Skip to main content

Model Plants in Genomics

  • Chapter
  • First Online:
Plant Genomics for Sustainable Agriculture

Abstract

Basic principles of biology are generally developed, tested, and established for the first time in organisms that are easy to study, convenient to handle and have enough biological merit to generalize the derived inferences. Some of these organisms are given the status of ‘model organism’ provided they fulfill some basic (intrinsic, derived, and community) criteria. The fundamentals of genetics were established through Mendel’s legendary work on garden pea (Pisum sativum) but at the early days of plant genetics maize (Zea mays) was the model system that got popularity. As plant science entered the genomics era and robust genetic manipulation techniques were established in some plant systems, a paradigm shift took place in the selection criteria of plants that can be promoted as ‘model system’. The emergence of Arabidopsis thaliana and rice (Oryza sativa) as ‘model plants’ being the most prominent examples in this regard. During the past 40 years, Arabidopsis has overtaken all others and got established as the most preferred and frequently used model system in plant biology. Rice, on the other hand, has come up a long way to establish itself as a model monocot and it assumes paramount importance especially in the field of agriculture. However, it is also necessary to understand that a handful of model plants cannot answer every biological question. Hence, there exists the potential of expanding the horizon of ‘model plants’ by introducing new entries to keep pace with the ever-expanding knowledge and technology. In fact, with the recent introduction of rapid and low-cost whole-genome sequencing methodologies and precise genome editing technologies, the idea of ‘model organism’ is undergoing a rapid change. Under these circumstances, it seems likely that model plants in the future will be chosen based on their biological relevance rather than the operational ease and historical pedigree.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Alabadı́ D, Oyama T, Yanovsky MJ et al (2001) Reciprocal regulation between TOC1 and LHY/CCA1 within the Arabidopsis circadian clock. Science 293(5531):880–883

    Article  PubMed  Google Scholar 

  • Albertsen HM, Abderrahim H, Cann HM et al (1990) Construction and characterization of a yeast artificial chromosome library containing seven haploid human genome equivalents. Proc Natl Acad Sci 87(11):4256–4260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amborella Genome Project (2013) The Amborella genome and the evolution of flowering plants. Science 342:1241089

    Article  CAS  Google Scholar 

  • Arioli T, Peng L, Betzner AS et al (1998) Molecular analysis of cellulose biosynthesis in Arabidopsis. Science 279(5351):717–720

    Article  CAS  PubMed  Google Scholar 

  • Atallah NM, Banks JA (2015) Reproduction and the pheromonal regulation of sex type in fern gametophytes. Front Plant Sci 6:100

    Article  PubMed  PubMed Central  Google Scholar 

  • Banks JA, Nishiyama T, Hasebe M et al (2011) The Selaginella genome identifies genetic changes associated with the evolution of vascular plants. Science 332(6032):960–963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bennett MD, Smith JB (1976) Nuclear DNA amounts in angiosperms. Philos Trans Royal Soc London B: Biol Sci 274(933):227–274

    CAS  Google Scholar 

  • Bernier G (2013) My favourite flowering image: the role of cytokinin as a flowering signal. J Exp Bot 64(18):5795–5799

    Article  CAS  PubMed  Google Scholar 

  • Birol I, Raymond A, Jackman SD et al (2013) Assembling the 20 Gb white spruce (Picea glauca) genome from whole-genome shotgun sequencing data. Bioinformatics 29(12):1492–1497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blilou I, Frugier F, Folmer S et al (2002) The Arabidopsis HOBBIT gene encodes a CDC27 homolog that links the plant cell cycle to progression of cell differentiation. Genes Dev 16(19):2566–2575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borrill P (2019) Blurring the boundaries between cereal crops and model plants. New Phytol 228(6):1721–1727

    Article  PubMed  Google Scholar 

  • Bowman JL (2016) A brief history of Marchantia from Greece to genomics. Plant Cell Physiol 57(2):210–229

    Article  CAS  PubMed  Google Scholar 

  • Brutnell TP, Wang L, Swartwood K et al (2010) Setaria viridis: a model for C4 photosynthesis. Plant Cell 22(8):2537–2544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang C, Bowman JL, DeJohn AW et al (1988) Restriction fragment length polymorphism linkage map for Arabidopsis thaliana. Proc Natl Acad Sci 85(18):6856–6860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen F, Dong W, Zhang J et al (2018a) The sequenced angiosperm genomes and genome databases. Front Plant Sci 9:418

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen R, Xu Q, Liu Y et al (2018b) Generation of transgene-free maize male sterile lines using the CRISPR/Cas9 system. Front Plant Sci 9:1180

    Article  PubMed  PubMed Central  Google Scholar 

  • Churchman ML, Brown ML, Kato N et al (2006) SIAMESE, a plant-specific cell cycle regulator, controls endoreplication onset in Arabidopsis thaliana. Plant Cell 18(11):3145–3157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coudert Y, Périn C, Courtois B et al (2010) Genetic control of root development in rice, the model cereal. Trends Plant Sci 15(4):219–226

    Article  CAS  PubMed  Google Scholar 

  • Crossa J, Beyene Y, Kassa S et al (2013) Genomic prediction in maize breeding populations with genotyping-by-sequencing. G3: Genes, Genomes Genetics 3(11):1903–1926

    Article  CAS  Google Scholar 

  • D’hont A, Denoeud F, Aury JM et al (2012) The banana (Musa acuminata) genome and the evolution of monocotyledonous plants. Nature 488(7410):213–217

    Article  PubMed  CAS  Google Scholar 

  • Dewitte W, Riou-Khamlichi C, Scofield S et al (2003) Altered cell cycle distribution, hyperplasia, and inhibited differentiation in Arabidopsis caused by the D-type cyclin CYCD3. Plant Cell 15(1):79–92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dharmasiri N, Dharmasiri S, Estelle M et al (2005) The F-box protein TIR1 is an auxin receptor. Nature 435(7041):441–445

    Article  CAS  PubMed  Google Scholar 

  • Dobzhansky T (2013) Nothing in biology makes sense except in the light of evolution. Am Biol Teach 75(2):87–91

    Google Scholar 

  • Domozych DS (2014) Penium margaritaceum: a unicellular model organism for studying plant cell wall architecture and dynamics. Plan Theory 3(4):543–558

    Google Scholar 

  • Dong J, MacAlister CA, Bergmann DC (2009) BASL controls asymmetric cell division in Arabidopsis. Cell 137(7):1320–1330

    Article  PubMed  PubMed Central  Google Scholar 

  • Duan YB, Li J, Qin RY et al (2016) Identification of a regulatory element responsible for salt induction of rice OsRAV2 through ex situ and in situ promoter analysis. Plant Mol Biol 90(1-2):49–62

    Article  CAS  PubMed  Google Scholar 

  • Feldmann KA, Marks MD (1987) Agrobacterium-mediated transformation of germinating seeds of Arabidopsis thaliana: a non-tissue culture approach. Mol Gen Genet 208(1):1–9

    Article  CAS  Google Scholar 

  • Flavell R (2009) Role of model plant species. Plant Genomics:1–18

    Google Scholar 

  • Gage JL, Monier B, Giri A et al (2020) Ten years of the maize nested association mapping population: impact, limitations, and future directions. Plant Cell 32(7):2083–2093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gan D, Zhang J, Jiang H et al (2010) Bacterially expressed dsRNA protects maize against SCMV infection. Plant Cell Rep 29(11):1261–1268

    Article  CAS  PubMed  Google Scholar 

  • Gazzarrini S, McCourt P (2003) Cross-talk in plant hormone signalling: what Arabidopsis mutants are telling us. Ann Bot 91(6):605–612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goldstein B, King N (2016) The future of cell biology: emerging model organisms. Trends Cell Biol 26(11):818–824

    Article  PubMed  PubMed Central  Google Scholar 

  • Hauge BM, Hanley SM, Cartinhour S et al (1993) An integrated genetic/RFLP map of the Arabidopsis thaliana genome. Plant J 3(5):745–754

    Article  CAS  Google Scholar 

  • Hemerly AS, Ferreira P, de Almeida EJ (1993) cdc2a expression in Arabidopsis is linked with competence for cell division. Plant Cell 5(12):1711–1723

    CAS  PubMed  PubMed Central  Google Scholar 

  • Holzinger A, Becker B et al (2015) Desiccation tolerance in the streptophyte green alga Klebsormidium: the role of phytohormones. Commun Integr Biol 8(4):e1059978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hori K, Maruyama F, Fujisawa T et al (2014) Klebsormidium flaccidum genome reveals primary factors for plant terrestrial adaptation. Nat Commun 5(1):1–9

    Article  CAS  Google Scholar 

  • Huala E, Dickerman AW, Garcia-Hernandez M et al (2001) The Arabidopsis Information Resource (TAIR): a comprehensive database and web-based information retrieval, analysis, and visualization system for a model plant. Nucleic Acids Res 29(1):102–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hubble E (2005) So much more to know. Science 309:78–102. https://doi.org/10.1126/science.309.5731.78b

    Article  Google Scholar 

  • Izawa T, Shimamoto K (1996) Becoming a model plant: the importance of rice to plant science. Trends Plant Sci 1(3):95–99

    Article  Google Scholar 

  • Jackson SA (2016) Rice: the first crop genome. Rice 9(1):1–3

    Article  Google Scholar 

  • Jacquemin J, Bhatia D, Singh K et al (2013) The International Oryza Map Alignment Project: development of a genus-wide comparative genomics platform to help solve the 9 billion-people question. Curr Opin Plant Biol 16(2):147–156

    Article  CAS  PubMed  Google Scholar 

  • Jiang J (2019) Fluorescence in situ hybridization in plants: recent developments and future applications. Chromosom Res 27(3):153–165

    Article  CAS  Google Scholar 

  • Jiang J, Xing F, Zeng X et al (2018) RicyerDB: a database for collecting rice yield-related genes with biological analysis. Int J Biol Sci 14(8):965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ju C, Van de Poel B, Cooper ED et al (2015) Conservation of ethylene as a plant hormone over 450 million years of evolution. Nat Plants 1(1):1–7

    Article  CAS  Google Scholar 

  • Kawahara Y, de la Bastide M, Hamilton JP et al (2013) Improvement of the Oryza sativa Nipponbare reference genome using next generation sequence and optical map data. Rice 6(1):1–10

    Article  Google Scholar 

  • Kim YA, Moon H, Park CJ (2019) CRISPR/Cas9-targeted mutagenesis of Os8N3 in rice to confer resistance to Xanthomonas oryzae pv. oryzae. Rice 12(1):1–3

    Article  Google Scholar 

  • Koornneef M, Meinke D (2010) The development of Arabidopsis as a model plant. Plant J 61(6):909–921

    Article  CAS  PubMed  Google Scholar 

  • Krumholz EW, Yang H, Weisenhorn P et al (2012) Genome-wide metabolic network reconstruction of the picoalga Ostreococcus. J Exp Bot 63(6):2353–2362

    Article  CAS  PubMed  Google Scholar 

  • Kurata N, Yamazaki Y (2006) Oryzabase. An integrated biological and genome information database for rice. Plant Physiol 140(1):12–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laibach F. (1943) Arabidopsis thaliana (L.) Heynh. als Objekt für genetische und entwicklungsphysiologische Untersuchungen. Bot Archiv 44: 439-455

    Google Scholar 

  • Langridge J (1955) Biochemical mutations in the crucifer Arabidopsis thaliana (L.). Heynh Nat 176(4475):260–261

    Article  CAS  Google Scholar 

  • Leutwiler LS, Hough-Evans BR, Meyerowitz EM (1984) The DNA of Arabidopsis thaliana. Mol Gen Genet 194(1):15–23

    Article  CAS  Google Scholar 

  • Li H, Peng Z, Yang X et al (2013) Genome-wide association study dissects the genetic architecture of oil biosynthesis in maize kernels. Nat Genet 45(1):43–50

    Article  CAS  PubMed  Google Scholar 

  • Lou D, Wang H, Liang G et al (2017) OsSAPK2 confers abscisic acid sensitivity and tolerance to drought stress in rice. Front Plant Sci 8:993

    Article  PubMed  PubMed Central  Google Scholar 

  • McClintock B (1941) The stability of broken ends of chromosomes in Zea mays. Genetics 26(2):234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mendel, G., 1996. Experiments in plant hybridization (1865). (Verhandlungen des naturforschenden Vereins Brünn.) Available online: www. mendelweb. org/Mendel. html (accessed on 1 January 2013)

    Google Scholar 

  • Merchant SS, Prochnik SE, Vallon O et al (2007) The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science 318(5848):245–250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meyerowitz EM (2001a) Prehistory and history of arabidopsis research. Erratum 125(4):2203

    CAS  Google Scholar 

  • Meyerowitz EM (2001b) Prehistory and history of Arabidopsis research. Plant Physiol 125(1):15–19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ming R, VanBuren R, Wai CM et al (2015) The pineapple genome and the evolution of CAM photosynthesis. Nat Genet 47(12):1435–1442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mondal TK, Rawal HC, Chowrasia S et al (2018) Draft genome sequence of first monocot-halophytic species Oryza coarctata reveals stress-specific genes. Sci Rep 8(1):1–3

    Article  Google Scholar 

  • Nannas NJ, Dawe RK (2015) Genetic and genomic toolbox of Zea mays. Genetics 199(3):655–669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagamura Y, Antonio BA, Sato Y et al (2011) Rice TOGO Browser: a platform to retrieve integrated information on rice functional and applied genomics. Plant Cell Physiol 52(2):230–237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakamura Y (2018) Rice starch biotechnology: rice endosperm as a model of cereal endosperms. Starch-Stärke 70(1-2):1600375

    Article  CAS  Google Scholar 

  • Narsai R, Castleden I, Whelan J (2010) Common and distinct organ and stress responsive transcriptomic patterns in Oryza sativa and Arabidopsis thaliana. BMC Plant Biol 10(1):1–25

    Article  CAS  Google Scholar 

  • Nelson DL, Lehninger AL, Cox MM (2008) Lehninger principles of biochemistry. Macmillan

    Google Scholar 

  • Nishimura MT, Dangl JL (2010) Arabidopsis and the plant immune system. Plant J 61(6):1053–1066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nystedt B, Street NR, Wetterbom A et al (2013) The Norway spruce genome sequence and conifer genome evolution. Nature 497(7451):579–584

    Article  CAS  PubMed  Google Scholar 

  • Parker D, Beckmann M, Enot DP et al (2008) Rice blast infection of Brachypodium distachyon as a model system to study dynamic host/pathogen interactions. Nat Protoc 3(3):435

    Article  CAS  PubMed  Google Scholar 

  • Potuschak T, Lechner E, Parmentier Y et al (2003) EIN3-dependent regulation of plant ethylene hormone signaling by two Arabidopsis F box proteins: EBF1 and EBF2. Cell 115(6):679–689

    Article  CAS  PubMed  Google Scholar 

  • Prochnik SE, Umen J, Nedelcu AM et al (2010) Genomic analysis of organismal complexity in the multicellular green alga Volvox carteri. Science 329(5988):223–226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Provart NJ, Alonso J, Assmann SM et al (2016) 50 years of Arabidopsis research: highlights and future directions. New Phytol 209(3):921–944

    Article  CAS  PubMed  Google Scholar 

  • Pruitt RE, Meyerowitz EM (1986) Characterization of the genome of Arabidopsis thaliana. J Mol Biol 187(2):169–183

    Article  CAS  PubMed  Google Scholar 

  • Rédei GP (1962) Supervital mutants of Arabidopsis. Genetics 47(4):443

    Article  PubMed  PubMed Central  Google Scholar 

  • Rédei GP (1975) Arabidopsis as a genetic tool. Annu Rev Genet 9(1):111–127

    Article  PubMed  Google Scholar 

  • Rédei GP (1992) A heuristic glance at the past of Arabidopsis genetics. Methods Arabidopsis Res 12:1–5

    Google Scholar 

  • Rine J (2013) A future of the model organism model. Mol Biol Cell 25(5):549–553

    Article  Google Scholar 

  • Rhoades MM (1984) The early years of maize genetics. Annu Rev Genet 18(1):1–30

    Article  CAS  PubMed  Google Scholar 

  • Romero FM, Gatica-Arias A (2019) CRISPR/Cas9: development and application in rice breeding. Rice Sci 26(5):265–281

    Article  Google Scholar 

  • Sakai H, Lee SS, Tanaka T et al (2013) Rice Annotation Project Database (RAP-DB): an integrative and interactive database for rice genomics. Plant Cell Physiol 54(2):e6–e6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saldivar SS (2016) Cereals: types and composition. In: Caballero B, Finglas P, Toldrá F (eds) 2015 Encyclopedia of food and health (Edited Book). Academic Press

    Google Scholar 

  • Settles AM, Holding DR, Tan BC et al (2007) Sequence-indexed mutations in maize using the Uniform Mu transposon-tagging population. BMC Genomics 8(1):1–2

    Article  CAS  Google Scholar 

  • Shi J, Gao H, Wang H et al (2017) ARGOS 8 variants generated by CRISPR-Cas9 improve maize grain yield under field drought stress conditions. Plant Biotechnol J 15(2):207–216

    Article  CAS  PubMed  Google Scholar 

  • Shoji T, Narita NN, Hayashi K et al (2004) Plant-specific microtubule-associated protein SPIRAL2 is required for anisotropic growth in Arabidopsis. Plant Physiol 136(4):3933–3944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh R, Ong-Abdullah M, Low ET et al (2013) Oil palm genome sequence reveals divergence of interfertile species in old and new worlds. Nature 500(7462):335–339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sohn EJ, Kim ES, Zhao M et al (2003) Rha1, an Arabidopsis Rab5 homolog, plays a critical role in the vacuolar trafficking of soluble cargo proteins. Plant Cell 15(5):1057–1070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Somerville C, Koornneef M (2002) A fortunate choice: the history of Arabidopsis as a model plant. Nat Rev Genet 3(11):883–889

    Article  CAS  PubMed  Google Scholar 

  • Strable J, Scanlon MJ (2009) Maize (Zea mays): a model organism for basic and applied research in plant biology. Cold Spring Harb Protoc 10:pdb-emo132

    Article  CAS  Google Scholar 

  • Suárez-López P, Wheatley K, Robson F et al (2001) CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis. Nature 410(6832):1116–1120

    Article  PubMed  Google Scholar 

  • Szövényi P, Frangedakis E, Ricca M et al (2015) Establishment of Anthoceros agrestis as a model species for studying the biology of hornworts. BMC Plant Biol 15(1):1–7

    Article  CAS  Google Scholar 

  • Thakare D, Zhang J, Wing RA et al (2017) Aflatoxin-free transgenic maize using host-induced gene silencing. Sci Adv 3(3):e1602382

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Van Buren R, Bryant D, Edger PP et al (2015) Single-molecule sequencing of the desiccation-tolerant grass Oropetium thomaeum. Nature 527(7579):508–511

    Article  CAS  Google Scholar 

  • Vij S, Gupta V, Kumar D et al (2006) Decoding the rice genome. BioEssays 28(4):421–432

    Article  CAS  PubMed  Google Scholar 

  • Wang D, Xia Y, Li X et al (2012a) The Rice Genome Knowledgebase (RGKbase): an annotation database for rice comparative genomics and evolutionary biology. Nucleic Acids Res 41(D1):D1199–D1205

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang M, Yan J, Zhao J, Song W, Zhang X, Xiao Y, Zheng Y (2012b) Genome-wide association study (GWAS) of resistance to head smut in maize. Plant Sci 196:125–131

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Wang H, Liu S et al (2016) Genetic variation in ZmVPP1 contributes to drought tolerance in maize seedlings. Nat Genet 48(10):1233–1241

    Article  CAS  PubMed  Google Scholar 

  • Wang P, Hendron RW, Kelly S (2017) Transcriptional control of photosynthetic capacity: conservation and divergence from Arabidopsis to rice. New Phytol 216(1):32–45

    Article  CAS  PubMed  Google Scholar 

  • Ware D, Jaiswal P, Ni J et al (2002) Gramene: a resource for comparative grass genomics. Nucleic Acids Res 30(1):103–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu Y, Messing J (2012) RNA interference can rebalance the nitrogen sink of maize seeds without losing hard endosperm. PLoS One 7(2):e32850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan H, Jiang J (2007) Rice as a model for centromere and heterochromatin research. Chromosome Res 15(1):77–84

    Article  CAS  PubMed  Google Scholar 

  • Yanofsky MF, Ma H, Bowman JL et al (1990) The protein encoded by the Arabidopsis homeotic gene agamous resembles transcription factors. Nature 346(6279):35–39

    Article  CAS  PubMed  Google Scholar 

  • Yu Q, Jalaludin A, Han H et al (2015) Evolution of a double amino acid substitution in the 5-enolpyruvylshikimate-3-phosphate synthase in Eleusine indica conferring high-level glyphosate resistance. Plant Physiol 167(4):1440–1447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Henriques R, Lin SS et al (2006) Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method. Nat Protoc 1(2):641

    Article  CAS  PubMed  Google Scholar 

  • Zhang ZY, Fu FL, Gou L et al (2010) RNA interference-based transgenic maize resistant to maize dwarf mosaic virus. J Plant Biol 53(4):297–305

    Article  CAS  Google Scholar 

  • Zhang J, Zhang X, Chen R (2020) Generation of transgene-free Semidwarf maize plants by gene editing of gibberellin-oxidase20-3 using CRISPR/Cas9. Front Plant Sci 11:1048

    Article  PubMed  PubMed Central  Google Scholar 

  • Zheng J, Zhang H, Dong S et al (2014) High yield exfoliation of two-dimensional chalcogenides using sodium naphthalenide. Nat Commun 5(1):1–7

    Article  Google Scholar 

  • Zimin A, Stevens KA, Crepeau MW et al (2014) Sequencing and assembly of the 22-Gb loblolly pine genome. Genetics 196(3):875–890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ray, S. et al. (2022). Model Plants in Genomics. In: Singh, R.L., Mondal, S., Parihar, A., Singh, P.K. (eds) Plant Genomics for Sustainable Agriculture. Springer, Singapore. https://doi.org/10.1007/978-981-16-6974-3_9

Download citation

Publish with us

Policies and ethics