from, where do we go to? Environmental Sciences Europe, 30(1), 1–17.

    Article  CAS  Google Scholar 

  22. Wagner, S., Gondikas, A., Neubauer, E., Hofmann, T., & von der Kammer, F. (2014). Spot the difference: engineered and natural nanoparticles in the environment—Release, behavior, and fate. Angewandte Chemie, International Edition, 53(46), 12398–12419.

    CAS  Google Scholar 

  23. Wallace, L. A., Emmerich, S. J., & Howard-Reed, C. (2004). Source strengths of ultrafine and fine particles due to cooking with a gas stove. Environmental Science & Technology, 38(8), 2304–2311.

    Article  CAS  Google Scholar 

  24. Zhang, X., Yan, S., Tyagi, R. D., & Surampalli, R. Y. (2011). Synthesis of nanoparticles by microorganisms and their application in enhancing microbiological reaction rates. Chemosphere, 82(4), 489–494.

    Article  CAS  PubMed  Google Scholar 

  25. Musarrat, J., Dwivedi, S., Singh, B. R., Al-Khedhairy, A. A., Azam, A., & Naqvi, A. (2010). Production of antimicrobial silver nanoparticles in water extracts of the fungus Amylomyces rouxii strain KSU-09. Bioresource Technology, 101, 8772–8776.

    Article  CAS  PubMed  Google Scholar 

  26. Fang, X., Wang, Y., Wang, Z., Jiang, Z., & Dong, M. (2019). Microorganism assisted synthesized nanoparticles for catalytic applications. Energies, 12(1), 190.

    Article  CAS  Google Scholar 

  27. Hulkoti, N. I., & Taranath, T. C. (2014). Biosynthesis of nanoparticles using microbes—A review. Colloids and Surfaces. B, Biointerfaces, 121, 474–483.

    Article  CAS  PubMed  Google Scholar 

  28. Li, X., Xu, H., Chen, Z. S., & Chen, G. (2011). Biosynthesis of nanoparticles by microorganisms and their applications. Journal of Nanomaterials. https://doi.org/10.1155/2011/270974

  29. Mishra, S., Singh, B. R., Naqvi, A. H., & Singh, H. B. (2017). Potential of biosynthesized silver nanoparticles using Stenotrophomonas sp. BHU-S7 (MTCC 5978) for management of soil-borne and foliar phytopathogens. Scientific Reports, 7, 1–15.

    Article  CAS  Google Scholar 

  30. Iravani, S. (2014). Bacteria in nanoparticle synthesis: Current status and future prospects. International Scholarly Research Notices, 2014, 359316.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Borse, V., Kaler, A., & Banerjee, U. C. (2015). Microbial synthesis of platinum nanoparticles and evaluation of their anticancer activity. International Journal of Emerging Trends in Electrical and Electronics, 11, 26–31.

    Google Scholar 

  32. Ranjitha, V. R., & Rai, V. R. (2017). Actinomycetes mediated synthesis of gold nanoparticles from the culture supernatant of Streptomyces griseoruber with special reference to catalytic activity. 3 Biotech, 7(5), 299.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. He, S., Zhang, Y., Guo, Z., & Gu, N. (2008). Biological synthesis of gold nanowires using extract of Rhodopseudomonas capsulata. Biotechnology Progress, 24(2), 476–480.

    Article  CAS  PubMed  Google Scholar 

  34. Basu, A., Ray, S., Chowdhury, S., Sarkar, A., Mandal, D. P., Bhattacharjee, S., & Kundu, S. (2018). Evaluating the antimicrobial, apoptotic, and cancer cell gene delivery properties of protein-capped gold nanoparticles synthesized from the edible mycorrhizal fungus Tricholoma crassum. Nanoscale Research Letters, 13(1), 154.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Musarrat, J., Dwivedi, S., Singh, B. R., Saquib, Q., & Al-Khedhairy, A. A. (2011). Microbially synthesized nanoparticles: scope and applications. In Microbes and microbial technology (pp. 101–126). Springer.

    Chapter  Google Scholar 

  36. Bhargava, A., Jain, N., Barathi, M., Akhtar, M. S., Yun, Y. S., & Panwar, J. (2013). Synthesis, characterization and mechanistic insights of mycogenic iron oxide nanoparticles. In Nanotechnology for sustainable development (pp. 337–348). Springer.

    Chapter  Google Scholar 

  37. Kundu, D., Hazra, C., Chatterjee, A., Chaudhari, A., & Mishra, S. (2014). Extracellular biosynthesis of zinc oxide nanoparticles using Rhodococcus pyridinivorans NT2: multifunctional textile finishing, biosafety evaluation and in vitro drug delivery in colon carcinoma. Journal of Photochemistry and Photobiology B: Biology, 140, 194–204.

    Article  CAS  Google Scholar 

  38. Jayaseelan, C., Rahuman, A. A., Kirthi, A. V., Marimuthu, S., Santhoshkumar, T., Bagavan, A., Gaurav, K., Karthik, L., & Rao, K. B. (2012). Novel microbial route to synthesize ZnO nanoparticles using Aeromonas hydrophila and their activity against pathogenic bacteria and fungi. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 90, 78–84.

    Article  CAS  Google Scholar 

  39. Malarkodi, C., Rajeshkumar, S., Paulkumar, K., Vanaja, M., Gnanajobitha, G., & Annadurai, G. (2014). Biosynthesis and antimicrobial activity of semiconductor nanoparticles against oral pathogens. Bioinorganic Chemistry and Applications, 2014, 347167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ahmad, M. S., Yasser, M. M., Sholkamy, E. N., Ali, A. M., & Mehanni, M. M. (2015). Anticancer activity of biostabilized selenium nanorods synthesized by Streptomyces bikiniensis strain Ess_amA-1. International Journal of Nanomedicine, 10, 3389.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Dwivedi, S., AlKhedhairy, A. A., Ahamed, M., & Musarrat, J. (2013). Biomimetic synthesis of selenium nanospheres by bacterial strain JS-11 and its role as a biosensor for nanotoxicity assessment: A novel Se-bioassay. PLoS One, 8(3), e57404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Elsoud, M. M. A., Al-Hagar, O. E., Abdelkhalek, E. S., & Sidkey, N. M. (2018). Synthesis and investigations on tellurium myconanoparticles. Biotechnology Reports, 18, e00247.

    Article  Google Scholar 

  43. Zhuravliova, O. A., Voeikova, T. A., Khaddazh, M. K., Bulushova, N. V., Ismagulova, T. T., Bakhtina, A. V., Gusev, S. A., Gritskova, I. A., Lupanova, T. N., Shaitan, K. V., & Debabov, V. G. (2018). Bacterial synthesis of cadmium and zinc sulfide nanoparticles: Characteristics and prospects of application. Molecular Genetics, Microbiology and Virology, 33(4), 233–240.

    Article  Google Scholar 

  44. Ha, C., Zhu, N., Shang, R., Shi, C., Cui, J., Sohoo, I., Wu, P., & Cao, Y. (2016). Biorecovery of palladium as nanoparticles by Enterococcus faecalis and its catalysis for chromate reduction. Chemical Engineering Journal, 288, 246–254.

    Article  CAS  Google Scholar 

  45. Purohit, J., Chattopadhyay, A., & Singh, N. K. (2019). Green synthesis of microbial nanoparticle: Approaches to application. In Microbial nanobionics (pp. 35–60). Springer.

    Chapter  Google Scholar 

  46. Fariq, A., Khan, T., & Yasmin, A. (2017). Microbial synthesis of nanoparticles and their potential applications in biomedicine. Journal of Applied Biomedicine, 15(4), 241–248.

    Article  Google Scholar 

  47. Sunkar, S., & Nachiyar, C. V. (2012). Biogenesis of antibacterial silver nanoparticles using the endophytic bacterium Bacillus cereus isolated from Garcinia xanthochymus. Asian Pacific Journal of Tropical Biomedicine, 2(12), 953–959.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Shahzad, A., Saeed, H., Iqtedar, M., Hussain, S. Z., Kaleem, A., Abdullah, R., Sharif, S., Naz, S., Saleem, F., Aihetasham, A., & Chaudhary, A. (2019). Size-controlled production of silver nanoparticles by Aspergillus fumigatus BTCB10: Likely antibacterial and cytotoxic effects. Journal of Nanomaterials, 2019. https://doi.org/10.1155/2019/5168698

  49. Abboud, Y., Saffaj, T., Chagraoui, A., El Bouari, A., Brouzi, K., Tanane, O., & Ihssane, B. (2014). Biosynthesis, characterization and antimicrobial activity of copper oxide nanoparticles (CONPs) produced using brown alga extract (Bifurcaria bifurcata). Applied Nanoscience, 4(5), 571–576.

    Article  CAS  Google Scholar 

  50. Marimuthu, S., Rahuman, A. A., Kirthi, A. V., Santhoshkumar, T., Jayaseelan, C., & Rajakumar, G. (2013). Eco-friendly microbial route to synthesize cobalt nanoparticles using Bacillus thuringiensis against malaria and dengue vectors. Parasitology Research, 112(12), 4105–4112.

    Article  PubMed  Google Scholar 

  51. Sutradhar, K. B., & Amin, M. L. (2014). Nanotechnology in cancer drug delivery and selective targeting. ISRN Nanotechnology 2014.

    Google Scholar 

  52. Ortega, F. G., Fernández-Baldo, M. A., Fernández, J. G., Serrano, M. J., Sanz, M. I., Diaz-Mochón, J. J., Lorente, J. A., & Raba, J. (2015). Study of antitumor activity in breast cell lines using silver nanoparticles produced by yeast. International Journal of Nanomedicine, 10, 2021.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Moeinzadeh, S., & Jabbari, E. (2017). Nanoparticles and their applications. In Springer handbook of nanotechnology (pp. 335–361). Springer.

    Chapter  Google Scholar 

  54. Moghadam, A. V., Iranbakhsh, A., Saadatmand, S., Ebadi, M., & Ardebili, Z. O. (2021). New insights into the transcriptional, epigenetic, and physiological responses to zinc oxide nanoparticles in Datura stramonium; potential species for phytoremediation. Journal of Plant Growth Regulation, 29, 1–1.

    Google Scholar 

  55. Shang, Y., Hasan, M., Ahammed, G. J., Li, M., Yin, H., & Zhou, J. (2019). Applications of nanotechnology in plant growth and crop protection: A review. Molecules, 24(14), 2558.

    Article  CAS  PubMed Central  Google Scholar 

  56. Monica, R. C., & Cremonini, R. (2009). Nanoparticles and higher plants. Caryologia, 62, 161–165.

    Article  Google Scholar 

  57. Pollard, M., Beisson, F., Li, Y. H., & Ohlrogge, J. B. (2008). Building lipid barriers: Biosynthesis of cutin and suberin. Trends in Plant Science, 13, 236–246.

    Article  CAS  PubMed  Google Scholar 

  58. Eichert, G. H. E. (2008). Equivalent pore radii of hydrophilic foliar uptake routes in stomatous and astomatous leaf surfaces-further evidence for a stomatal pathway. Physiologia Plantarum, 132(491–502), 35.

    Google Scholar 

  59. Popp, C., Burghardt, M., Friedmann, A., & Riederer, M. (2005). Characterization of hydrophilic and lipophilic pathways of Hedera helix L. cuticular membranes: Permeation of water and uncharged organic compounds. Journal of Experimental Botany, 56, 2797–2806.

    Article  CAS  PubMed  Google Scholar 

  60. Rico, C. M., Majumdar, S., Duarte-Gardea, M., Peralta-Videa, J. R., & Gardea-Torresdey, J. L. (2011). Interaction of nanoparticles with edible plants and their possible implications in the food chain. Journal of Agricultural and Food Chemistry, 59, 3485–3498.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Taylor, A. F., Rylott, E. L., Anderson, C. W., & Bruce, N. C. (2014). Investigating the toxicity, uptake, nanoparticle formation and genetic response of plants to gold. PLoS One, 9, e93793.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Ma, Y. H., He, X., Zhang, P., Zhang, Z. Y., Guo, Z., Tai, R. Z., Xu, Z. J., Zhang, L. J., Ding, Y. Y., Zhao, Y. L., & Chai, Z. F. (2011). Phytotoxicity and biotransformation of La2O3 nanoparticles in a terrestrial plant cucumber (Cucumis sativus). Nanotoxicology, 5, 743–753.

    Article  CAS  PubMed  Google Scholar 

  63. Zhang, P., Ma, Y. H., Zhang, Z. Y., He, X., Zhang, J., Guo, Z., Tai, R. Z., Zhao, Y. L., & Chai, Z. F. (2012). Biotransformation of ceria nanoparticles in cucumber plants. ACS Nano, 6, 9943–9950.

    Article  CAS  PubMed  Google Scholar 

  64. Rastogi, A., Tripathi, D. K., Yadav, S., Chauhan, D. K., Živčák, M., Ghorbanpour, M., El-Sheery, N. I., & Brestic, M. (2019). Application of silicon nanoparticles in agriculture. 3 Biotech, 9(3), 1–1.

    Article  Google Scholar 

  65. Uzu, G., Sobanska, S., Sarret, G., Munoz, M., & Dumat, C. (2010). Foliar lead uptake by lettuce exposed to atmospheric fallouts. Environmental Science & Technology, 44, 1036–1042.

    Article  CAS  Google Scholar 

  66. Hatami, M., Naghdi Badi, H., & Ghorbanpour, M. (2019). Nano-elicitation of secondary pharmaceutical metabolites in plant cells: A review. Journal of Medicinal Plants, 18, 6–36.

    Google Scholar 

  67. Yarizade, K., & Hosseini, R. (2015). Expression analysis of ADS, DBR2, ALDH1 and SQS genes in Artemisia vulgaris hairy root culture under nano cobalt and nano zinc elicitation. Extension Journal of Applied Science, 3, 69–76.

    Google Scholar 

  68. Marslin, G., Sheeba, C. J., & Franklin, G. (2017). Nanoparticles alter secondary metabolism in plants via ROS burst. Frontiers in Plant Science, 8, 832.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Khan, M. A., Wallace, W. T., Sambi, J., Rogers, D. T., Littleton, J. M., Rankin, S. E., & Knutson, B. L. (2020). Nanoharvesting of bioactive materials from living plant cultures using engineered silica nanoparticles. Materials Science and Engineering C: Materials for Biological Applications, 106, 110190.

    Article  CAS  PubMed  Google Scholar 

  70. Khan, Z. S., Rizwan, M., Hafeez, M., Ali, S., Adrees, M., Qayyum, M. F., Khalid, S., Ur Rehman, M. Z., & Sarwar, M. A. (2020). Effects of silicon nanoparticles on growth and physiology of wheat in cadmium contaminated soil under different soil moisture levels. Environmental Science and Pollution Research, 27(5), 4958–4968.

    Article  CAS  PubMed  Google Scholar 

  71. Ali, S., Rizwan, M., Noureen, S., Anwar, S., Ali, B., Naveed, M., Abd Allah, E. F., Alqarawi, A. A., & Ahmad, P. (2019). Combined use of biochar and zinc oxide nanoparticle foliar spray improved the plant growth and decreased the cadmium accumulation in rice (Oryza sativa L.) plant. Environmental Science and Pollution Research, 26(11), 11288–11299.

    Article  CAS  PubMed  Google Scholar 

  72. Mosavat, N., Golkar, P., Yousefifard, M., & Javed, R. (2019). Modulation of callus growth and secondary metabolites in different Thymus species and Zataria multiflora micropropagated under ZnO nanoparticles stress. Biotechnology and Applied Biochemistry, 66, 316–322.

    Article  CAS  PubMed  Google Scholar 

  73. Hezaveh, T. A., Rahmani, F., Alipour, H., & Pourakbar, L. (2020). Effects of foliar application of ZnO nanoparticles on secondary metabolite and micro-elements of Camelina (Camelina sativa L.) under salinity stress. Journal of Stress Physiology and Biochemistry, 16, 54–69.

    CAS  Google Scholar 

  74. Li, J., Wan, F., Guo, W., Huang, J., Dai, Z., Yi, L., & Wang, Y. (2020). Influence of α-and γ-Fe2O3 nanoparticles on watermelon (Citrullus lanatus) physiology and fruit quality. Water, Air, and Soil Pollution, 231(4), 1–2.

    Article  CAS  Google Scholar 

  75. Kruszka, D., Sawikowska, A., Selvakesavan, R. K., Krajewski, P., Kachlicki, P., & Franklin, G. (2020). Silver nanoparticles affect phenolic and phytoalexin composition of Arabidopsis thaliana. Science of the Total Environment, 716, 135361.

    Article  CAS  PubMed  Google Scholar 

  76. Ogunkunle, C. O., Adegboye, E. F., Okoro, H. K., Vishwakarma, V., Alagarsamy, K., & Fatoba, P. O. (2020). Effect of nanosized anatase TiO2 on germination, stress defense enzymes, and fruit nutritional quality of Abelmoschus esculentus (L.) Moench (okra). Arabian Journal of Geosciences, 13, 120.

    Article  CAS  Google Scholar 

  77. Hegazi, G. A., Ibrahim, W. M., Hendawy, M. H., Salem, H. M., & Ghareb, H. E. (2020). Improving α-tocopherol accumulation in Argania spinosa suspension cultures by precursor and nanoparticles feeding. Plant Archives, 20, 2431–2437.

    Google Scholar 

  78. Khajavi, M., Rahaie, M., & Ebrahimi, A. (2019). The effect of TiO2 and SiO2 nanoparticles and salinity stress on expression of genes involved in parthenolide biosynthesis in Feverfew (Tanacetum parthenium L.). Caryologia. International Journal of Cytology. Cytosystemics and Cytogenetics, 72, 3–14.

    Google Scholar 

  79. Karakas, O. (2020). Effect of silver nanoparticles on production of indole alkaloids in Isatis constricta. Iranian Journal of Sciences and Technology, Transactions A: Sciences, 44, 621–627.

    Article  Google Scholar 

  80. Sharifi-Rad, R., Bahabadi, S. E., Samzadeh-Kermani, A., & Gholami, M. (2020). The Effect of Non-biological Elicitors on Physiological and Biochemical Properties of Medicinal Plant Momordica charantia L. Iranian Journal of Sciences and Technology, Transactions A: Sciences, 44, 1315–1326.

    Article  Google Scholar 

  81. Ahmad, M. A., Javed, R., Adeel, M., Rizwan, M., Ao, Q., & Yang, Y. (2020). Engineered ZnO and CuO nanoparticles ameliorate morphological and biochemical response in tissue culture regenerants of candy leaf (Stevia rebaudiana). Molecules, 25, 1356.

    Article  CAS  PubMed Central  Google Scholar 

  82. Chung, I. M., Rajakumar, G., & Thiruvengadam, M. (2018). Effect of silver nanoparticles on phenolic compounds production and biological activities in hairy root cultures of Cucumis anguria. Acta Biologica Hungarica, 69, 97–109.

    Article  CAS  PubMed  Google Scholar 

  83. Jamshidi, M., & Ghanati, F. (2017). Taxanes content and cytotoxicity of hazel cells extract after elicitation with silver nanoparticles. Plant Physiology and Biochemistry, 110, 178–184.

    Article  CAS  PubMed  Google Scholar 

  84. Fazal, H., Abbasi, B. H., Ahmad, N., Ali, M., Shujait Ali, S., Khan, A., & Wei, D. Q. (2019). Sustainable production of biomass and industrially important secondary metabolites in cell cultures of selfheal (Prunella vulgaris L.) elicited by silver and gold nanoparticles. Artificial Cells, Nanomedicine, and Biotechnology, 47, 2553–2561.

    Article  CAS  PubMed  Google Scholar 

  85. Singh, O. S., Pant, N. C., Laishram, L., Tewari, M., Dhoundiyal, R., Joshi, K., & Pandey, C. (2018). Effect of CuO nanoparticles on polyphenols content and antioxidant activity in Ashwagandha (Withania somnifera L. Dunal). Journal of Pharmacognosy and Phytochemistry, 7, 3433–3439.

    CAS  Google Scholar 

  86. Barrios, A. C., Medina-Velo, I. A., Zuverza-Mena, N., Dominguez, O. E., Peralta-Videa, J. R., & Gardea-Torresdey, J. L. (2017). Nutritional quality assessment of tomato fruits after exposure to uncoated and citric acid coated cerium oxide nanoparticles, bulk cerium oxide, cerium acetate and citric acid. Plant Physiology and Biochemistry, 110, 100–107.

    Article  CAS  PubMed  Google Scholar 

  87. Zhao, L., Hu, J., Huang, Y., Wang, H., Adeleye, A., Ortiz, C., & Keller, A. A. (2017). 1H NMR and GC–MS based metabolomics reveal nano-Cu altered cucumber (Cucumis sativus) fruit nutritional supply. Plant Physiology and Biochemistry, 110, 138–146.

    Google Scholar 

  88. Juarez-Maldonado, A., Ortega-Ortíz, H., Pérez-Labrada, F., Cadenas-Pliego, G., & Benavides-Mendoza, A. (2016). Cu Nanoparticles absorbed on chitosan hydrogels positively alter morphological, production, and quality characteristics of tomato. Journal of Applied Botany and Food Quality, 89, 183–189.

    CAS  Google Scholar 

  89. Wang, S., Li, S., Liu, Q., Wu, K., Zhang, J., Wang, S., Wang, Y., Chen, X., Zhang, Y., & Gao, C. (2015). The OsSPL16-GW7 regulatory module determines grain shape and simultaneously improves rice yield and grain quality. Nature Genetics, 47, 949–954.

    Article  CAS  PubMed  Google Scholar 

  90. Wang, Y., Li, R., Li, D., Jia, X., Zhou, D., Li, J., & Lyi, S. M. (2017). NIP1;2 is a plasma membrane-localized transporter mediating aluminum uptake, translocation, and tolerance in Arabidopsis. Proceedings of the National Academy of Sciences, 114, 5047–5052.

    Article  CAS  Google Scholar 

  91. Billingsley, M., Singh, N., Ravikumar, P., Zhang, R., June, C. H., & Mitchell, M. J. (2020). Ionizable lipid nanoparticle mediated mRNA delivery for human CAR t cell engineering. Nano Letters, 20, 1578–1589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Lau, H. Y., Wu, H., Wee, E. J. H., Trau, M., Wang, Y., & Botella, J. R. (2017). Specific and sensitive isothermal electrochemical biosensor for plant pathogen DNA detection with colloidal gold nanoparticles as probes. Scientific Reports, 7, 1–7.

    Article  CAS  Google Scholar 

  93. Demirer, G. S., Zhang, H., Matos, J., Goh, N. S., Cunningham, F. J., Sung, Y., Chang, R., Aditham, A. J., Chio, L., Che, M. J., Staskawicz, B., & Landry, M. P. (2018). High aspect ratio nanomaterials enable delivery of functional genetic material without DNA integration in mature plants. Nature Nanotechnology, 14(5), 456–464.

    Article  CAS  Google Scholar 

  94. Martin-Ortigosa, S., Peterson, D. J., Valenstein, J. S., Lin, V. S. Y., Trewyn, B. G., Lyznik, L. A., & Wang, K. (2014). Mesoporous silica nanoparticle-mediated intracellular cre protein delivery for maize genome editing via loxP site excision. Plant Physiology, 164, 537–547.

    Article  CAS  PubMed  Google Scholar 

  95. Prasad, R., Bhattacharyya, A., & Nguyen, Q. D. (2017). Nanotechnology in sustainable agriculture: Recent developments, challenges, and perspectives. Frontiers in Microbiology, 8, 1014.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Fraceto, L. F., Grillo, R., de Medeiros, G. A., Scognamiglio, V., Rea, G., & Bartolucci, C. (2016). Nanotechnology in agriculture: Which innovation potential does it have? Frontiers in Environmental Science, 22(4), 20.

    Google Scholar 

  97. Janmohammadi, M., Navid, A., Segherloo, A. E., & Sabaghnia, N. (2016). Impact of nano-chelated micronutrients and biological fertilizers on growth performance and grain yield of maize under deficit irrigation condition. Biologija, 62(2), 134.

    Article  Google Scholar 

  98. Karunakaran, G., Suriyaprabha, R., Rajendran, V., & Kannan, N. (2016). Influence of ZrO2, SiO2, Al2O3 and TiO2 nanoparticles on maize seed germination under different growth conditions. IET Nanobiotechnology, 10(4), 171–177.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Gogos, A., Knauer, K., & Bucheli, T. D. (2012). Nanomaterials in plant protection and fertilization: Current state, foreseen applications, and research priorities. Journal of Agricultural and Food Chemistry, 60(39), 9781–9792.

    Article  CAS  PubMed  Google Scholar 

  100. Khanna, K., Kohli, S. K., Handa, N., Kaur, H., Ohri, P., Bhardwaj, R., Yousaf, B., Rinklebe, J., & Ahmad, P. (2021). Enthralling the impact of engineered nanoparticles on soil microbiome: A concentric approach towards environmental risks and cogitation. Ecotoxicology and Environmental Safety, 222, 112459.

    Article  CAS  PubMed  Google Scholar 

  101. Kim, D. H., Gopal, J., & Sivanesan, I. (2017). Nanomaterials in plant tissue culture: the disclosed and undisclosed. RSC Advances, 7(58), 36492–36505.

    Article  CAS  Google Scholar 

  102. Miller, J. B., Zhang, S., Kos, P., Xiong, H., Zhou, K., Perelman, S. S., Zhu, H., & Siegwart, D. J. (2007). Non-viral CRISPR/Cas gene editing in vitro and in vivo enabled by synthetic nanoparticle co-delivery of Cas9 mRNA and sgRNA. Angewandte Chemie, International Edition, 56(4), 1059–1063.

    Article  CAS  Google Scholar 

  103. Kwak, S. Y., Wong, M. H., Lew, T. T., Bisker, G., Lee, M. A., Kaplan, A., Dong, J., Liu, A. T., Koman, V. B., Sinclair, R., & Hamann, C. (2017). Nanosensor technology applied to living plant systems. Annual Review of Analytical Chemistry, 10, 113–140.

    Article  PubMed  Google Scholar 

  104. Jampilek, J., & Kráľová, K. (2015). Application of nanotechnology in agriculture and food industry, its prospects and risks. Ecological Chemistry and Engineering Science, 22(3), 321–361.

    Article  CAS  Google Scholar 

  105. Joga, M. R., Zotti, M. J., Smagghe, G., & Christiaens, O. (2016). RNAi efficiency, systemic properties, and novel delivery methods for pest insect control: What we know so far. Frontiers in Physiology, 7, 553.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Yang, H., Xu, M., Koide, R. T., Liu, Q., Dai, Y., Liu, L., & Bian, X. (2016). Effects of ditch-buried straw return on water percolation, nitrogen leaching and crop yields in a rice–wheat rotation system. Journal of the Science of Food and Agriculture, 96(4), 1141–1149.

    Article  CAS  PubMed  Google Scholar 

  107. Ghormade, V., Deshpande, M. V., & Paknikar, K. M. (2011). Perspectives for nano-biotechnology enabled protection and nutrition of plants. Biotechnology Advances, 29(6), 792–803.

    Article  CAS  PubMed  Google Scholar 

  108. Panpatte, D. G., Jhala, Y. K., Shelat, H. N., & Vyas, R. V. (2016). Nanoparticles: The next generation technology for sustainable agriculture. In Microbial inoculants in sustainable agricultural productivity (pp. 289–300). Springer.

    Google Scholar 

  109. Shojaei, T. R., Salleh, M. A., Tabatabaei, M., Mobli, H., Aghbashlo, M., Rashid, S. A., & Tan, T. (2019). Applications of nanotechnology and carbon nanoparticles in agriculture. In Synthesis, technology and applications of carbon nanomaterials (pp. 247–277). Elsevier.

    Chapter  Google Scholar 

  110. Zhang, M., Gao, B., Chen, J., Li, Y., Creamer, A. E., & Chen, H. (2014). Slow-release fertilizer encapsulated by graphene oxide films. Chemical Engineering Journal, 255, 107–113.

    Article  CAS  Google Scholar 

  111. Lyons, K. (2010). Nanotechnology: Transforming food and the environment. Food First Backgrounder, 16(1), 1–4.

    Google Scholar 

  112. Torney, F., Trewyn, B. G., Lin, V. S., & Wang, K. (2007). Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nature Nanotechnology, 2(5), 295–300.

    Article  CAS  PubMed  Google Scholar 

  113. Cheng, H. N., Klasson, K. T., Asakura, T., & Wu, Q. (2016). Nanotechnology in agriculture. In Nanotechnology: Delivering on the promise (Vol. 2, pp. 233–242). American Chemical Society.

    Chapter  Google Scholar 

  114. Zhang, X., Zhang, J., & Zhu, K. Y. (2010). Chitosan/double-stranded RNA nanoparticle-mediated RNA interference to silence chitin synthase genes through larval feeding in the African malaria mosquito (Anopheles gambiae). Insect Molecular Biology, 19(5), 683–693.

    Article  PubMed  CAS  Google Scholar 

  115. Mout, R., Ray, M., Yesilbag Tonga, G., Lee, Y. W., Tay, T., Sasaki, K., & Rotello, V. M. (2017). Direct cytosolic delivery of CRISPR/Cas9-ribonucleoprotein for efficient gene editing. ACS Nano, 11(3), 2452–2458.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Li, C., Li, Y., Li, Y., & Fu, G. (2018). Cultivation techniques and nutrient management strategies to improve productivity of rain-fed maize in semi-arid regions. Agricultural Water Management, 210, 149–157.

    Article  Google Scholar 

  117. Godfray, H. C., Beddington, J. R., Crute, I. R., Haddad, L., Lawrence, D., Muir, J. F., Pretty, J., Robinson, S., Thomas, S. M., & Toulmin, C. (2010). Food security: The challenge of feeding 9 billion people. Science, 327(5967), 812–818.

    Article  CAS  PubMed  Google Scholar 

  118. Shukla, P., Chaurasia, P., Younis, K., Qadri, O. S., Faridi, S. A., & Srivastava, G. (2019). Nanotechnology in sustainable agriculture: studies from seed priming to post-harvest management. Nanotechnology for Environmental Engineering, 4(1), 11.

    Article  Google Scholar 

  119. Abdel-Aziz, H. M., Hasaneen, M. N., & Omer, A. M. (2016). Nano chitosan-NPK fertilizer enhances the growth and productivity of wheat plants grown in sandy soil. Spanish Journal of Agricultural Research, 14(1), 17.

    Article  Google Scholar 

  120. Prasad, T. N., Sudhakar, P., Sreenivasulu, Y., Latha, P., Munaswamy, V., Reddy, K. R., Sreeprasad, T. S., Sajanlal, P. R., & Pradeep, T. (2012). Effect of nanoscale zinc oxide particles on the germination, growth and yield of peanut. Journal of Plant Nutrition, 35(6), 905–927.

    Article  CAS  Google Scholar 

  121. Miao, Y. F., Wang, Z. H., & Li, S. X. (2015). Relation of nitrate n accumulation in dryland soil with wheat response to fertilizer. Field Crops Research, 170, 119–130.

    Article  Google Scholar 

  122. Millán, G., Agosto, F., & Vázquez, M. (2008). Use of clinoptilolite as a carrier for nitrogen fertilizers in soils of the Pampean regions of Argentina. International Journal of Agriculture and Natural Resources, 35(3), 293–302.

    Google Scholar 

  123. Shalaby, T. A., Bayoumi, Y., Abdalla, N., Taha, H., Alshaal, T., Shehata, S., Amer, M., Domokos-Szabolcsy, É., & El-Ramady, H. (2016). Nanoparticles, soils, plants and sustainable agriculture. In Nanoscience in food and agriculture (pp. 283–312). Springer.

    Chapter  Google Scholar 

  124. Sabir, A., Yazar, K., Sabir, F., Kara, Z., Yazici, M. A., & Goksu, N. (2014). Vine growth, yield, berry quality attributes and leaf nutrient content of grapevines as influenced by seaweed extract (Ascophyllum nodosum) and nanosize fertilizer pulverizations. Scientia Horticulturae, 175, 1–8.

    Article  CAS  Google Scholar 

  125. Mastronardi, E., Tsae, P., Zhang, X., Monreal, C., & DeRosa, M. C. (2015). Strategic role of nanotechnology in fertilizers: Potential and limitations. In Nanotechnologies in food and agriculture (pp. 25–67). Springer.

    Google Scholar 

  126. Monreal, C. M., DeRosa, M., Mallubhotla, S. C., Bindraban, P. S., & Dimkpa, C. (2016). Nanotechnologies for increasing the crop use efficiency of fertilizer-micronutrients. Biology and Fertility of Soils, 52(3), 423–437.

    Article  CAS  Google Scholar 

  127. Ali, A., Mohammad, S., Khan, M. A., Raja, N. I., Arif, M., Kamil, A., & Mashwani, Z. (2019). Silver nanoparticles elicited in vitro callus cultures for accumulation of biomass and secondary metabolites in Caralluma tuberculata. Artificial Cells, Nanomedicine, and Biotechnology, 47, 715–724.

    Article  CAS  PubMed  Google Scholar 

  128. Jiang, J., Cai, D. Q., Yu, Z. L., & Wu, Y. J. (2006). Loss-control fertilizer made by active clay, flocculant and sorbent. Chinese Patent Specification ZL200610040631. 1.

    Google Scholar 

  129. Cai, D., Wu, Z., Jiang, J., Wu, Y., Feng, H., Brown, I. G., Chu, P. K., & Yu, Z. (2014). Controlling nitrogen migration through micro-nano networks. Scientific Reports, 4(1), 1–8.

    Google Scholar 

  130. Manjaiah, K. M., Mukhopadhyay, R., Paul, R., Datta, S. C., Kumararaja, P., & Sarkar, B. (2019). Clay minerals and zeolites for environmentally sustainable agriculture. In Modified clay and zeolite nanocomposite materials (pp. 309–329). Elsevier.

    Chapter  Google Scholar 

  131. Joshi, S. M., De Britto, S., & Jogaiah, S. (2021). Myco-engineered selenium nanoparticles elicit resistance against tomato late blight disease by regulating differential expression of cellular, biochemical and defense responsive genes. Journal of Biotechnology, 325, 196–206.

    Article  CAS  PubMed  Google Scholar 

  132. Banerjee, J., & Kole, C. (2016). Plant nanotechnology: An overview on concepts, strategies, and tools. Plant Nanotechnology, 2016, 1–4.

    Google Scholar 

  133. de França Bettencourt, G. M., Degenhardt, J., Torres, L. A., de Andrade Tanobe, V. O., & Soccol, C. R. (2020). Green biosynthesis of single and bimetallic nanoparticles of iron and manganese using bacterial auxin complex to act as plant bio-fertilizer. Biocatalysis and Agricultural Biotechnology, 30, 101822.

    Article  Google Scholar 

  134. Kole, C., Kole, P., Randunu, K. M., Choudhary, P., Podila, R., Ke, P. C., Rao, A. M., & Marcus, R. K. (2013). Nanobiotechnology can boost crop production and quality: first evidence from increased plant biomass, fruit yield and phytomedicine content in bitter melon (Momordica charantia). BMC Biotechnology, 13(1), 1.

    Article  Google Scholar 

  135. Yousefzadeh, S., & Sabaghnia, N. (2016). Nano-iron fertilizer effects on some plant traits of dragonhead (Dracocephalum moldavica L.) under different sowing densities. Acta Agriculturae Slovenica, 107(2), 429–437.

    Article  Google Scholar 

  136. Davarpanah, S., Tehranifar, A., Davarynejad, G., Abadía, J., & Khorasani, R. (2016). Effects of foliar applications of zinc and boron nano-fertilizers on pomegranate (Punica granatum cv. Ardestani) fruit yield and quality. Scientia Horticulturae, 210, 57–64.

    Article  CAS  Google Scholar 

  137. Dubey, A., & Mailapalli, D. R. (2016). Nanofertilisers, nanopesticides, nanosensors of pest and nanotoxicity in agriculture. In Sustainable agriculture reviews (pp. 307–330). Springer.

    Chapter  Google Scholar 

  138. Lateef, A., Nazir, R., Jamil, N., Alam, S., Shah, R., Khan, M. N., & Saleem, M. (2016). Synthesis and characterization of zeolite based nano–composite: an environment friendly slow release fertilizer. Microporous and Mesoporous Materials, 232, 174–183.

    Article  CAS  Google Scholar 

  139. Kottegoda, N., Munaweera, I., Madusanka, N., & Karunaratne, V. (2011). A green slow-release fertilizer composition based on urea-modified hydroxyapatite nanoparticles encapsulated wood. Current Science, 10, 73–78.

    Google Scholar 

  140. Li, M., Zhang, P., Adeel, M., Guo, Z., Chetwynd, A. J., Ma, C., Bai, T., Hao, Y., & Rui, Y. (2021). Physiological impacts of zero valent iron, Fe3O4 and Fe2O3 nanoparticles in rice plants and their potential as Fe fertilizers. Environmental Pollution, 269, 116134.

    Article  CAS  PubMed  Google Scholar 

  141. Madanayake, N. H., Adassooriya, N. M., & Salim, N. (2021). The effect of hydroxyapatite nanoparticles on Raphanus sativus with respect to seedling growth and two plant metabolites. Environmental Nanotechnology, Monitoring and Management, 15, 100404.

    Article  CAS  Google Scholar 

  142. Biba, R., Tkalec, M., Cvjetko, P., Peharec Štefanić, P., Šikić, S., Pavoković, D., & Balen, B. (2021). Silver nanoparticles affect germination and photosynthesis in tobacco seedlings. Acta Botanica Croatica, 80(1), 1–1.

    Article  CAS  Google Scholar 

  143. De Souza-Torres, A., Govea-Alcaide, E., Gómez-Padilla, E., Masunaga, S. H., Effenberger, F. B., Rossi, L. M., López-Sánchez, R., & Jardim, R. F. (2021). Fe3O4 nanoparticles and Rhizobium inoculation enhance nodulation, nitrogen fixation and growth of common bean plants grown in soil. Rhizosphere, 17, 100275.

    Article  Google Scholar 

  144. Attia, E. A., & Elhawat, N. (2021). Combined foliar and soil application of silica nanoparticles enhances the growth, flowering period and flower characteristics of marigold (Tagetes erecta L.). Scientia Horticulturae, 282, 110015.

    Article  CAS  Google Scholar 

  145. Iannone, M. F., Groppa, M. D., Zawoznik, M. S., Coral, D. F., van Raap, M. B., & Benavides, M. P. (2021). Magnetite nanoparticles coated with citric acid are not phytotoxic and stimulate soybean and alfalfa growth. Ecotoxicology and Environmental Safety, 211, 111942.

    Article  CAS  PubMed  Google Scholar 

  146. Casillas-Figueroa, F., Arellano-García, M. E., Leyva-Aguilera, C., Ruíz-Ruíz, B., Vázquez-Gómez, R. L., Radilla-Chávez, P., Chávez-Santoscoy, R. A., Pestryakov, A., Toledano-Magaña, Y., García-Ramos, J. C., & Bogdanchikova, N. (2020). Argovit™ silver nanoparticles effects on Allium cepa: plant growth promotion without cyto genotoxic damage. Nanomaterials, 10(7), 1386.

    Article  CAS  PubMed Central  Google Scholar 

  147. Sun, L., Wang, Y., Wang, R., Wang, R., Zhang, P., Ju, Q., & Xu, J. (2020). Physiological, transcriptomic, and metabolomic analyses reveal zinc oxide nanoparticles modulate plant growth in tomato. Environmental Science. Nano, 7(11), 3587–3604.

    Article  CAS  Google Scholar 

  148. Ma, Y., Xie, C., He, X., Zhang, B., Yang, J., Sun, M., Luo, W., Feng, S., Zhang, J., Wang, G., & Zhang, Z. (2020). Effects of ceria nanoparticles and CeCl3 on plant growth, biological and physiological parameters, and nutritional value of soil grown common bean (Phaseolus vulgaris). Small, 16(21), 1907435.

    Article  CAS  Google Scholar 

  149. Dai, Y., Chen, F., Yue, L., Li, T., Jiang, Z., Xu, Z., Wang, Z., & Xing, B. (2020). Uptake, transport, and transformation of CeO2 nanoparticles by strawberry and their impact on the rhizosphere bacterial community. ACS Sustainable Chemistry & Engineering, 8(12), 4792–4800.

    Article  CAS  Google Scholar 

  150. Li, D., An, Q., Wu, Y., Li, J. Q., & Pan, C. (2020). Foliar application of selenium nanoparticles on celery stimulates several nutrient component levels by regulating the α-linolenic acid pathway. ACS Sustainable Chemistry & Engineering, 8, 10502–10510.

    Article  CAS  Google Scholar 

  151. Rostamizadeh, E., Iranbakhsh, A., Majd, A., Arbabian, S., & Mehregan, I. (2020). Green synthesis of Fe2O3 nanoparticles using fruit extract of Cornus mas L. and its growth-promoting roles in barley. Journal of Nanostructure in Chemistry, 17, 1–6.

    Google Scholar 

  152. Rahman, M. S., Chakraborty, A., Mazumdar, S., Nandi, N. C., Bhuiyan, M. N., Alauddin, S. M., Khan, I. A., & Hossain, M. J. (2020). Effects of poly (vinylpyrrolidone) protected platinum nanoparticles on seed germination and growth performance of Pisum sativum. Nano-Structures & Nano-Objects, 21, 100408.

    Article  CAS  Google Scholar 

  153. Chahardoli, A., Karimi, N., Ma, X., & Qalekhani, F. (2020). Effects of engineered aluminum and nickel oxide nanoparticles on the growth and antioxidant defense systems of Nigella arvensis L. Scientific Reports, 10(1), 1–1.

    Article  CAS  Google Scholar 

  154. Yan, L., Li, P., Zhao, X., Ji, R., & Zhao, L. (2020). Physiological and metabolic responses of maize (Zea mays) plants to Fe3O4 nanoparticles. Sciences of the Total Environment, 718, 137400.

    Article  CAS  Google Scholar 

  155. Hu, J., Wu, X., Wu, F., Chen, W., White, J. C., Yang, Y., Wang, B., Xing, B., Tao, S., & Wang, X. (2020). Potential application of titanium dioxide nanoparticles to improve the nutritional quality of coriander (Coriandrum sativum L.). Journal of Hazardous Materials, 389, 121837.

    Article  CAS  PubMed  Google Scholar 

  156. Abbas, Q., Yousaf, B., Ullah, H., Ali, M. U., Zia-ur-Rehman, M., Rizwan, M., & Rinklebe, J. (2020). Biochar-induced immobilization and transformation of silver-nanoparticles affect growth, intracellular-radicles generation and nutrients assimilation by reducing oxidative stress in maize. Journal of Hazardous Materials, 390, 121976.

    Article  CAS  PubMed  Google Scholar 

  157. Pelegrino, M. T., Kohatsu, M. Y., Seabra, A. B., Monteiro, L. R., Gomes, D. G., Oliveira, H. C., Rolim, W. R., de Jesus, T. A., Batista, B. L., & Lange, C. N. (2020). Effects of copper oxide nanoparticles on growth of lettuce (Lactuca sativa L.) seedlings and possible implications of nitric oxide in their antioxidative defense. Environmental Monitoring and Assessment, 192(4), 1–4.

    Article  CAS  Google Scholar 

  158. Siddiqui, M. H., & Al-Whaibi, M. H. (2014). Role of nano-SiO2 in germination of tomato (Lycopersicum esculentum seeds Mill.). Saudi Journal of Biological Sciences, 21(1), 13–17.

    Article  CAS  PubMed  Google Scholar 

  159. Torabian, S., Zahedi, M., & Khoshgoftar, A. H. (2017). Effects of foliar spray of nano-particles of FeSO4 on the growth and ion content of sunflower under saline condition. Journal of Plant Nutrition, 40(5), 615–623.

    Article  CAS  Google Scholar 

  160. Tripathi, D. K., Singh, S., Singh, V. P., Prasad, S. M., Dubey, N. K., & Chauhan, D. K. (2017). Silicon nanoparticles more effectively alleviated UV-B stress than silicon in wheat (Triticum aestivum) seedlings. Plant Physiology and Biochemistry, 110, 70–81.

    Article  CAS  PubMed  Google Scholar 

  161. Lopez-Lima, D., Mtz-Enriquez, A. I., Carrión, G., Basurto-Cereceda, S., & Pariona, N. (2021). The bifunctional role of copper nanoparticles in tomato: Effective treatment for Fusarium wilt and plant growth promoter. Scientia Horticulturae, 277, 109810.

    Article  CAS  Google Scholar 

  162. Tauseef, A., Khalilullah, A., & Uddin, I. (2021). Role of MgO nanoparticles in the suppression of Meloidogyne incognita, infecting cowpea and improvement in plant growth and physiology. Experimental Parasitology, 220, 108045.

    Article  CAS  PubMed  Google Scholar 

  163. Panichikkal, J., Puthiyattil, N., Raveendran, A., Nair, R. A., & Krishnankutty, R. E. (2021). Application of encapsulated Bacillus licheniformis supplemented with chitosan nanoparticles and rice starch for the control of Sclerotium rolfsii in Capsicum annuum (L.) seedlings. Current Microbiology, 78(3), 911–919.

    Article  CAS  PubMed  Google Scholar 

  164. Vanti, G. L., Masaphy, S., Kurjogi, M., Chakrasali, S., & Nargund, V. B. (2020). Synthesis and application of chitosan-copper nanoparticles on damping off causing plant pathogenic fungi. International Journal of Biological Macromolecules, 156, 1387–1395.

    Article  CAS  PubMed  Google Scholar 

  165. Mahawar, H., Prasanna, R., Gogoi, R., Singh, S. B., Chawla, G., & Kumar, A. (2020). Synergistic effects of silver nanoparticles augmented Calothrix elenkinii for enhanced biocontrol efficacy against Alternaria blight challenged tomato plants. 3 Biotech, 10(3), 1.

    Article  Google Scholar 

  166. Cai, L., Cai, L., Jia, H., Liu, C., Wang, D., & Sun, X. (2020). Foliar exposure of Fe3O4 nanoparticles on Nicotiana benthamiana: Evidence for nanoparticles uptake, plant growth promoter and defense response elicitor against plant virus. Journal of Hazardous Materials, 393, 122415.

    Article  CAS  PubMed  Google Scholar 

  167. Al Banna, L. S., Salem, N. M., Jaleel, G. A., & Awwad, A. M. (2020). Green synthesis of sulfur nanoparticles using Rosmarinus officinalis leaves extract and nematicidal activity against Meloidogyne javanica. Chemistry International, 6(3), 137–143.

    Google Scholar 

  168. Siddiqui, Z. A., Khan, M. R., Abd Allah, E. F., & Parveen, A. (2019). Titanium dioxide and zinc oxide nanoparticles affect some bacterial diseases, and growth and physiological changes of beetroot. International Journal of Vegetable Science, 25(5), 409–430.

    Article  Google Scholar 

  169. Siddiqui, Z. A., Parveen, A., Ahmad, L., & Hashem, A. (2019). Effects of graphene oxide and zinc oxide nanoparticles on growth, chlorophyll, carotenoids, proline contents and diseases of carrot. Scientia Horticulturae, 249, 374–382.

    Article  CAS  Google Scholar 

  170. Hassan, F. A., Ali, E., Gaber, A., Fetouh, M., & Mazrou, R. (2021). Chitosan nanoparticles effectively combat salinity stress by enhancing antioxidant activity and alkaloid biosynthesis in Catharanthus roseus (L.) G. Don. Plant Physiology and Biochemistry, 162, 291–300.

    Article  CAS  PubMed  Google Scholar 

  171. Ali, E. F., El-Shehawi, A. M., Ibrahim, O. H., Abdul-Hafeez, E. Y., Moussa, M. M., & Hassan, F. A. (2021). A vital role of chitosan nanoparticles in improvisation the drought stress tolerance in Catharanthus roseus (L.) through biochemical and gene expression modulation. Plant Physiology and Biochemistry, 161, 166–175.

    Article  CAS  PubMed  Google Scholar 

  172. Adrees, M., Khan, Z. S., Hafeez, M., Rizwan, M., Hussain, K., Asrar, M., Alyemeni, M. N., Wijaya, L., & Ali, S. (2021). Foliar exposure of zinc oxide nanoparticles improved the growth of wheat (Triticum aestivum L.) and decreased cadmium concentration in grains under simultaneous Cd and water deficient stress. Ecotoxicology and Environmental Safety, 208, 111627.

    Article  CAS  PubMed  Google Scholar 

  173. Khan, S., Akhtar, N., Rehman, S. U., Shujah, S., Rha, E. S., & Jamil, M. (2021). Biosynthesized iron oxide nanoparticles (Fe3O4 NPs) mitigate arsenic toxicity in rice seedlings. Toxics, 9(1), 2.

    Article  CAS  Google Scholar 

  174. Brasili, E., Bavasso, I., Petruccelli, V., Vilardi, G., Valletta, A., Dal Bosco, C., Gentili, A., Pasqua, G., & Di Palma, L. (2020). Remediation of hexavalent chromium contaminated water through zero-valent iron nanoparticles and effects on tomato plant growth performance. Scientific Reports, 10(1), 1–1.

    Article  CAS  Google Scholar 

  175. Mahmoud, A. W., Abdeldaym, E. A., Abdelaziz, S. M., El-Sawy, M. B., & Mottaleb, S. A. (2020). Synergetic effects of zinc, boron, silicon, and zeolite nanoparticles on confer tolerance in potato plants subjected to salinity. Agronomy, 10(1), 19.

    Article  CAS  Google Scholar 

  176. Faizan, M., Faraz, A., Mir, A. R., & Hayat, S. (2020). Role of zinc oxide nanoparticles in countering negative effects generated by cadmium in Lycopersicon esculentum. Journal of Plant Growth Regulation, 5, 1–5.

    Google Scholar 

  177. Jahangir, S., & Javed, K. (2020). Nanoparticles and plant growth promoting rhizobacteria (PGPR) modulate the physiology of onion plant under salt stress. Pakistan Journal of Botany, 52(4), 1473–1480.

    Article  CAS  Google Scholar 

  178. Gohari, G., Mohammadi, A., Akbari, A., Panahirad, S., Dadpour, M. R., Fotopoulos, V., & Kimura, S. (2020). Titanium dioxide nanoparticles (TiO2 NPs) promote growth and ameliorate salinity stress effects on essential oil profile and biochemical attributes of Dracocephalum moldavica. Scientific Reports, 10(1), 1–4.

    Article  CAS  Google Scholar 

  179. Wang, S., Wang, F., & Gao, S. (2015). Foliar application with nano-silicon alleviates Cd toxicity in rice seedlings. Environmental Science and Pollution Research, 22(4), 2837–2845.

    Article  CAS  PubMed  Google Scholar 

  180. Wang, S., Wang, F., Gao, S., & Wang, X. (2016). Heavy metal accumulation in different rice cultivars as influenced by foliar application of nano-silicon. Water, Air, and Soil Pollution, 227(7), 1–3.

    Article  CAS  Google Scholar 

  181. Oerke, E. C. (2006). Crop losses to pests. The Journal of Agricultural Science, 144(1), 31–43.

    Article  Google Scholar 

  182. Vanti, G. L., Nargund, V. B., Vanarchi, R., Kurjogi, M., Mulla, S. I., Tubaki, S., & Patil, R. R. (2019). Synthesis of Gossypium hirsutum-derived silver nanoparticles and their antibacterial efficacy against plant pathogens. Applied Organometallic Chemistry, 33(1), e4630.

    Article  CAS  Google Scholar 

  183. Imada, K., Sakai, S., Kajihara, H., Tanaka, S., & Ito, S. (2016). Magnesium oxide nanoparticles induce systemic resistance in tomato against bacterial wilt disease. Plant Pathology, 65(4), 551–560.

    Article  CAS  Google Scholar 

  184. Le, V. T., Bach, L. G., Pham, T. T., Le, N. T., Ngoc, U. T., Tran, D. H., & Nguyen, D. H. (2019). Synthesis and antifungal activity of chitosan-silver nanocomposite synergize fungicide against Phytophthora capsici. Journal of Macromolecular Sciences: Part A, 56(6), 522–528.

    Article  CAS  Google Scholar 

  185. Malandrakis, A. A., Kavroulakis, N., & Chrysikopoulos, C. V. (2019). Use of copper, silver and zinc nanoparticles against foliar and soil-borne plant pathogens. Science of the Total Environment, 670, 292–299.

    Article  CAS  PubMed  Google Scholar 

  186. Devi, P. V., Duraimurugan, P., & Chandrika, K. S. (2019). Bacillus thuringiensis-based nanopesticides for crop protection. In Nano-biopesticides today and future perspectives (pp. 249–260). Academic Press.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khanna, K., Sharma, N., Ohri, P., Bhardwaj, R. (2022). Emerging Trends of Nanoparticles in Sustainable Agriculture: Current and Future Perspectives. In: Chen, JT. (eds) Plant and Nanoparticles. Springer, Singapore. https://doi.org/10.1007/978-981-19-2503-0_1

Download citation

Publish with us

Policies and ethics