Skip to main content

Nanoparticles and Their Applications

  • Chapter
Springer Handbook of Nanotechnology

Part of the book series: Springer Handbooks ((SHB))

Abstract

Nanoparticles (GlossaryTerm

NP

s) are synthesized from several classes of materials including inorganic, organic, hybrid and biological materials. Inorganic NPs are synthesized by ball milling, vapor deposition, electrospraying, reduction of metal salts, sol-gel, coprecipitation and thermal decomposition. Organic NPs are synthesized by microemulsion, nanoprecipitation, dialysis and rapid expansion of supercritical solutions. Hybrid NPs are synthesized from both organic and inorganic materials. There are a number of naturally occurring biological NPs including lipoproteins, exosomes, ferritin, and viruses. Further, NPs can be synthesized from biomolecules including proteins, peptides and polysaccharides. The surface to volume ratio, superparamagnetism, hardness, Coulomb energy and catalytic activity of NPs are generally higher than those of bulk materials. Due to their unique structural, magnetic, mechanical and electrical properties, NPs are used in a wide range of applications including biosensing, drug delivery, bioimaging, catalysis, nanomanufacturing, lubrication, electronics, textile manufacturing, and water treatment systems. This chapter covers the classification, synthesis, properties and applications of NPs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C. Dhand, N. Dwivedi, X.J. Loh, A.N.J. Ying, N.K. Verma, R.W. Beuerman, R. Lakshminarayanan, S. Ramakrishna: Methods and strategies for the synthesis of diverse nanoparticles and their applications: A comprehensive overview, RSC Advances 5, 105003–105037 (2015) doi:10.1039/c5ra19388e

    Article  Google Scholar 

  2. M. Dossi, R. Ferrari, L. Dragoni, C. Martignoni, P. Gaetani, M. D’Incalci, M. Morbidelli, D. Moscatelli: Synthesis of fluorescent pmma-based nanoparticles, Macromol. Mater. Eng. 298, 771–778 (2013) doi:10.1002/mame.201200122

    Article  Google Scholar 

  3. S.L. Pal, U. Jana, P.K. Manna, G.P. Mohanta, R. Manavalan: Nanoparticle: An overview of preparation and characterization, J. Appl. Pharm. Sci. 1, 228–234 (2011) doi:10.7897/2230-8407.04408

    Article  Google Scholar 

  4. J.E. Munoz, J. Cervantes, R. Esparza, G. Rosas: Iron nanoparticles produced by high-energy ball milling, J. Nanopar. Res. 9, 945–950 (2007) doi:10.1007/s11051-007-9226-6

    Article  Google Scholar 

  5. J.F. de Carvalho, S.N. de Medeiros, M.A. Morales, A.L. Dantas, A.S. Carrico: Synthesis of magnetite nanoparticles by high energy ball milling, Appl. Surf. Sci. 275, 84–87 (2013) doi:10.1016/j.apsusc.2013.01.118

    Article  Google Scholar 

  6. V. Bouchat: N, Moreau, J.F. Colomer, S. Lucas: On some applications of nanoparticles synthesized in the gas phase by magnetron discharges, J. Surf. Eng. Mater. Adv. Technol. 3, 184–189 (2013) doi:10.4236/jsemat.2013.33025

    Article  Google Scholar 

  7. P.L. Ong, S. Mahmood, T. Zhang, J.J. Lin, R.V. Ramanujan, P. Lee, R.S. Rawat: Synthesis of FeCo nanoparticles by pulsed laser deposition in a diffusion cloud chamber, Appl. Surf. Sci. 254, 1909–1914 (2008) doi:10.1016/j.apsusc.2007.07.186

    Article  Google Scholar 

  8. Y.T. Jing, H.W. Wang, X. Chen, X.F. Wang, H.G. Wei, Z.H. Guo: Pulsed laser deposited Ag nanoparticles on nickel hydroxide nanosheet arrays for highly sensitive surface-enhanced Raman scattering spectroscopy, Appl. Surf. Sci. 316, 66–71 (2014) doi:10.1016/j.apsusc.2014.07.169

    Article  Google Scholar 

  9. A. Jaworek, A.T. Sobczyk: Electrospraying route to nanotechnology: An overview, J. Electrost. 66, 197–219 (2008) doi:10.1016/j.elstat.2007.10.001

    Article  Google Scholar 

  10. M. Valvo, U. Lafont, D. Munao, E.M. Kelder: Electrospraying-assisted synthesis of tin nanoparticles for Li-ion battery electrodes, J. Power Sources 189, 297–302 (2009) doi:10.1016/j.jpowsour.2008.09.019

    Article  Google Scholar 

  11. K. Soliwoda, M. Rosowski, E. Tomaszewska, B. Tkacz-Szczesna, G. Celichowski, M. Psarski, J. Grobelny: Synthesis of monodisperse gold nanoparticles via electrospray-assisted chemical reduction method in cyclohexane, Colloids Surf. A 482, 148–153 (2015) doi:10.1016/j.colsurfa.2015.04.040

    Article  Google Scholar 

  12. R.G. Chaudhuri, S. Paria: Core/shell nanoparticles: Classes, properties, synthesis mechanisms, characterization, and applications, Chem. Rev. 112, 2373–2433 (2012) doi:10.1021/cr100449n

    Article  Google Scholar 

  13. X.Q. Li, W.X. Zhang: Iron nanoparticles: The core-shell structure and unique properties for Ni(II) sequestration, Langmuir 22, 4638–4642 (2006) doi:10.1021/la060057k

    Article  Google Scholar 

  14. J.P. Jolivet, C. Froidefond, A. Pottier, C. Chaneac, S. Cassaignon, E. Tronc, P. Euzen: Size tailoring of oxide nanoparticles by precipitation in aqueous medium. A semi-quantitative modelling, J. Mater. Chem. 14, 3281–3288 (2004) doi:10.1039/b407086k

    Article  Google Scholar 

  15. A.R. Tao, S. Habas, P.D. Yang: Shape control of colloidal metal nanocrystals, Small 4, 310–325 (2008) doi:10.1002/smll.200701295

    Article  Google Scholar 

  16. I.A. Rahman, V. Padavettan: Synthesis of silica nanoparticles by sol-gel: Size-dependent properties, surface modification, and applications in silica-polymer nanocomposites – A review, J. Nanomater. 24, 015105 (2012) doi:10.1088/0957-4484/24/1/015105

    Article  Google Scholar 

  17. J. Gautier, E. Allard-Vannier, K. Herve-Aubert, M. Souce, I. Chourpa: Design strategies of hybrid metallic nanoparticles for theragnostic applications, Nanotechnology 24(43), 432002 (2013) doi:10.1088/0957-4484/24/43/432002

    Article  Google Scholar 

  18. M. Salavati-Niasari, M. Dadkhah, F. Davar: Synthesis and characterization of pure cubic zirconium oxide nanocrystals by decomposition of bis-aqua, tris-acetylacetonato zirconium(IV) nitrate as new precursor complex, Inorganica Chimica Acta 362, 3969–3974 (2009) doi:10.1016/j.ica.2009.05.036

    Article  Google Scholar 

  19. S.Y. Lee, M.T. Harris: Surface modification of magnetic nanoparticles capped by oleic acids: Characterization and colloidal stability in polar solvents, J. Colloid and Interface Sci. 293, 401–408 (2006) doi:10.1016/j.jcis.2005.06.062

    Article  Google Scholar 

  20. N. Pinna, G. Garnweitner, M. Antonietti, M. Niederberger: A general nonaqueous route to binary metal oxide nanocrystals involving a C–C bond cleavage, J. Am. Chem. Soc. 127, 5608–5612 (2005) doi:10.1021/ja042323r

    Article  Google Scholar 

  21. D.L. Huber, E.L. Venturini, J.E. Martin, P.P. Provencio, R.J. Patel: Synthesis of highly magnetic iron nanoparticles suitable for field structuring using a beta-diketone surfactant, J. Magnetism Magnet. Mater. 278, 311–316 (2004) doi:10.1016/j.jmmm.2003.12.1317

    Article  Google Scholar 

  22. R. Kumar, S. Lal: Synthesis of organic nanoparticles and their applications in drug delivery and food nanotechnology: A review, J. Nanomater. Mol. Nanotechnol. 3, 4 (2014) doi:10.4172/2324-8777.1000150

    Article  Google Scholar 

  23. I. Sole, A. Maestro, C. Gonzalez, C. Solans, J.M. Gutierrez: Optimization of nano-emulsion preparation by low-energy methods in an ionic surfactant system, Langmuir 22, 8326–8332 (2006) doi:10.1021/la0613676

    Article  Google Scholar 

  24. J. Allouche: Synthesis of organic and bioorganic nanoparticles: An overview of the preparation methods. In: Nanomaterials: A Danger or a Promise?, ed. by R. Brayner, F. Fiévet, T. Coradin (Springer, London 2013)

    Google Scholar 

  25. J.C. Lopez-Montilla, P.E. Herrera-Morales, S. Pandey, D.O. Shah: Spontaneous emulsification: Mechanisms, physicochemical aspects, modeling, and applications, J. Dispers. Sci. Technol. 23, 219–268 (2002) doi:10.1080/01932690208984202

    Article  Google Scholar 

  26. P. Fernandez, V. Andre, J. Rieger, A. Kuhnle: Nano-emulsion formation by emulsion phase inversion, Colloids Surf. A 251, 53–58 (2004) doi:10.1016/j.colsurfa.2004.09.029

    Article  Google Scholar 

  27. R.L. McCall, R.W. Sirianni: PLGA nanoparticles formed by single- or double-emulsion with vitamin E-TPGS, Jove-J. Visualized Exp. 27(82), 51015 (2013) doi:10.3791/51015

    Article  Google Scholar 

  28. J. Singh, S. Pandit, V.W. Bramwell, H.O. Alpar: Diphtheria toxoid loaded poly-(epsilon-caprolactone) nanoparticles as mucosal vaccine delivery systems, Methods 38, 96–105 (2006) doi:10.1016/j.ymeth.2005.11.003

    Article  Google Scholar 

  29. C.X. Song, V. Labhasetwar, H. Murphy, X. Qu, W.R. Humphrey, R.J. Shebuski, R.J. Levy: Formulation and characterization of biodegradable nanoparticles for intravascular local drug delivery, J. Control. Release 43, 197–212 (1997) doi:10.1016/S0168-3659(96)01484-8

    Article  Google Scholar 

  30. J. Allouche, M. Boissiere, C. Helary, J. Livage, T. Coradin: Biomimetic core-shell gelatine/silica nanoparticles: A new example of biopolymer-based nanocomposites, J. Mater. Chem. 16, 3120–3125 (2006) doi:10.1039/b604366f

    Article  Google Scholar 

  31. C. Damge, C.P. Reis, N. Ubrich, P. Maincent, F. Veiga, A. Ribeiro: Alginate-based insulin nanoparticles – Dextrane for oral administration in the diabetic rat, Diabetes Metab. 33, S67–S67 (2007) doi:10.1186/s12951-015-0136-y

    Article  Google Scholar 

  32. D. Barati, S.R.P. Shariati, S. Moeinzadeh, J.M. Melero-Martin, A. Khademhosseini, E. Jabbari: Spatiotemporal release of BMP-2 and VEGF enhances osteogenic and vasculogenic differentiation of human mesenchymal stem cells and endothelial colony-forming cells co-encapsulated in a patterned hydrogel, J. Control. Release 223, 126–136 (2016) doi:10.1016/j.jconrel.2015.12.031

    Article  Google Scholar 

  33. J.N.L. De Avila, L.L.G.C. De Araujo, S. Drexler, J.D. Rodrigues, R.S.V. Nascimento: Polystyrene nanoparticles as surfactant carriers for enhanced oil recovery, J. Appl. Polymer Sci. 133, 43789 (2016) doi:10.1002/app.43789

    Article  Google Scholar 

  34. S.J. Yoon, H. Chun, M.S. Lee, N. Kim: Preparation of poly(N-vinylcarbazole) (PVK) nanoparticles by emulsion polymerization and PVK hollow particles, Synth. Metals 159, 518–522 (2009) doi:10.1016/j.synthmet.2008.11.011

    Article  Google Scholar 

  35. A.M. Oliveira, K.L. Guimaraes, N.N.P. Cerize: The role of functional monomers on producing nanostructured lattices obtained by surfactant-free emulsion polymerization – A novel approach, Eur. Polym. J. 71, 268–278 (2015) doi:10.1016/j.eurpolymj.2015.07.049

    Article  Google Scholar 

  36. B.V.N. Nagavarma, K.S.Y. Hemant, A. Ayaz, L.S. Vasudha, H.G. Shivakumar: Different techniques for preparation of polymeric nanoparticles – A review, Asian J. Pharm. Clin. Res. 5(3), 16–23 (2012)

    Google Scholar 

  37. C.P. Reis, R.J. Neufeld, A.J. Ribeiro, F. Veiga: Nanoencapsulation I. Methods for preparation of drug-loaded polymeric nanoparticles, Nanomedicine 2, 8–21 (2006) doi:10.1016/j.nano.2005.12.003

    Article  Google Scholar 

  38. T. Musumeci, C.A. Ventura, C. Carbone, R. Pignatello, G. Puglisi: Effects of external phase on D-cycloserine loaded W/O nanocapsules prepared by the interfacial polymerization method, Eur. J. Med. Chem. 46, 2828–2834 (2011) doi:10.1016/j.ejmech.2011.04.003

    Article  Google Scholar 

  39. S. Watnasirichaikul, N.M. Davies, T. Rades, I.G. Tucker: Preparation of biodegradable insulin nanocapsules from biocompatible microemulsions, Pharm. Res. 17, 684–689 (2000) doi:10.1023/A:1007574030674

    Article  Google Scholar 

  40. S. Kuypers, S.K. Pramanik, L. D’Olieslaeger, G. Reekmans, M. Peters, J. D’Haen, D. Vanderzande, T. Junkers, P. Adriaensens, A. Ethirajan: Interfacial thiol-isocyanate reactions for functional nanocarriers: A facile route towards tunable morphologies and hydrophilic payload encapsulation, Chem. Commun. 51, 15858–15861 (2015) doi:10.1039/c5cc05258k

    Article  Google Scholar 

  41. M.J. Monteiro, M.F. Cunningham: Polymer nanoparticles via living radical polymerization in aqueous dispersions: Design and applications, Macromolecules 45, 4939–4957 (2012) doi:10.1021/ma300170c

    Article  Google Scholar 

  42. K.O. Sebakhy, S. Kessel, M.J. Monteiro: Nanoreactors to synthesize well-defined polymer nanoparticles: Decoupling particle size from molecular weight, Macromolecules 43, 9598–9600 (2010) doi:10.1021/ma1019889

    Article  Google Scholar 

  43. C. Dire, S. Magnet, L. Couvreur, B. Charleux: Nitroxide-mediated controlled/living free-radical surfactant-free emulsion polymerization of methyl methacrylate using a poly(methacrylic acid)-based macroalkoxyamine initiator, Macromolecules 42, 95–103 (2009) doi:10.1021/ma802083g

    Article  Google Scholar 

  44. R. Gonzalez-Blanco, M.F. Cunningham, E. Saldivar-Guerra: High solids TEMPO-mediated radical semibatch emulsion polymerization of styrene, J. Polym. Sci. Part A 54, 49–62 (2016) doi:10.1002/pola.27771

    Article  Google Scholar 

  45. J. Nicolas, A.V. Ruzette, C. Farcet, P. Gerard, S. Magnet, B. Charleux: Nanostructured latex particles synthesized by nitroxide-mediated controlled/living free-radical polymerization in emulsion, Polymer 48, 7029–7040 (2007) doi:10.1016/j.polymer.2007.09.039

    Article  Google Scholar 

  46. W.W. Li, K. Matyjaszewski, K. Albrecht, M. Moller: Reactive surfactants for polymeric nanocapsules via interfacially confined miniemulsion ATRP, Macromolecules 42, 8228–8233 (2009) doi:10.1021/ma901574y

    Article  Google Scholar 

  47. K. Min, H. Gao, J.A. Yoon, W. Wu, T. Kowalewski, K. Matyjaszewski: One-pot synthesis of hairy nanoparticles by emulsion ATRP, Macromolecules 42, 1597–1603 (2009) doi:10.1021/ma8026244

    Article  Google Scholar 

  48. D.J. Siegwart, A. Srinivasan, S.A. Bencherif, A. Karunanidhi, J.K. Oh, S. Vaidya, R. Jin, J.O. Hollinger, K. Matyjaszewki: Cellular uptake of functional nanogels prepared by inverse miniemulsion atrp with encapsulated proteins, carbohydrates, and gold nanoparticles, Biomacromolecules 10, 2300–2309 (2009) doi:10.1021/bm9004904

    Article  Google Scholar 

  49. F.Y. Cheng, S.P.H. Wang, C.H. Su, T.L. Tsai, P.C. Wu, D.B. Shieh, J.H. Chen, P.C.H. Hsieh, C.S. Yeh: Stabilizer-free poly(lactide-co-glycolide) nanoparticles for multimodal biomedical probes, Biomaterials 29, 2104–2112 (2008) doi:10.1016/j.biomaterials.2008.01.01

    Article  Google Scholar 

  50. P. Legrand, S. Lesieur, A. Bochot, R. Gref, W. Raatjes, G. Barratt, C. Vauthier: Influence of polymer behaviour in organic solution on the production of polylactide nanoparticles by nanoprecipitation, Int. J. Pharm. 344, 33–43 (2007) doi:10.1016/j.ijpbarm.2007.05.054

    Article  Google Scholar 

  51. S.K. Pandey, C. Haldar, D.K. Vishwas, P. Maiti: Synthesis and in vitro evaluation of melatonin entrapped PLA nanoparticles: An oxidative stress and T-cell response using golden hamster, J. Biomed. Mater. Res. A 103, 3034–3044 (2015) doi:10.1002/jbm.a.35441

    Article  Google Scholar 

  52. S.K. Pandey, D.K. Patel, A.K. Maurya, R. Thakur, D.P. Mishra, M. Vinayak, C. Haldar, P. Maiti: Controlled release of drug and better bioavailability using poly(lacticacid-co-glycolic acid) nanoparticles, Int. J. Biol. Macromol. 89, 99–110 (2016) doi:10.1016/j.ijbiomac.2016.04.065

    Article  Google Scholar 

  53. K. Sawant, A. Pandey, S. Patel: Aripiprazole loaded poly(caprolactone) nanoparticles: Optimization and in vivo pharmacokinetics, Mater. Sci. Eng. C 66, 230–243 (2016) doi:10.1016/j.msec.2016.04.089

    Article  Google Scholar 

  54. Z. Zili, S. Sfar, H. Fessi: Preparation and characterization of poly-e-caprolactone nanoparticles containing griseofulvin, Int. J. Pharm. 294, 261–267 (2005) doi:10.1016/j.ijpharm.2005.01.020

    Article  Google Scholar 

  55. A.O. Elzoghby: Gelatin-based nanoparticles as drug and gene delivery systems: Reviewing three decades of research, J. Control. Release 172, 1075–1091 (2013) doi:10.1016/j.jconrel.2013.09.019

    Article  Google Scholar 

  56. L. Songtipya, M.C. Thies, A. Sane: Effect of rapid expansion of subcritical solutions processing conditions on loading capacity of tetrahydrocurcumin encapsulated in poly(L-lactide) particles, J. Supercrit. Fluids 113, 119–127 (2016) doi:10.1016/j.supflu.2016.03.020

    Article  Google Scholar 

  57. S.K. Sharma, R. Jagannathan: High throughput RESS processing of sub-10 nm ibuprofen nanoparticles, J. Supercrit. Fluids 109, 74–79 (2016) doi:10.1016/j.supflu.2015.11.019

    Article  Google Scholar 

  58. M. Turk, D. Bolten: Formation of submicron poorly water-soluble drugs by rapid expansion of supercritical solution (RESS): Results for Naproxen, J. Supercrit. Fluids 55, 778–785 (2010) doi:10.1016/j.supflu.2010.09.023

    Article  Google Scholar 

  59. J.P. Chapel, J.F. Berret: Versatile electrostatic assembly of nanoparticles and polyelectrolytes: Coating, clustering and layer-by-layer processes, Curr. Opin. Colloid Interface Sci. 17, 97–105 (2012) doi:10.1016/j.cocis.2011.08.009

    Article  Google Scholar 

  60. G. Schneider, G. Decher: Functional core/shell nanoparticles via layer-by-layer assembly. Investigation of the experimental parameters for controlling particle aggregation and for enhancing dispersion stability, Langmuir 24, 1778–1789 (2008) doi:10.1021/la7021837

    Article  Google Scholar 

  61. A. Aqil, S. Vasseur, E. Duguet, C. Passirani, J.P. Benoit, A. Roch, R. Muller, R. Jerome, C. Jerome: PEO coated magnetic nanoparticles for biomedical application, Eur. Polym. J. 44, 3191–3199 (2008) doi:10.1016/j.eurpolymj.2008.07.011

    Article  Google Scholar 

  62. P. Froimowicz, R. Munoz-Espi, K. Landfester, A. Musyanovych, D. Crespy: Surface-functionalized particles: From their design and synthesis to materials science and bio-applications, Curr. Org. Chem. 17, 900–912 (2013) doi:10.2174/1385272811317090004

    Article  Google Scholar 

  63. E.J. Tang, G.X. Cheng, X.L. Ma, X.S. Pang, Q. Zhao: Surface modification of zinc oxide nanoparticle by PMAA and its dispersion in aqueous system, Appl. Surf. Sci. 252, 5227–5232 (2006) doi:10.1016/j.apsusc.2005.08.004

    Article  Google Scholar 

  64. M.N. Tchoul, S.P. Fillery, H. Koerner, L.F. Drummy, F.T. Oyerokun, P.A. Mirau, M.F. Durstock, R.A. Vaia: Assemblies of titanium dioxide-polystyrene hybrid nanoparticles for dielectric applications, Chem. Mater. 22, 1749–1759 (2010), doi:10.1021/cm903182n

    Article  Google Scholar 

  65. M. Li, L.Q. Xu, L. Wang, Y.P. Wu, J. Li, K.G. Neoh, E.T. Kang: Clickable poly(ester amine) dendrimer-grafted Fe3O4 nanoparticles prepared via successive Michael addition and alkyne-azide click chemistry, Polym. Chem. 2, 1312–1321 (2011) doi:10.1039/c1py00084e

    Article  Google Scholar 

  66. S. Kango, S. Kalia, A. Celli, J. Njuguna, Y. Habibi, R. Kumar: Surface modification of inorganic nanoparticles for development of organic-inorganic nanocomposites-A review, Prog. Polym. Sci. 38, 1232–1261 (2013) doi:10.1016/j.progpolymsci.2013.02.003

    Article  Google Scholar 

  67. T. von Werne, T.E. Patten: Atom transfer radical polymerization from nanoparticles: A tool for the preparation of well-defined hybrid nanostructures and for understanding the chemistry of controlled/living radical polymerizations from surfaces, J. Am. Chem. Soc. 123, 7497–7505 (2001) doi:10.1021/Ja010235q

    Article  Google Scholar 

  68. A. Khabibullin, K. Bhangaonkar, C. Mahoney, Z. Lu, M. Schmitt, A.K. Sekizkardes, M.R. Bockstaller, K. Matyjaszewski: Grafting PMMA brushes from alpha-alumina nanoparticles via SI-ATRP, ACS Appl. Mater. Interfaces 8, 5458–5465 (2016) doi:10.1021/acsami.5b12311

    Article  Google Scholar 

  69. H.D. Wang, W.Q. Luo, J.C. Chen: Fabrication and characterization of thermoresponsive Fe3O4@PNIPAM hybrid nanomaterials by surface-initiated RAFT polymerization, J. Mater. Sci. 47, 5918–5925 (2012) doi:10.1007/s10853-012-6493-0

    Article  Google Scholar 

  70. M.A. Hood, M. Mari, R. Munoz-Espi: Nano-droplet, Materials 7, 4057–4087 (2014) doi:10.3390/ma7054057

    Article  Google Scholar 

  71. E. Bourgeat-Lami, G.A. Farzi, L. David, J.L. Putaux, T.F.L. McKenna: Silica encapsulation by miniemulsion polymerization: distribution and localization of the silica particles in droplets and latex particles, Langmuir 28, 6021–6031 (2012) doi:10.1021/la300587b

    Article  Google Scholar 

  72. Z.X. Chen, Y.H. Zhang, L.L. Duan, Z.G. Wang, Y.L. Li, P.X. He: Preparation of PSt/SiO2 nanoparticles with raspberry-like structure via nonionic surfactant miniemulsion polymerization, J. Adhes. Sci. Technol. 29, 2117–2129 (2015) doi:10.1080/01694243.2015.1057396

    Article  Google Scholar 

  73. M.M. Rahim-Abadi, A.R. Mandavian, A. Gharieh, H. Salehi-Mobarakeh: Chemical modification of TiO2 nanoparticles as an effective way for encapsulation in polyacrylic shell via emulsion polymerization, Prog. Org. Coat. 88, 310–315 (2015) doi:10.1016/j.porgcoat.2015.07.013

    Article  Google Scholar 

  74. A. Perro, S. Reculusa, E. Bourgeat-Lami, E. Duguet, S. Ravaine: Synthesis of hybrid colloidal particles: From snowman-like to raspberry-like morphologies, Colloids Surf. A 284, 78–83 (2006) doi:10.1016/j.colsurfa.2005.11.073

    Article  Google Scholar 

  75. C.S. Wagner, S. Shehata, K. Henzler, J.Y. Yuan, A. Wittemann: Towards nanoscale composite particles of dual complexity, J. Colloid Interface Sci. 355, 115–123 (2011) doi:10.1016/j.jcis.2010.12.017

    Article  Google Scholar 

  76. Q.J. Luo, R.J. Hickey, S.J. Park: Controlling the location of nanoparticles in colloidal assemblies of amphiphilic polymers by tuning nanoparticle surface chemistry, ACS Macro Lett. 2, 107–111 (2013) doi:10.1021/mz3006044

    Article  Google Scholar 

  77. M. Agrawal, J. Rubio-Retama, N.E. Zafeiropoulos, N. Gaponik, S. Gupta, V. Cimrova, V. Lesnyak, E. Lopez-Cabarcos, S. Tzavalas, R. Rojas-Reyna, A. Eychmuller, M. Stamm: Switchable photoluminescence of CdTe nanocrystals by temperature-responsive microgels, Langmuir 24, 9820–9824 (2008) doi:10.1021/la801347d

    Article  Google Scholar 

  78. M. Schrinner, M. Ballauff, Y. Talmon, Y. Kauffmann, J. Thun, M. Moller, J. Breu: Single nanocrystals of platinum prepared by partial dissolution of Au-Pt nanoalloys, Science 323, 617–620 (2009) doi:10.1126/science.1166703

    Article  Google Scholar 

  79. V. Fischer, I. Lieberwirth, G. Jakob, K. Landfester, R. Munoz-Espi: Metal oxide/polymer hybrid nanoparticles with versatile functionality prepared by controlled surface crystallization, Adv. Funct. Mater. 23, 451–466 (2013) doi:10.1002/adfm.201201839

    Article  Google Scholar 

  80. A. Ethirajan, U. Ziener, K. Landfester: Surface-functionalized polymeric nanoparticles as templates for biomimetic mineralization of hydroxyapatite, Chem. Mater. 21, 2218–2225 (2009) doi:10.1021/cm9001724

    Article  Google Scholar 

  81. D. Barati, J.D. Walters, S.R.P. Shariati, S. Moeinzadeh, E. Jabbari: Effect of organic acids on calcium phosphate nucleation and osteogenic differentiation of human mesenchymal stem cells on peptide functionalized nanofibers, Langmuir 31, 5130–5140 (2015) doi:10.1021/acs.langmuir.5b00615

    Article  Google Scholar 

  82. O. Karaman, A. Kumar, S. Moeinzadeh, X.Z. He, T. Cui, E. Jabbari: Effect of surface modification of nanofibres with glutamic acid peptide on calcium phosphate nucleation and osteogenic differentiation of marrow stromal cells, J. Tissue Eng. Regen. Med. 10, E132–E146 (2016) doi:10.1002/term.1775

    Article  Google Scholar 

  83. A. Schrade, K. Landfester, U. Ziener: Pickering-type stabilized nanoparticles by heterophase polymerization, Chem. Soc. Rev. 42, 6823–6839 (2013) doi:10.1039/c3cs60100e

    Article  Google Scholar 

  84. M.J. Percy, C. Barthet, J.C. Lobb, M.A. Khan, S.F. Lascelles, M. Vamvakaki, S.P. Armes: Synthesis and characterization of vinyl polymer-silica colloidal nanocomposites, Langmuir 16, 6913 (2000) doi:10.1021/la0004294

    Article  Google Scholar 

  85. A. Schmid, S.P. Armes, C.A.P. Leite, F. Galembeck: Efficient preparation of polystyrene/silica colloidal nanocomposite particles by emulsion polymerization using a glycerol-functionalized silica sol, Langmuir 25, 2486–2494 (2009)

    Article  Google Scholar 

  86. J.H. Chen, C.Y. Cheng, W.Y. Chiu, C.F. Lee, N.Y. Liang: Synthesis of ZnO/polystyrene composites particles by Pickering emulsion polymerization, Eur. Polym. J. 44, 3271–3279 (2008) doi:10.1016/j.eurpolymj.2008.07.023

    Article  Google Scholar 

  87. S. Stanley: Biological nanoparticles and their influence on organisms, Curr. Opin. Biotechnol. 28, 69–74 (2014) doi:10.1016/j.copbio.2013.11.014

    Article  Google Scholar 

  88. C.S. Thaxton, J.S. Rink, P.C. Naha, D.P. Cormode: Lipoproteins and lipoprotein mimetics for imaging and drug delivery, Adv. Drug Deliv. Rev. 106, 116–131 (2016)

    Article  Google Scholar 

  89. N. Sabnis, M. Nair, M. Israel, W.J. McConathy, A.G. Lacko: Enhanced solubility and functionality of valrubicin (AD-32) against cancer cells upon encapsulation into biocompatible nanoparticles, Int. J. Nanomed. 7, 975–983 (2012) doi:10.2147/Ijn.S28029

    Article  Google Scholar 

  90. K.B. Johnsen, J.M. Gudbergsson, M.N. Skov, L. Pilgaard, T. Moos, M. Duroux: A comprehensive overview of exosomes as drug delivery vehicles - Endogenous nanocarriers for targeted cancer therapy, Biochim. Biophys. Acta 1846, 75–87 (2014) doi:10.1016/j.bbcan.2014.04.005

    Article  Google Scholar 

  91. B.S. Batista, W.S. Eng, K.T. Pilobello, K.D. Hendricks-Munoz, L.K. Mahal: Identification of a conserved glycan signature for microvesicles, J. Proteome Res. 10, 4624–4633 (2011) doi:10.1021/pr200434y

    Article  Google Scholar 

  92. F.T. Borges, S.A. Melo, B.C. Ozdemir, N. Kato, I. Revuelta, C.A. Miller, V.H. Gattone, V.S. LeBleu, R. Kalluri: TGF-beta 1-containing exosomes from injured epithelial cells activate fibroblasts to initiate tissue regenerative responses and fibrosis, J. Am. Soc. Nephrol. 24, 385–392 (2013) doi:10.1681/Asn.2012101031

    Article  Google Scholar 

  93. G. Raposo, H.W. Nijman, W. Stoorvogel, R. Leijendekker, C.V. Harding, C.J.M. Melief, H.J. Geuze: B lymphocytes secrete antigen-presenting vesicles, J. Exp. Med. 183, 1161–1172 (1996) doi:10.1084/jem.183.3.1161

    Article  Google Scholar 

  94. T.N. Lamichhane, S. Sokic, J.S. Schardt, R.S. Raiker, J.W. Lin, S.M. Jay: Emerging roles for extracellular vesicles in tissue engineering and regenerative medicine, Tissue Eng. Part B Rev. 21, 45–54 (2015) doi:10.1089/ten.teb.2014.0300

    Article  Google Scholar 

  95. M. Allen, D. Willits, J. Mosolf, M. Young, T. Douglas: Protein cage constrained synthesis of ferrimagnetic iron oxide nanoparticles, Adv. Mater. 14, 1562 (2002) doi:10.1002/1521-4095(20021104)14:21<1562::Aid-Adma1562>3.0.Co;2-D

    Article  Google Scholar 

  96. I. Yamashita, K. Iwahori, S. Kumagai: Ferritin in the field of nanodevices, Biochim. Biophys. Acta-Gen. Subjects 1800, 846–857 (2010) doi:10.1016/j.bbagen.2010.03.005

    Article  Google Scholar 

  97. K.L. Fan, C.Q. Cao, Y.X. Pan, D. Lu, D.L. Yang, J. Feng, L.N. Song, M.M. Liang, X.Y. Yan: Magnetoferritin nanoparticles for targeting and visualizing tumour tissues, Nat. Nanotechnol. 7, 459–464 (2012) doi:10.1038/Nnano.2012.90

    Article  Google Scholar 

  98. D. Yan, Y.Q. Wei, H.C. Guo, S.Q. Sun: The application of virus-like particles as vaccines and biological vehicles, Appl. Microbiol. Biotechnol. 99, 10415–10432 (2015) doi:10.1007/s00253-015-7000-8

    Article  Google Scholar 

  99. Z.J. Wu, K.V. Chen, I. Yildiz, A. Dirksen, R. Fischer, P.E. Dawson, N.F. Steinmetz: Development of viral nanoparticles for efficient intracellular delivery, Nanoscale 4, 3567–3576 (2012) doi:10.1039/c2nr30366c

    Article  Google Scholar 

  100. D.P. Patterson, A. Rynda-Apple, A.L. Harmsen, A.G. Harmsen, T. Douglas: Biomimetic antigenic nanoparticles elicit controlled protective immune response to influenza, ACS Nano 7, 3036–3044 (2013) doi:10.1021/nn4006544

    Article  Google Scholar 

  101. W. Lohcharoenkal, L.Y. Wang, Y.C. Chen, Y. Rojanasakul: Protein nanoparticles as drug delivery carriers for cancer therapy, Biomed Res. Int. 2014, 180549 (2014)

    Article  Google Scholar 

  102. L.P.H. Estrada, J.A. Champion: Protein nanoparticles for therapeutic protein delivery, Biomater. Sci. 3, 787–799 (2015) doi:10.1039/c5bm00052a

    Article  Google Scholar 

  103. K. Langer, M.G. Anhorn, I. Steinhauser, S. Dreis, D. Celebi, I. Schrickel, S. Faust, V. Vogel: Human serum albumin (HSA) nanoparticles: Reproducibility of preparation process and kinetics of enzymatic degradation, Int. J. Pharm. 347, 109–117 (2008) doi:10.1016/j.ijpharm.2007.06.028

    Article  Google Scholar 

  104. G.L. Wang, K. Siggers, S.F. Zhang, H.X. Jiang, Z.H. Xu, R.F. Zernicke, J. Matyas, H. Uludag: Preparation of BMP-2 containing bovine serum albumin (BSA) nanoparticles stabilized by polymer coating, Pharm. Res. 25, 2896–2909 (2008) doi:10.1007/s11095-008-9692-2

    Article  Google Scholar 

  105. G. Kaul, M. Amiji: Biodistribution and targeting potential of poly(ethylene glycol)-modified gelatin nanoparticles in subcutaneous murine tumor model, J. Drug Target. 12, 585–591 (2004) doi:10.1080/10611860400013451

    Article  Google Scholar 

  106. A.O. Elzoghby, M.W. Helmy, W.M. Samy, N.A. Elgindy: Novel ionically crosslinked casein nanoparticles for flutamide delivery: formulation, characterization, and in vivo pharmacokinetics, Int. J. Nanomed. 8, 1721–1732 (2013) doi:10.2147/Ijn.S40674

    Article  Google Scholar 

  107. L. Yang, F. Cui, D.M. Cun, A. Tao, K. Shi, W.H. Lin: Preparation, characterization and biodistribution of the lactone form of 10-hydroxycamptothecin (HCPT)-loaded bovine serum albumin (BSA) nanoparticles, Int. J. Pharm. 340, 163–172 (2007) doi:10.1016/j.ijpharm.2007.03.028

    Article  Google Scholar 

  108. S. Rhaese, H. von Briesen, H. Rubsamen-Waigmann, J. Kreuter, K. Langer: Human serum albumin-polyethylenimine nanoparticles for gene delivery, J. Control. Release 92, 199–208 (2003) doi:10.1016/S0168-3659(03)00302-X

    Article  Google Scholar 

  109. I.W. Hamley: Self-assembly of amphiphilic peptides, Soft Matter 7, 4122–4138 (2011) doi:10.1039/c0sm01218a

    Article  Google Scholar 

  110. S.K. Nitta, K. Numata: Biopolymer-based nanoparticles for drug/gene delivery and tissue engineering, Int. J. Mol. Sci. 14, 1629–1654 (2013) doi:10.3390/ijms14011629

    Article  Google Scholar 

  111. S. Santoso, W. Hwang, H. Hartman, S.G. Zhang: Self-assembly of surfactant-like peptides with variable glycine tails to form nanotubes and nanovesicles, Nano Lett. 2, 687–691 (2002) doi:10.1021/nl025563i

    Article  Google Scholar 

  112. G. von Maltzahn, S. Vauthey, S. Santoso, S.U. Zhang: Positively charged surfactant-like peptides self-assemble into nanostructures, Langmuir 19, 4332–4337 (2003) doi:10.1021/la026526+

    Article  Google Scholar 

  113. E. Jabbari, X.M. Yang, S. Moeinzadeh, X.Z. He: Drug release kinetics, cell uptake, and tumor toxicity of hybrid VVVVVVKK peptide-assembled polylactide nanoparticles, Eur. J. Pharm. Biopharm. 84, 49–62 (2013) doi:10.1016/j.ejpb.2012.12.012

    Article  Google Scholar 

  114. H.G. Cui, M.J. Webber, S.I. Stupp: Self-assembly of peptide amphiphiles: From molecules to nanostructures to biomaterials, Biopolymers 94, 1–18 (2010) doi:10.1002/bip.21328

    Article  Google Scholar 

  115. A. Dehsorkhi, V. Castelletto, I.W. Hamley: Self-assembling amphiphilic peptides, J. Pept. Sci. 20, 453–467 (2014) doi:10.1002/psc.2633

    Article  Google Scholar 

  116. I.W. Hamley, A. Dehsorkhi, V. Castelletto, S. Furzeland, D. Atkins, J. Seitsonen, J. Ruokolainen: Reversible helical unwinding transition of a self-assembling peptide amphiphile, Soft Matter 9, 9290–9293 (2013) doi:10.1039/c3sm51725j

    Article  Google Scholar 

  117. S. Eskandari, T. Guerin, I. Toth, R.J. Stephenson: Recent advances in self-assembled peptides: Implications for targeted drug delivery and vaccine engineering, Adv. Drug Deliv. Rev. (2016) doi:10.1016/j.addr.2016.06.013, in press

  118. R. Herrero-Vanrell, A.C. Rincon, M. Alonso, V. Reboto, I.T. Molina-Martinez, J.C. Rodriguez-Cabello: Self-assembled particles of an elastin-like polymer as vehicles for controlled drug release, J. Control. Release 102, 113–122 (2005) doi:10.1016/j.jconrel.2004.10.001

    Article  Google Scholar 

  119. A. Yeboah, R.I. Cohen, R. Faulknor, R. Schloss, M.L. Yarmush, F. Berthiaume: The development and characterization of SDF1 alpha-elastin-like-peptide nanoparticles for wound healing, J. Control. Release 232, 238–247 (2016) doi:10.1016/j.jconrel.2016.04.020

    Article  Google Scholar 

  120. J. Rodriguez-Hernandez, S. Lecommandoux: Reversible inside-out micellization of pH-responsive and water-soluble vesicles based on polypeptide diblock copolymers, J. Am. Chem. Soc. 127, 2026–2027 (2005) doi:10.1021/ja043920g

    Article  Google Scholar 

  121. B. Sarmento, A.J. Ribeiro, F. Veiga, D.C. Ferreira, R.J. Neufeld: Insulin-loaded nanoparticles are prepared by alginate ionotropic pre-gelation followed by chitosan polyelectrolyte complexation, J. Nanosci. Nanotechnol. 7, 2833–2841 (2007) doi:10.1166/jnn.2007.609

    Article  Google Scholar 

  122. R.Y. Rasente, J.C. Imperiale, J.M. Lazaro-Martinez, L. Gualco, R. Oberkersch, A. Sosnik, G.C. Calabrese: Dermatan sulfate/chitosan polyelectrolyte complex with potential application in the treatment and diagnosis of vascular disease, Carbohydr. Polym. 144, 362–370 (2016) doi:10.1016/j.carbpol.2016.02.046

    Article  Google Scholar 

  123. K.A. Janes, P. Calvo, M.J. Alonso: Polysaccharide colloidal particles as delivery systems for macromolecules, Adv. Drug Deliv. Rev. 47, 83–97 (2001) doi:10.1016/S0169-409x(00)00123-X

    Article  Google Scholar 

  124. Y. Cho, J.T. Kim, H.J. Park: Preparation, characterization, and protein loading properties of N-acyl chitosan nanoparticles, J. Appl. Polym. Sci. 124, 1366–1371 (2012) doi:10.1002/app.34931

    Article  Google Scholar 

  125. G. Shi, Y.X. Che, Y.M. Zhou, X. Bai, C.H. Ni: Synthesis of polyglycolic acid grafting from sodium alginate through direct polycondensation and its application as drug carrier, J. Mater. Sci. 50, 7835–7841 (2015) doi:10.1007/s10853-015-9363-8

    Article  Google Scholar 

  126. C.J. Brinker, G.W. Scherer: Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing (Academic, San Diego 1990)

    Google Scholar 

  127. A.G. Kolhatkar, A.C. Jamison, D. Litvinov, R.C. Willson, T.R. Lee: Tuning the magnetic properties of nanoparticles, Int. J. Mol. Sci. 14, 15977–16009 (2013) doi:10.3390/ijms140815977

    Article  Google Scholar 

  128. C. Burda, X.B. Chen, R. Narayanan, M.A. El-Sayed: Chemistry and properties of nanocrystals of different shapes, Chem. Rev. 105, 1025–1102 (2005) doi:10.1021/cr030063a

    Article  Google Scholar 

  129. F. Alexis, E. Pridgen, L.K. Molnar, O.C. Farokhzad: Factors affecting the clearance and biodistribution of polymeric nanoparticles, Mol. Pharm. 5, 505–515 (2008) doi:10.1021/mp800051m

    Article  Google Scholar 

  130. J.P. Jolivet, S. Cassaignon, C. Chaneac, D. Chiche, O. Durupthy, D. Portehault: Design of metal oxide nanoparticles: Control of size, shape, crystalline structure and functionalization by aqueous chemistry, C.R. Chimie 13, 40–51 (2010) doi:10.1016/j.crci.2009.09.012

    Article  Google Scholar 

  131. A.M. Perez-Coronado, L. Calvo, N. Alonso-Morales, F. Heras, J.J. Rodriguez, M.A. Gilarranz: Multiple approaches to control and assess the size of Pd nanoparticles synthesized via water-in-oil microemulsion, Colloids Surf. A 497, 28–34 (2016) doi:10.1016/j.colsurfa.2016.02.012

    Article  Google Scholar 

  132. D. Lemoine, V. Preat: Polymeric nanoparticles as delivery system for influenza virus glycoproteins, J. Control. Release 54, 15–27 (1998) doi:10.1016/S0168-3659(97)00241-1

    Article  Google Scholar 

  133. I. Lisiecki, M.P. Pileni: Copper metallic particles synthesized in-situ in reverse micelles - influence of various parameters on the size of the particles, J. Phys. Chem. 99, 5077–5082 (1995) doi:10.1021/J100014a030

    Article  Google Scholar 

  134. M. Husein, E. Rodil, J.H. Vera: Formation of silver bromide precipitate of nanoparticles in a single microemulsion utilizing the surfactant counterion, J. Colloid Interface Sci. 273, 426–434 (2004) doi:10.1016/j.jcis.2004.02.057

    Article  Google Scholar 

  135. N.M. Husein, E. Rodil, J.H. Vera: Preparation of AgBr nanoparticles in microemulsions via reaction of AgNO3 with CTAB counterion, J. Nanoparticle Res. 9, 787–796 (2007) doi:10.1007/s11051-006-9107-4

    Article  Google Scholar 

  136. S. Schubert, J.T. Delaney, U.S. Schubert: Nanoprecipitation and nanoformulation of polymers: from history to powerful possibilities beyond poly(lactic acid), Soft Matter 7, 1581–1588 (2011) doi:10.1039/c0sm00862a

    Article  Google Scholar 

  137. H.J. Jeon, J.I. Jeong, M.K. Jang, Y.H. Park, J.W. Nah: Effect of solvent on the preparation of surfactant-free poly(DL-lactide-co-glycolide) nanoparticles and norfloxacin release characteristics, Int. J. Pharm. 207, 99–108 (2000) doi:10.1016/S0378-5173(00)00537-8

    Article  Google Scholar 

  138. A.E. Mercado, J. Ma, X. He, E. Jabbari: Release characteristics and osteogenic activity of recombinant human bone morphogenetic protein-2 grafted to novel self-assembled poly(lactide-co-glycolide fumarate) nanoparticles, J. Control. Release 140, 148–156 (2009) doi:10.1016/j.jconrel.2009.08.009

    Article  Google Scholar 

  139. H. Mistry, F. Behafarid, E. Zhou, L.K. Ono, L. Zhang, B.R. Cuenya: Shape-dependent catalytic oxidation of 2-butanol over Pt nanoparticles supported on gamma-Al2O3, ACS Catalysis 4, 109–115 (2014) doi:10.1021/cs400888n

    Article  Google Scholar 

  140. N.P. Truong, M.R. Whittaker, C.W. Mak, T.P. Davis: The importance of nanoparticle shape in cancer drug delivery, Expert Opin. Drug Deliv. 12, 129–142 (2015) doi:10.1517/17425247.2014.950564

    Article  Google Scholar 

  141. A. Tao, P. Sinsermsuksakul, P.D. Yang: Polyhedral silver nanocrystals with distinct scattering signatures, Angew. Chem. Int. Ed. 45, 4597–4601 (2006) doi:10.1002/anie.200601277

    Article  Google Scholar 

  142. L.A. Renna, C.J. Boyle, T.S. Gehan, D. Venkataraman: Polymer nanoparticle assemblies: A versatile route to functional mesostructures, Macromolecules 48, 6353–6368 (2015) doi:10.1021/acs.macromol.5b00375

    Article  Google Scholar 

  143. J.A. Champion, Y.K. Katare, S. Mitragotri: Particle shape: A new design parameter for micro- and nanoscale drug delivery carriers, J. Control. Release 121, 3–9 (2007) doi:10.1016/j.jconrel.2007.03.022

    Article  Google Scholar 

  144. Y.P. Wang, T.J. Merkel, K. Chen, C.A. Fromen, D.E. Betts, J.M. DeSimone: Generation of a library of particles having controlled sizes and shapes via the mechanical elongation of master templates, Langmuir 27, 524–528 (2011) doi:10.1021/la1045095

    Article  Google Scholar 

  145. P. Dalhaimer, A.J. Engler, R. Parthasarathy, D.E. Discher: Targeted worm micelles, Biomacromolecules 5, 1714–1719 (2004) doi:10.1021/bm049884v

    Article  Google Scholar 

  146. A.H. Lu, E.L. Salabas, F. Schuth: Magnetic nanoparticles: Synthesis, protection, functionalization, and application, Angew. Chem. Int. Ed. 46, 1222–1244 (2007) doi:10.1002/anie.200602866

    Article  Google Scholar 

  147. M. Arruebo, R. Fernandez-Pacheco, M.R. Ibarra, J. Santamaria: Magnetic nanoparticles for drug delivery, Nano Today 2, 22–32 (2007) doi:10.1016/S1748-0132(07)70084-1

    Article  Google Scholar 

  148. M. Knobel, W.C. Nunes, L.M. Socolovsky, E. De Biasi, J.M. Vargas, J.C. Denardin: Superparamagnetism and other magnetic features in granular materials: A review on ideal and real systems, J. Nanosci. Nanotechnol. 8, 2836–2857 (2008) doi:10.1166/Jnn.2008.017

    Article  Google Scholar 

  149. A. Demortiere, P. Panissod, B.P. Pichon, G. Pourroy, D. Guillon, B. Donnio, S. Begin-Colin: Size-dependent properties of magnetic iron oxide nanocrystals, Nanoscale 3, 225–232 (2011) doi:10.1039/c0nr00521e

    Article  Google Scholar 

  150. G.L. Zhen, B.W. Muir, B.A. Moffat, P. Harbour, K.S. Murray, B. Moubaraki, K. Suzuki, I. Madsen, N. Agron-Olshina, L. Waddington, P. Mulvaney, P.G. Hartley: Comparative study of the magnetic behavior of spherical and cubic superparamagnetic iron oxide nanoparticles, J. Phys. Chem. C 115, 327–334 (2011) doi:10.1021/jp104953z

    Article  Google Scholar 

  151. K.M. Krishnan: Biomedical nanomagnetics: A spin through possibilities in imaging, diagnostics, and therapy, IEEE Trans. Magn. 46, 2523–2558 (2010) doi:10.1109/Tmag.2010.2046907

    Article  Google Scholar 

  152. J.H. Lee, Y.M. Huh, Y. Jun, J. Seo, J. Jang, H.T. Song, S. Kim, E.J. Cho, H.G. Yoon, J.S. Suh, J. Cheon: Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging, Nat. Med. 13, 95–99 (2007) doi:10.1038/nm1467

    Article  Google Scholar 

  153. N. Shamim, L. Hong, K. Hidajat, M.S. Uddin: Thermosensitive polymer (N-isopropylacrylamide) coated nanomagnetic particles: Preparation and characterization, Colloids Surf. B 55, 51–58 (2007) doi:10.1016/j.colsurfb.2006.11.007

    Article  Google Scholar 

  154. D. Maharaj, B. Bhushan: Friction, wear and mechanical behavior of nano-objects on the nanoscale, Mater. Sci. Eng. R. 95, 1–43 (2015) doi:10.1016/j.mser.2015.07.001

    Article  Google Scholar 

  155. D. Maharaj, B. Bhushan: Scale effects of nanomechanical properties and deformation behavior of Au nanoparticle and thin film using depth sensing nanoindentation, Beilstein J. Nanotechnol. 5, 822–836 (2014) doi:10.3762/bjnano.5.94

    Article  Google Scholar 

  156. D. Mordehai, S.W. Lee, B. Backes, D.J. Srolovitz, W.D. Nix, E. Rabkin: Size effect in compression of single-crystal gold microparticles, Acta Mater. 59, 5202–5215 (2011) doi:10.1016/j.actamat.2011.04.057

    Article  Google Scholar 

  157. M. Ramos, L. Ortiz-Jordan, A. Hurtado-Macias, S. Flores, J.T. Elizalde-Galindo, C. Rocha, B. Torres, M. Zarei-Chaleshtori, R.R. Chianelli: Hardness and elastic modulus on six-fold symmetry gold nanoparticles, Materials 6, 198–205 (2013) doi:10.3390/ma6010198

    Article  Google Scholar 

  158. D.R. Saha, A. Mandal, S. Mitra, M.R. Mada, P. Boughton, S. Bandyopadhyay, D. Chakravorty: Nanoindentation studies on silver nanoparticles, Proc. Int. Conf. Recent Trends in Appl. Phys. Mater. Sci. 1536, 257–258 (2013) doi:10.1063/1.4810198

    Article  Google Scholar 

  159. H. Conrad, K. Jung: Effect of grain size from millimeters to nanometers on the flow stress and deformation kinetics of Ag, Mater. Sci. Eng. A 391, 272–284 (2005) doi:10.1016/j.msea.2004.08.073

    Article  Google Scholar 

  160. B. Chen, H. Zhang, K.A. Dunphy-Guzman, D. Spagnoli, M.B. Kruger, D.V.S. Muthu, M. Kunz, S. Fakra, J.Z. Hu, Q.Z. Guo, J.F. Banfield: Size-dependent elasticity of nanocrystalline titania, Phys. Rev. B 79, 125406 (2009) doi:10.1103/PhysRevB.79.125406

    Article  Google Scholar 

  161. D. Guo, G.X. Xie, J.B. Luo: Mechanical properties of nanoparticles: Basics and applications, J. Phys. D-Appl. Phys. 47(1), 3001 (2014) doi:10.1088/0022-3727/47/1/013001

    Article  Google Scholar 

  162. P. Paik, K.K. Kar, D. Deva, A. Sharma: Measurement of mechanical properties of polymer nanospheres by atomic force microscopy: Effects of particle size, Micro Nano Lett. 2, 72–77 (2007) doi:10.1049/mnl:20070030

    Article  Google Scholar 

  163. S.S. Tan, R.L. Sherman, W.T. Ford: Nanoscale compression of polymer microspheres by atomic force microscopy, Langmuir 20, 7015–7020 (2004) doi:10.1021/la049597c

    Article  Google Scholar 

  164. D. Maharaj, B. Bhushan: Effect of spherical Au nanoparticles on nanofriction and wear reduction in dry and liquid environments, Beilstein J. Nanotechnol. 3, 759–772 (2012) doi:10.3762/bjnano.3.85

    Article  Google Scholar 

  165. D. Guo, J.N. Li, L. Chang, J.B. Luo: Measurement of the friction between single polystyrene nanospheres and silicon surface using atomic force microscopy, Langmuir 29, 6920–6925 (2013) doi:10.1021/la400984d

    Article  Google Scholar 

  166. E. Gnecco, R. Bennewitz, T. Gyalog, C. Loppacher, M. Bammerlin, E. Meyer, H.J. Guntherodt: Velocity dependence of atomic friction, Phys. Rev. Lett. 84, 1172–1175 (2000) doi:10.1103/PhysRevLett.84.1172

    Article  Google Scholar 

  167. U. Simon, G. Schon, G. Schmid: The application of Au-55 clusters as quantum dots, Angewandte Chemie 32, 250–254 (1993) doi:10.1002/anie.199302501

    Article  Google Scholar 

  168. D.L. Klein, P.L. McEuen, J.E.B. Katari, R. Roth, A.P. Alivisatos: An approach to electrical studies of single nanocrystals, Appl. Phys. Lett. 68, 2574–2576 (1996) doi:10.1063/1.116188

    Article  Google Scholar 

  169. M. De, P.S. Ghosh, V.M. Rotello: Applications of nanoparticles in biology, Adv. Mater. 20, 4225–4241 (2008) doi:10.1002/adma.200703183

    Article  Google Scholar 

  170. T.A.P. Rocha-Santos: Sensors and biosensors based on magnetic nanoparticles, Trac-Trends Anal. Chem. 62, 28–36 (2014) doi:10.1016/j.trac.2014.06.016

    Article  Google Scholar 

  171. Y.P. Li, B. Srinivasan, Y. Jing, X.F. Yao, M.A. Hugger, J.P. Wang, C.G. Xing: Nanomagnetic competition assay for low-abundance protein biomarker quantification in unprocessed human sera, J. Am. Chem. Soc. 132, 4388–4392 (2010) doi:10.1021/ja910406a

    Article  Google Scholar 

  172. J. Panyam, V. Labhasetwar: Biodegradable nanoparticles for drug and gene delivery to cells and tissue, Adv. Drug Delivery Rev. 64, 61–71 (2012) doi:10.1016/j.addr.2012.09.023

    Article  Google Scholar 

  173. M.P. Desai, V. Labhasetwar, G.L. Amidon, R.J. Levy: Gastrointestinal uptake of biodegradable microparticles: Effect of particle size, Pharm. Res. 13, 1838–1845 (1996) doi:10.1023/A:1016085108889

    Article  Google Scholar 

  174. D. Peer, J.M. Karp, S. Hong, O.C. Faro Kzad, R. Margalit, R. Langer: Nanocarriers as an emerging platform for cancer therapy, Nat. Nanotechnol. 2, 751–760 (2007) doi:10.1038/nnano.2007.387

    Article  Google Scholar 

  175. X.Z. He, J.Y. Ma, A.E. Mercado, W.J. Xu, E. Jabbari: Cytotoxicity of paclitaxel in biodegradable self-assembled core-shell poly(lactide-co-glycolide ethylene oxide fumarate) nanoparticles, Pharm. Res. 25, 1552–1562 (2008) doi:10.1007/s11095-007-9513-z

    Article  Google Scholar 

  176. O.S. Wolfbeis: An overview of nanoparticles commonly used in fluorescent bioimaging, Chem. Soc. Rev. 44, 4743–4768 (2015) doi:10.1039/c4cs00392f

    Article  Google Scholar 

  177. M.K. So, C.J. Xu, A.M. Loening, S.S. Gambhir, J.H. Rao: Self-illuminating quantum dot conjugates for in vivo imaging, Nat. Biotechnol. 24, 339–343 (2006) doi:10.1038/nbt1188

    Article  Google Scholar 

  178. J. Estelrich, M.J. Sanchez-Martin, M.A. Busquets: Nanoparticles in magnetic resonance imaging: from simple to dual contrast agents, Int. J. Nanomed. 10, 1727–1741 (2015) doi:10.2147/Ijn.S76501

    Article  Google Scholar 

  179. H.B. Na, I.C. Song, T. Hyeon: Inorganic nanoparticles for MRI contrast agents, Adv. Mater. 21, 2133–2148 (2009) doi:10.1002/adma.200802366

    Article  Google Scholar 

  180. C.J. Jia, F. Schuth: Colloidal metal nanoparticles as a component of designed catalyst, Phys. Chem. Chem. Phys. 13, 2457–2487 (2011) doi:10.1039/c0cp02680h

    Article  Google Scholar 

  181. M. Adlim, M.A. Bakar, K.Y. Liew, J. Ismail: Synthesis of chitosan-stabilized platinum and palladium nanoparticles and their hydrogenation activity, J. Mol. Catalysis A 212, 141–149 (2004) doi:10.1016/j.molcata.2003.08.012

    Article  Google Scholar 

  182. M. Ruta, N. Semagina, L. Kiwi-Minsker: Monodispersed Pd nanoparticles for acetylene selective hydrogenation: Particle size and support effects, J. Phys. Chem. C 112, 13635–13641 (2008) doi:10.1021/jp803800w

    Article  Google Scholar 

  183. K.M. Bratlie, H. Lee, K. Komvopoulos, P.D. Yang, G.A. Somorjai: Platinum nanoparticle shape effects on benzene hydrogenation selectivity, Nano Lett. 7, 3097–3101 (2007) doi:10.1021/nl0716000

    Article  Google Scholar 

  184. N. Dimitratos, J.A. Lopez-Sanchez, J.M. Anthonykutty, G. Brett, A.F. Carley, R.C. Tiruvalam, A.A. Herzing, C.J. Kiely, D.W. Knight, G.J. Hutchings: Oxidation of glycerol using gold-palladium alloy-supported nanocrystals, Phys. Chem. Chem. Phys. 11, 4952–4961 (2009) doi:10.1039/b904317a

    Article  Google Scholar 

  185. A.H. Battez, R. Gonzalez, J.L. Viesca, J.E. Fernandez, J.M.D. Fernandez, A. Machado, R. Chou, J. Riba: CuO, ZrO2 and ZnO nanoparticles as antiwear additive in oil lubricants, Wear 265, 422–428 (2008) doi:10.1016/j.wear.2007.11.013

    Article  Google Scholar 

  186. X.B. Zhao, R.W. Long, Y. Chen, Z.G. Chen: Synthesis, characterization of CeO(2)@SiO(2) nanoparticles and their oxide CMP behavior, Microelectron. Eng. 87, 1716–1720 (2010) doi:10.1016/j.mee.2009.09.012

    Article  Google Scholar 

  187. Y.C. Kang, S.L.I. Chan: Tensile properties of nanometric Al2O3 particulate-reinforced aluminum matrix composites, Mater. Chem. Phys. 85, 438–443 (2004) doi:10.1016/j.matchemphys.2004.02.002

    Article  Google Scholar 

  188. J. Jiao, X. Sun, T.J. Pinnavaia: Mesostructured silica for the reinforcement and toughening of rubbery and glassy epoxy polymers, Polymer 50, 983–989 (2009) doi:10.1016/j.polymer.2008.12.042

    Article  Google Scholar 

  189. J.E. Millstone, D.F.J. Kavulak, C.H. Woo, T.W. Holcombe, E.J. Westling, A.L. Briseno, M.F. Toney, J.M.J. Frechet: Synthesis, properties, and electronic applications of size-controlled poly(3-hexylthiophene) nanoparticles, Langmuir 26, 13056–13061 (2010) doi:10.1021/la1022938

    Article  Google Scholar 

  190. Y.S. Ye, X.L. Xie, J. Rick, F.C. Chang, B.J. Hwang: Improved anode materials for lithium-ion batteries comprise non-covalently bonded graphene and silicon nanoparticles, J. Power Sources 247, 991–998 (2014) doi:10.1016/j.jpowsour.2013.08.048

    Article  Google Scholar 

  191. H.B. Gu, B. Jin, D.K. Jun, Z. Han: Improved electrochemical performance of LiCoPO4 nanoparticles for lithium ion batteries, J. Nanosci. Nanotechnol. 7, 4037–4040 (2007) doi:10.1166/jnn.2007.078

    Article  Google Scholar 

  192. K.T. Lee, Y.S. Jung, S.M. Oh: Synthesis of tin-encapsulated spherical hollow carbon for anode material in lithium secondary batteries, J. Am. Chem. Soc. 125, 5652–5653 (2003) doi:10.1021/ja0345524

    Article  Google Scholar 

  193. A. Kumar, P.K. Vemula, P.M. Ajayan, G. John: Silver-nanoparticle-embedded antimicrobial paints based on vegetable oil, Nat. Mater. 7, 236–241 (2008) doi:10.1038/nmat2099

    Article  Google Scholar 

  194. J.S. Kim, E. Kuk, K.N. Yu, J.H. Kim, S.J. Park, H.J. Lee, S.H. Kim, Y.K. Park, Y.H. Park, C.Y. Hwang, Y.K. Kim, Y.S. Lee, D.H. Jeong, M.H. Cho: Antimicrobial effects of silver nanoparticles, Nanomed.-Nanotechnol. Biol. Med. 3, 95–101 (2007) doi:10.1016/j.nano.2006.12.001

    Article  Google Scholar 

  195. S. Baruah, M.N. Khan, J. Dutta: Perspectives and applications of nanotechnology in water treatment, Environ. Chem. Lett. 14, 1–14 (2016) doi:10.1007/s10311-015-0542-2

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by research grants to E. Jabbari from the United States National Science Foundation under Award Numbers CBET1403545 and IIP150024 and the National Institute of Arthritis and Musculoskeletal and Skin Diseases of the National Institutes of Health under Award Number AR063745. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Editor information

Bharat Bhushan

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag GmbH Germany

About this chapter

Cite this chapter

Moeinzadeh, S., Jabbari, E. (2017). Nanoparticles and Their Applications. In: Bhushan, B. (eds) Springer Handbook of Nanotechnology. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-54357-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-54357-3_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-54355-9

  • Online ISBN: 978-3-662-54357-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics