Skip to main content

Advertisement

Log in

Effect of nanosized anatase TiO2 on germination, stress defense enzymes, and fruit nutritional quality of Abelmoschus esculentus (L.) Moench (okra)

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

Due to wide-scale generation/use of titanium dioxide (TiO2) nanoparticles, significant release into agricultural soil is inevitable. This has caused great ecotoxicological concern due to their unclear fate in plants, most especially food crops. This study aimed to compare the impact of anatase nano-TiO2 of two primary diameters (nTiO2 [50 nm] and bTiO2 [68 nm]) on stress enzymes and seed nutritional quality of okra (Abelmoschus esculentus) plant. Compared to control, bTiO2 significantly promoted seed germination in okra while chlorophylls were only enhanced significantly by nTiO2 and reduced by bTiO2. The results of biochemical experiments implied that both nano-TiO2 particles significantly reduced ascorbate peroxidase (APX) and glutathione reductase (GR) activity levels in roots. Conversely in leaves, APX activity level was significantly reduced by the both nano-TiO2 particles, while GR activity was promoted. Interestingly, both nano-TiO2 particles significantly increased superoxide dismutase activity in roots and leaves, indicating that nano-TiO2 induced toxicity to okra plant. The accumulation of malondialdehyde in leaves was significantly high in okra plants exposed to bTiO2, and this underpins the fact that the large-sized nano-TiO2 portends phytotoxicity to the leaves. In this study, the degree of response of stress enzymes to nano-TiO2 was particle size. Fruit quality analysis indicated a decrease in Ca, Mg, and Fe contents which was particle size–dependent and dose-dependent. In addition, the proximate compositions (except carbohydrate) of fruits were all negatively altered by both nano-TiO2 particles. Conclusively, the results suggest that particle size is a factor in the phytotoxicity and the individual effect of both nano-TiO2 particles on okra plant was dose-dependent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Akanbi-Gada MA, Ogunkunle CO, Vishwarkama V, Viswanathan K, Fatoba PO (2019) Phytotoxicity of nano-zinc oxide to tomato plant (Solanum lycopersicum L.): Zn uptake, stress enzymes response and influence on on-enzymatic antioxidants in fruits. Environ Technol Innov 14. https://doi.org/10.1016/j.eti.2019.100325

    Google Scholar 

  • Alaoui-Sosse B, Genet P, Vinit-Dunand F, Toussaint M, Epron D, Badot P (2004) Effects of copper on growth in cucumber plants (Cucumis sativus) and its relationship with carbohydrate accumulation and changes in ion contents. Plant Sci 166:832–842

    Google Scholar 

  • Antisari LV, Carbone S, Gatti A, Vianello G, Nannipieri P (2014) Uptake and translocation of metals and nutrients in tomato grown in soil polluted with metal oxide (CeO2, Fe3O4, SnO2, TiO2) or metallic (Ag, Co, Ni) engineered nanoparticles. Environ Sci Pollut Res 22(3):1841–1853

    Google Scholar 

  • Association of Official Agricultural Chemists (AOAC) (2016) In: Horwitz W, Latimer G (eds) Official methods of analysis of AOAC International, 20th edn. AOAC International, Gaithersburg, MD, USA

    Google Scholar 

  • Azimi R, Feizi H, Hosseini MK (2013) Can bulk and nanosized titanium dioxide particles improve seed germination features of wheatgrass (Agropyron desertorum). Notulae Sci Biol 5:325–331

    Google Scholar 

  • Barrios AC, Medina-Velo IA, Zuverza-Mena N, Dominguez OE, Peralta-Videa JR, Gardea-Torresdey JL (2017) Nutritional quality assessment of tomato fruits after exposure to uncoated and citric acid coated cerium oxide nanoparticles, bulk cerium oxide, cerium acetate and citric acid. Plant Physiol Biochem 110:100–107

    Google Scholar 

  • Cai F, Wu X, Zhang H, Shen X, Zhang M, Chen W, Gao Q, White JC, Tao S, Wang X (2017) Impact of TiO2 nanoparticles on lead uptake and bioaccumulation in rice (Oryza sativa L.). NanoImpact 5:101–108

    Google Scholar 

  • Castiglione MR, Giorgetti L, Cremonini R, Bottega S, Spano C (2014) Impact of TiO2 nanoparticles on Vicia narbonensis L.: potential toxicity effects. Protoplasma 251(6):1471–1479

    Google Scholar 

  • Castiglione MR, Giorgetti L, Bellani L, Muccifora S, Bottega S, Spanò C (2016) Root responses to different types of TiO2 nanoparticles and bulk counterpart in plant model system Vicia faba L. Environ Exp Bot 130:11–21

    Google Scholar 

  • Cigler P, Olejnickova J, Hruby M, Csefalvay L, Peterka J, Kuzel S (2010) Interactions between iron and titanium metabolism in spinach: a chlorophyll fluorescence study in hydropony. J Plant Physiol 167:1592–1597

    Google Scholar 

  • Clement L, Hurel C, Marmier N (2013) Toxicity of TiO2 nanoparticles to cladocerans, algae, rotifers and plants—effects of size and crystalline structure. Chemosphere 90:1083–1090

    Google Scholar 

  • Darlington TK, Neigh AM, Spencer MT, Guyen OTN, Oldenburg SJ (2009) Nanoparticle characteristics affecting environmental fate and transport through soil. Environ Toxicol Chem 28(6):1191–1199

    Google Scholar 

  • Das K, Roychoudhury A (2014) Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front Environ Sci 2. https://doi.org/10.3389/fenvs.2014.00053

  • Deng Y, Petersen EJ, Challis KE, Rabb SA, Holbrook RD, Ranville JF, Nelson BC, Xing B (2017) Multiple method analysis of TiO2 nanoparticle uptake in rice plants. Environ Sci Technol 51:10615–10623

    Google Scholar 

  • Du W, Sun Y, Ji R, Zhu J, Wu J, Guo H (2011) TiO2 and ZnO nanoparticles negatively affect wheat growth and soil enzyme activities in agricultural soil. J Environ Monit 13:822–828

    Google Scholar 

  • Foyer CH, Shigeoka S (2011) Understanding oxidative stress and antioxidant functions to enhance photosynthesis. Plant Physiol 155:93–100

    Google Scholar 

  • Ghosh M, Bandyopadhyay M, Mukherjee A (2012) Genotoxicity of titanium dioxide (TiO2) nanoparticles at two trophic levels: plant and human lymphocytes. Chemosphere 81:1253–1262

    Google Scholar 

  • Hong F, Yang F, Liu C, Gao Q, Wan Z, Gu F, Wu C, Ma Z, Zhou J, Yang P (2005) Influences of nano-TiO2 on the chloroplast aging of spinach under light. Biol Trace Elem Res 104:249–260

    Google Scholar 

  • Hou J, Wang L, Wang C, Zhang S, Liu H, Li S, Wang X (2018) Toxicity and mechanism of action of titanium dioxide nanoparticles in living organisms. J Environ Sci 75:40–53

    Google Scholar 

  • Hund-Rinke and Klawonn (2013) and the full reference is thus: Hund-Rinke, K., Klawonn T (2013) Investigation of Widely Used Nanomaterials and Gold Nanoparticles in Standardized Ecotoxicological Tests. Published by the FederalEnvironment Agency (Umweltbundesamt), Dessau-Roblau, Germany, pp. 10–13.

  • Islam E, Liu D, Li T, Yang X, Jin X, Mahmood Q, Tian S, Li J (2008) Effect of Pb toxicity on leaf growth, physiology and ultrastructure in the two ecotypes of Elsholtzia argyi. J Hazard Mater 154:914–926

    Google Scholar 

  • ISO (2012) ISO guideline 11269-2: soil quality—determination of the effects of pollutants on soil flora—part 2: effects of contaminated soil on the emergence and early growth of higher plants. International Organization for Standardization, Geneva

    Google Scholar 

  • Jacob DL, Borchardt JD, Navaratnam L, Otte ML, Bezbaruah AN (2013) Uptake and translocation of Ti from nanoparticles in crops and wetland plants. Int J Phytoremediation 15(2):142–153

    Google Scholar 

  • Jahan S, Alias YB, Bakar AF, Yusoff I (2018) Toxicity evaluation of ZnO and TiO2 nanomaterials in hydroponic red bean (Vigna angularis) plant: physiology, biochemistry and kinetic transport. J Environ Sci 72:140–152

    Google Scholar 

  • Ji Y, Zhou Y, Ma C, Feng Y, Hao Y, Rui Y, Wu W, Gui X, Le VN, Han Y, Wang Y, Xing B, Liu L, Cao W (2017) Jointed toxicity of TiO2 NPs and Cd to rice seedlings: NPs alleviated cd toxicity and Cd promoted NPs uptake. Plant Physiol Biochem 110:82–93

    Google Scholar 

  • Johnson AC, Bowes MJ, Crossley A, Jarvie HP, Jurkschat K, Jürgens MD, Lawlor AJ, Park B, Rowland P, Spurgeon D, Svendsen C, Thompson IP, Barnes RJ, Williams RJ, Xu N (2011) An assessment of the fate, behavior and environmental risk associated with sunscreen TiO2 nanoparticles in UK field scenarios. Sci Total Environ 409:2503–2510

    Google Scholar 

  • Kah M (2015) Nanopesticides and nanofertilizers: emerging contaminants or opportunities for risk mitigation? Front Chem 3:1–6

    Google Scholar 

  • Khot LR, Sankaran S, Mari Maja J, Ehsani R, Schuster EW (2012) Applications of nanomaterials in agricultural production and crop protection: a review. Crop Prot 35:64–70

    Google Scholar 

  • Larue C, Veronesi G, Flank AM, Surble S, Herlin-Boime N, Carrière M (2012) Comparative uptake and impact of TiO2 nanoparticles in wheat and rapeseed. J Toxicol Environ Health A 75:722–734

    Google Scholar 

  • Larue C, Castillo-Michel H, Stein RJ, Fayard B, Pouyet E, Villanova J, Magnin V, Real AP, Trcera N, Legros S, Sorieul S, Sarrest G (2016) Innovative combination of spectroscopic techniques to reveal nanoparticle fate in a crop plant. Spectrochim Acta Part B Atom Spectros 119:17–24

    Google Scholar 

  • Larue C, Baratange C, Vantelon D, Khodja H, Surblé S, Elger A, CarrièreM (2018) Influence of soil type on TiO2 nanoparticle fate in an agro-ecosystem. Sci Total Environ 630: 609–617

    Google Scholar 

  • Lee DH, Lee CB (2000) Chilling stress-induced changes of antioxidant enzymes in the leaves of cucumber: in gel enzyme activity assays. Plant Sci 159:75–85

    Google Scholar 

  • Lei Z, Mingyu S, Xiao W, Chao L, Chunxiang Q, Liang C, Hao H, Xiaoqing L, Fashui H (2008) Antioxidant stress is promoted by nano-anatase in spinach chloroplasts under UV-B radiation. Biol Trace Elem Res 121(1):69–79

    Google Scholar 

  • Li H (2000) Principles and techniques of plant physiological biochemical experiment. Higher Education, Beijing, pp 260–263

    Google Scholar 

  • Lin X, Li J, Ma S, Liu G, Yang K, Tong M, Lin D (2014) Toxicity of TiO2 nanoparticles to Escherichia coli: effects of particle size, crystal phase and water chemistry. PLoS One 9(10). https://doi.org/10.1371/journal.pone.0110247

    Google Scholar 

  • Lyu S, Wei X, Chen J, Wang C, Wang X, Pan D (2017) Titanium as a beneficial element for crop production. Front Plant Sci. https://doi.org/10.3389/fpls.2017.00597

  • Ma C, White JC, Dhankher OP, Xing B (2015) Metal-based nanotoxicity and detoxification pathways in higher plants. Environ Sci Technol 49(12):7109–7122

    Google Scholar 

  • Ma C, Liu H, Guo H, Musante C, Coskun SH, Nelson BC, White JC, Xing B, Dhankher OP (2016) Defense mechanisms and nutrient displacement in Arabidopsis thaliana upon exposure to CeO2 and In2O3 nanoparticles. Environ Sci Nano 3:1369–1379

    Google Scholar 

  • Makeen K, Babu GS, Lavanya GR, Abraham G (2007) Studies of chlorophyll by different methods in blackgram (Vigna mungo L.). Int J Agric Res 2:651–654

    Google Scholar 

  • Markiewicz B, Kleiber T (2014) The effect of Tytanit application on the content of selected microelements and the biological value of tomato fruits. J Elem 19:1065–1072

    Google Scholar 

  • Medina-Velo IA, Peralta-Videa JR, Gardea-Torresdey JL (2017) Assessing plant uptake and transport mechanisms of engineered nanomaterials from soil. MRS Bull 42(5):379–384

    Google Scholar 

  • Missaoui T, Smiri M, Chmingui H, Hafiane A (2017) Effects of nanosized titanium dioxide on the photosynthetic metabolism of fenugreek (Trigonella foenum-graecum L.). C R Biol 340(11–12):499–511

    Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880

    Google Scholar 

  • Ogunkunle CO, Jimoh MA, Asogwa NT, Vishwanathan K, Vishwakarma V, Fatoba PO (2018) Effects of manufactured nano-copper on copper uptake, bioaccumulation and enzyme activities in cowpea grown on soil substrate. Ecotoxicol Environ Saf 155:86–93

    Google Scholar 

  • Ogunkunle CO, Bornmann B, Wagner R, Fatoba PO, Frahm R, Lützenkirchen-Hecht D (2019) Copper uptake, tissue partitioning and biotransformation evidence by XANES in cowpea (Vigna unguiculata L) grown in soil amended with nanosized copper particles. Environ Nanotechnol Monit Manag 12. https://doi.org/10.1016/j.enmm.2019.100231

    Google Scholar 

  • Organization for Economic Cooperation and Development (OECD) (2003) Organization for Economic Cooperation and Development (OECD), Guidelines for the testing of chemicals: proposals for updating guideline 208-terrestrial plant test: seedling emergence and seedling growth test. http://www.oecd.org/chemicalsafety/testing/33653757.pdf, 2003 (accessed 28/01/2019)

  • Ozden M, Demirel U, Kahraman A (2009) Effects of proline on antioxidant system in leaves of grapevine (Vitis vinifera L.) exposed to oxidative stress by H2O2. Sci Hortic 119:163–168

    Google Scholar 

  • Piccinno F, Gottschalk F, Seeger S, Nowack B (2012) Industrial production quantities and uses of ten engineered nanomaterials in Europe and the world. J Nanopart Res 14(9):1–11

    Google Scholar 

  • Rafique R, Zahra Z, Virk N, Shahid M, Pinelli E, Park TJ, Kallerhoff J, Arshad M (2018) Dose-dependent physiological responses of Triticum aestivum L. to soil applied TiO2 nanoparticles: alterations in chlorophyll content, H2O2 production, and genotoxicity. Agric Ecosyst Environ 255:95–101

    Google Scholar 

  • Raliya R, Nair R, Chavalmane S, Wang WN, Biswas P (2015) Mechanistic evaluation of translocation and physiological impact of titanium dioxide and zinc oxide nanoparticles on the tomato. Metallomics 7:1584–1594

    Google Scholar 

  • Rico CM, Morales MI, Barrios AC, McCreary R, Hong J, Lee WY, Nunez J, Peralta-Videa JR, Gardea-Torresdey JL (2013) Effect of cerium oxide nanoparticles on the quality of rice (Oryza sativa L.) grains. J Agric Food Chem 61(47):11278–11285

    Google Scholar 

  • Rue M, Ma C, White JC, Hao Y, Wang Y, Tang X, Yang J, Jiang F, Ali A, Rui Y, Cao W, Chen G, Xing B (2018) Metal oxide nanoparticles alter peanut (Arachis hypogaea L.) physiological response and reduce nutritional quality: a life cycle study. Environ Sci Nano. https://doi.org/10.1039/c8en00436f

    Google Scholar 

  • Sadiq IM, Dalai S, Chandrasekaran N, Mukherjee A (2011) Ecotoxicity study of titania (TiO2) NPs on two microalgae species: Scenedesmus sp. and Chlorella sp. Ecotoxicol Environ Saf 74:1180–1187

    Google Scholar 

  • Santos Filher S, Vicari T, Santos SA, Felisbino K, Mattoso N, Sant’Anna-Santos BF, Cestari MM, Leme DM (2019) Genotoxicity of titanium dioxide nanoparticles and triggering of defence mechanisms in Allium cepa. Genet Mol Biol 42(2). https://doi.org/10.1590/1678-4685-gmb-2018-0205

    Google Scholar 

  • Schutzendubel A, Polle A (2002) Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J Exp Bot 53:1351–1365

    Google Scholar 

  • Servin AD, White JC (2016) Nanotechnology in agriculture: next steps for understanding engineered nanoparticle exposure and risk. NanoImpact 1:9–12

    Google Scholar 

  • Servin AD, Morales MI, Castillo-Michel H, Hernandez-Viezcas JA, Munoz B, Zhao L, Nunez JE, Peralta-Videa JR, Gardea-Torresdey JL (2013) Synchrotron verification of TiO2 accumulation in cucumber fruit: a possible pathway of TiO2 nanoparticle transfer from soil into the food chain. Environ Sci Technol 47:11592–11598

    Google Scholar 

  • Sgherri C, Quartacci MF, Navari-Izzo F (2007) Early production of activated oxygen species in root apoplast of wheat following copper excess. J Plant Physiol 164:1152–1160

    Google Scholar 

  • Shaw AK, Ghosh S, Kalaji HM, Bosa K, Brestic M, Zivcak M, Hossain Z (2014) Nano-CuO stress induced modulation of antioxidative defense and photosynthetic performance of Syrian barley (Hordeum vulgare L.). Environ Exp Bot 102:37–47

    Google Scholar 

  • Simon L, Balogh A, Hajdu F, Pais I (1988) Effect of titanium on growth and photosynthetic pigment composition of Chlorella pyrenoidosa (green alga). II. Effect of titanium ascorbate on pigment content and chlorophyll metabolism of Chlorella. In: New results in the research of hardly known trace elements and their role in the food chain, ed I. Pais. University of Horticultural and Food Science, Budapest, pp 87–101

    Google Scholar 

  • Song U, Lee E (2010) Ecophysiological responses of plants after sewage sludge compost applications. Journal of Plant Biology 53: 259–267

    Google Scholar 

  • Song G, Gao Y, Wu H, Hou W, Zhang C, Ma H (2012) Physiological effect of anatase TiO2 nanoparticles on Lemna minor. Environ Toxicol Chem 31. https://doi.org/10.1002/etc.1933

    Google Scholar 

  • Song U, Jun H, Waldman B, Roh J, Kim Y, Yi J, Lee EJ (2013) Functional analyses of nanoparticle toxicity: a comparative study of the effects of TiO2 and Ag on tomatoes (Lycopersicon esculentum). Ecotoxicol Environ Saf 93:60–66

    Google Scholar 

  • Tan W, Du W, Barrios AC, Armendariz R, Zuverza-Mena NF, Ji Z, Chang CH, Zink JI, Hernandez-Viezcas JA, Peralta-Videa JR, Gardea-Torresdey JL (2016) Surface coating changes the physiological and biochemical impacts of nano-TiO2 in basil (Ocimum basilicum) plants. Environ Pollut 222:64–72

    Google Scholar 

  • Tan W, Peralta-Videa JR, Gardea-Torresdey JL (2018) Interaction of titanium dioxide nanoparticles with soil components and plants: current knowledge and future research needs—a critical review. Environ Sci Nano 5:257–278

    Google Scholar 

  • Tiwari M, Sharma NC, Fleischmann P, Burbage J, Venkatachalam P, Sahi SV (2017) Nanotitania exposure causes alterations in physiological, nutritional and stress responses in tomato (Solanum lycopersicum). Front Plant Sci 8:633. https://doi.org/10.3389/fpls.2017.00633

    Article  Google Scholar 

  • Tripathi DK, Shweta S, Singh S, Pandey R, Singh VP, Sharma NC, Prasad SM, Dubey NK, Chauhan DK (2017) An overview on manufactured nanoparticles in plants: uptake, translocation, accumulation and phytotoxicity. Plant Physiol Biochem 110:2–12

    Google Scholar 

  • USEPA (1996) Ecological effects test guidelines (OPPTS 850.4200): seed germination/root elongation toxicity test. https://www.epa.gov/sites/production/files/2015-07/documents/850-1800.pdf, (Accessed 11 February 2019)

  • Xu QM, Chen H (2011) Antioxidant responses of rice seedling to Ce4+ under hydroponic cultures. Ecotoxicol Environ Saf 74:1693–1699

    Google Scholar 

  • Yang F, Hong FS, You WJ, Liu C, Gao FQ, Wu C, Yang P (2006) Influence of nano-anatase TiO2 on the nitrogen metabolism of growing spinach. Biol Trace Elem Res 110:179–190

    Google Scholar 

  • Zahra Z, Arif Ali MA, Parveen A, Kim EB, Khokhar MF, Baig S, Hina K, Choi HK, Arshad M (2019) Exposure-response of wheat cultivars to TiO2 nanoparticles in contrasted soils. Soil Sediment Contam 28(2):184–199

    Google Scholar 

  • Zhang Z, He X, Zhang H, Ma Y, Zhang P, Ding Y, Zhao Y (2011) Uptake and distribution of ceria nanoparticles in cucumber plants. Metallomics 3:816–822

    Google Scholar 

  • Zhang P, Ma Y, Liu S, Wang G, Zhang J, He X, Zhang J, Rui Y, Zhang Z (2017) Phytotoxicity, uptake and transformation of nano-CeO2 in sand cultured romaine lettuce. Environ Pollut 220:1400–1408

    Google Scholar 

  • Zhao L, Peralta-Videa JR, Rico CM, Hernandez-Viezcas JA, Sun Y, Niu G, Servin AD, Nunes JE, Duarte-Gardea M, Gardea-Torresdey JL (2014) CeO2 and ZnO nanoparticles change the nutritional qualities of cucumber (Cucumis sativus). J Agric Food Chem 62:2752–2759

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge the assistance of Prof. Dirk Luezenkirchen-Hecht and Dr. Ben Bornmann of the Department of Physics, University of Wuppertal, Germany, in carrying out the experiment on the XRD analysis of the nanoparticles.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clement Oluseye Ogunkunle.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Responsible Editor: Abdullah M. Al-Amri

Electronic supplementary material

ESM 1

(DOCX 22.5 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ogunkunle, C.O., Adegboye, E.F., Okoro, H.K. et al. Effect of nanosized anatase TiO2 on germination, stress defense enzymes, and fruit nutritional quality of Abelmoschus esculentus (L.) Moench (okra). Arab J Geosci 13, 120 (2020). https://doi.org/10.1007/s12517-020-5121-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-020-5121-6

Keywords

Navigation