Skip to main content

Microbicidal Nanoparticles

  • Chapter
  • First Online:
Synthesis and Applications of Nanoparticles

Abstract

Nanomaterials exhibit tremendous exciting properties and transform every aspect of science and technology. Microbiology has also not remained untouched from nanotechnology applications and utilization. Antimicrobial materials are one of the major concerns of microbiology research due to increasing challenges of microbial resistance for antibiotics and continuous mutation in microorganisms. Nanoparticles are found to exhibit excellent antimicrobial properties. Nanoparticles of gold, silver, selenium, tin oxide, zinc oxide, nickel, platinum, etc. were found to have excellent antimicrobial properties. These nanoparticles can be utilized for a wide range of antimicrobial applications. Antimicrobial coating, targeted delivery of antibiotics, nanoparticle conjugate with antibiotics, and antimicrobials are a few of the applications of nanoparticles as antimicrobials. Researchers utilized nanoparticles for coating on medical devices to keep them infection-free. The traditional antibiotics are found ineffective on several multidrug-resistant bacteria, and nanoparticles in conjugation or alone may provide the solution for such challenges. The nanoparticles are found to have great antioxidant activity, and nanoparticles in the size range of 5–100 nm can directly forage free radicals in vitro. Researchers also reported excellent antimicrobial properties of nanoparticles when capped or conjugated with antibiotics/antibodies. The agar well diffusion method and minimum inhibition concentration (MIC) method are widely used by most of the researchers for determination of antimicrobial properties of nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmed MK, Moydeen AM, Ismail AM, El-Naggar ME, Menazea AA, El-Newehy MH (2021) Wound dressing properties of functionalized environmentally biopolymer loaded with selenium nanoparticles. J Mol Struct 1225:129138

    Article  CAS  Google Scholar 

  • CDC (2021) CDC at work: mycotic diseases branch. https://www.cdc.gov/fungal/cdc-and-fungal.html?CDC_AA_refVal=https%3A%2F%2Fwww.cdc.gov%2Ffungal%2Fglobal%2Findex.html

  • Dakal TC, Kumar A, Majumdar RS, Yadav V (2016) Mechanistic basis of antimicrobial actions of silver nanoparticles. Front Microbiol 7:1831

    Article  PubMed  PubMed Central  Google Scholar 

  • Di Gianvincenzo P, Marradi M, Martínez-Ávila OM, Bedoya LM, Alcamí J, Penadés S (2010) Gold nanoparticles capped with sulfate-ended ligands as anti-HIV agents. Bioorg Med Chem Lett 20(9):2718–2721

    Article  PubMed  CAS  Google Scholar 

  • Dizaj SM, Lotfipour F, Barzegar-Jalali M, Zarrintan MH, Adibkia K (2014) Antimicrobial activity of the metals and metal oxide nanoparticles. Mater Sci Eng C 44:278–284

    Article  CAS  Google Scholar 

  • Elechiguerra JL, Burt JL, Morones JR, Camacho-Bragado A, Gao X, Lara HH, Yacaman MJ (2005) Interaction of silver nanoparticles with HIV-1. J Nanobiotechnol 3:6–6

    Article  Google Scholar 

  • Espitia PJP, Soares N d FF, Teófilo RF, Vitor DM, Coimbra JS d R, de Andrade NJ, de Sousa FB, Sinisterra RD, Medeiros EAA (2013) Optimized dispersion of ZnO nanoparticles and antimicrobial activity against foodborne pathogens and spoilage microorganisms. J Nanopart Res 15(1):1324

    Article  CAS  Google Scholar 

  • Feng QL, Wu J, Chen GQ, Cui FZ, Kim TN, Kim JO (2000) A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res 52(4):662–668

    Article  CAS  PubMed  Google Scholar 

  • Fernando S, Gunasekara T, Holton J (2018) Antimicrobial nanoparticles: applications and mechanisms of action. Sri Lankan J Infect Dis 8(1):2–11

    Article  Google Scholar 

  • Folorunso A, Akintelu S, Oyebamiji AK, Ajayi S, Abiola B, Abdusalam I, Morakinyo A (2019) Biosynthesis, characterization and antimicrobial activity of gold nanoparticles from leaf extracts of Annona muricata. J Nanostruct Chem 9(2):111–117

    Article  CAS  Google Scholar 

  • Gakiya-Teruya M, Palomino-Marcelo L, Pierce S, Angeles-Boza AM, Krishna V, Rodriguez-Reyes JCF (2020) Enhanced antimicrobial activity of silver nanoparticles conjugated with synthetic peptide by click chemistry. J Nanopart Res 22(4):90

    Article  CAS  Google Scholar 

  • Geoffrion LD, Hesabizadeh T, Medina-Cruz D, Kusper M, Taylor P, Vernet-Crua A, Chen J, Ajo A, Webster TJ, Guisbiers G (2020) Naked selenium nanoparticles for antibacterial and anticancer treatments. ACS Omega 5(6):2660–2669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gholami-Shabani M, Akbarzadeh A, Norouzian D, Amini A, Gholami-Shabani Z, Imani A, Chiani M, Riazi G, Shams-Ghahfarokhi M, Razzaghi-Abyaneh M (2014) Antimicrobial activity and physical characterization of silver nanoparticles green synthesized using nitrate reductase from Fusarium oxysporum. Appl Biochem Biotechnol 172(8):4084–4098

    Article  CAS  PubMed  Google Scholar 

  • IllanesTormena RP, Rosa EV, Oliveira Mota B d F, Chaker JA, Fagg CW, Freire DO, Martins PM, Rodrigues da Silva IC, Sousa MH (2020) Evaluation of the antimicrobial activity of silver nanoparticles obtained by microwave-assisted green synthesis using Handroanthus impetiginosus (Mart. ex DC.) Mattos underbark extract. RSC Adv 10(35):20676–20681

    Article  CAS  Google Scholar 

  • Jose LM, Kuriakose S (2019) Spectroscopic and thermal investigation of silver nanoparticle dispersed biopolymer matrix bovine serum albumin: a promising antimicrobial agent against the pathogenic bacterial strains. Macromol Res 27(7):670–678

    Article  CAS  Google Scholar 

  • Lv X, Wang P, Bai R, Cong Y, Suo S, Ren X, Chen C (2014) Inhibitory effect of silver nanomaterials on transmissible virus-induced host cell infections. Biomaterials 35(13):4195–4203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahfouze HA, El-Dougdoug NK, Mahfouze SA (2020) Virucidal activity of silver nanoparticles against Banana bunchy top virus (BBTV) in banana plants. Bull Natl Res Cent 44(1):199

    Article  Google Scholar 

  • Mbae KM, Umesha S (2020) Physicochemical and antimicrobial properties of post-synthesis betanin and chitosan oligosaccharide functionalized silver nanoparticles. J Nanopart Res 22(11):346

    Article  CAS  Google Scholar 

  • Meléndez-Villanueva MA, Morán-Santibañez K, Martínez-Sanmiguel JJ, Rangel-López R, Garza-Navarro MA, Rodríguez-Padilla C, Zarate-Triviño DG, Trejo-Ávila LM (2019) Virucidal activity of gold nanoparticles synthesized by green chemistry using garlic extract. Viruses 11(12):1111

    Article  PubMed Central  CAS  Google Scholar 

  • Mishra AK, Tiwari KN, Saini R, Kumar P, Mishra SK, Yadav VB, Nath G (2020) Green synthesis of silver nanoparticles from leaf extract of Nyctanthes arbor-tristis L. and assessment of its antioxidant, antimicrobial response. J Inorg Organomet Polym Mater 30(6):2266–2278

    Article  CAS  Google Scholar 

  • Mukherjee P, Bhattacharya R, Bone N, Lee YK, Patra CR, Wang S, Lu L, Secreto C, Banerjee PC, Yaszemski MJ, Kay NE, Mukhopadhyay D (2007) Potential therapeutic application of gold nanoparticles in B-chronic lymphocytic leukemia (BCLL): enhancing apoptosis. J Nanobiotechnol 5:4–4

    Article  CAS  Google Scholar 

  • Natan M, Banin E (2017) From Nano to Micro: using nanotechnology to combat microorganisms and their multidrug resistance. FEMS Microbiol Rev 41(3):302–322

    Article  CAS  PubMed  Google Scholar 

  • Nguyen THD, Vardhanabhuti B, Lin M, Mustapha A (2017) Antibacterial properties of selenium nanoparticles and their toxicity to Caco-2 cells. Food Control 77:17–24

    Article  CAS  Google Scholar 

  • Ontong JC, Singh S, Nwabor OF, Chusri S, Voravuthikunchai SP (2020) Potential of antimicrobial topical gel with synthesized biogenic silver nanoparticle using Rhodomyrtus tomentosa leaf extract and silk sericin. Biotechnol Lett 42(12):2653–2664

    Article  CAS  PubMed  Google Scholar 

  • Pal D, Sahu C, Haldar A (2014) Bhasma: the ancient Indian nanomedicine. J Adv Pharm Technol Res 5(1):4–12

    Article  PubMed  PubMed Central  Google Scholar 

  • Qin T, Ma R, Yin Y, Miao X, Chen S, Fan K, Xi J, Liu Q, Gu Y, Yin Y, Hu J, Liu X, Peng D, Gao L (2019) Catalytic inactivation of influenza virus by iron oxide nanozyme. Theranostics 9(23):6920–6935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rajasekar T, Karthika K, Muralitharan G, Maryshamya A, Sabarika S, Anbarasu S, Revathy K, Prasannabalaji N, Kumaran S (2020) Green synthesis of gold nanoparticles using extracellular metabolites of fish gut microbes and their antimicrobial properties. Braz J Microbiol 51(3):957–967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salem SS, Fouda MMG, Fouda A, Awad MA, Al-Olayan EM, Allam AA, Shaheen TI (2021) Antibacterial, cytotoxicity and larvicidal activity of green synthesized selenium nanoparticles using Penicillium corylophilum. J Clust Sci 32(2):351–361

    Article  CAS  Google Scholar 

  • Sarkar PK, Das Mukhopadhyay C (2021) Ayurvedic metal nanoparticles could be novel antiviral agents against SARS-CoV-2. Int Nano Lett 6:1–7. https://doi.org/10.1007/s40089-020-00323-9

    Article  CAS  Google Scholar 

  • Sharma R, Prajapati P (2016) Nanotechnology in medicine: leads from Ayurveda. J Pharm Bioallied Sci 8(1):80–81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shlar I, Poverenov E, Vinokur Y, Horev B, Droby S, Rodov V (2015) High-throughput screening of nanoparticle-stabilizing ligands: application to preparing antimicrobial curcumin nanoparticles by antisolvent precipitation. Nano-Micro Lett 7(1):68–79

    Article  CAS  Google Scholar 

  • Shoeibi S, Mashreghi M (2017) Biosynthesis of selenium nanoparticles using Enterococcus faecalis and evaluation of their antibacterial activities. J Trace Elem Med Biol 39:135–139

    Article  CAS  PubMed  Google Scholar 

  • Singh M, Kumar M, Kalaivani R, Manikandan S, Kumaraguru AK (2013) Metallic silver nanoparticle: a therapeutic agent in combination with antifungal drug against human fungal pathogen. Bioprocess Biosyst Eng 36(4):407–415

    Article  CAS  PubMed  Google Scholar 

  • Somasundaram G, Rajan J (2019) Ascendancy of Polianthes tuberosa, Nerium oleander, Hibiscus rosa sinensis and Dalia flower extracts on CdO nanoparticle morphologies and their effectiveness in photocatalytic and antimicrobial activities. J Inorg Organomet Polym Mater 29(6):2145–2160

    Article  CAS  Google Scholar 

  • Srivastava N, Mukhopadhyay M (2013) Biosynthesis and structural characterization of selenium nanoparticles mediated by Zooglearamigera. Powder Technol 244:26–29

    Article  CAS  Google Scholar 

  • Srivastava N, Mukhopadhyay M (2015a) Biosynthesis and characterization of gold nanoparticles using Zooglea ramigera and assessment of its antibacterial property. J Clust Sci 26(3):675–692

    Article  CAS  Google Scholar 

  • Srivastava N, Mukhopadhyay M (2015b) Green synthesis and structural characterization of selenium nanoparticles and assessment of their antimicrobial property. Bioprocess Biosyst Eng 38(9):1723–1730

    Article  CAS  PubMed  Google Scholar 

  • Srivastava N, Saxena SK (2020) Prevention and control strategies for SARS-CoV-2 infection. In: Saxena SK (ed) Coronavirus Disease 2019 (COVID-19): epidemiology, pathogenesis, diagnosis, and therapeutics. Springer, Singapore, pp 127–140

    Chapter  Google Scholar 

  • Srivastava N, Baxi P, Ratho RK, Saxena SK (2020) Global trends in epidemiology of Coronavirus Disease 2019 (COVID-19). In: Saxena SK (ed) Coronavirus Disease 2019 (COVID-19): epidemiology, pathogenesis, diagnosis, and therapeutics. Springer, Singapore, pp 9–21

    Chapter  Google Scholar 

  • Stevanović M, Filipović N, Djurdjević J, Lukić M, Milenković M, Boccaccini A (2015) 45S5Bioglass®-based scaffolds coated with selenium nanoparticles or with poly(lactide-co-glycolide)/selenium particles: processing, evaluation and antibacterial activity. Colloids Surf B: Biointerfaces 132:208–215

    Article  PubMed  CAS  Google Scholar 

  • Vahdati M, Tohidi Moghadam T (2020) Synthesis and characterization of selenium nanoparticles-lysozyme nanohybrid system with synergistic antibacterial properties. Sci Rep 10(1):510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vanamala K, Tatiparti K, Bhise K, Sau S, Scheetz MH, Rybak MJ, Andes D, Iyer AK (2021) Novel approaches for the treatment of methicillin-resistant Staphylococcus aureus: using nanoparticles to overcome multidrug resistance. Drug Discov Today 26(1):31–43

    Article  CAS  PubMed  Google Scholar 

  • Viswadevarayalu A, Venkata Ramana P, Sreenivasa Kumar G, Rathna Sylvia L, Sumalatha J, Adinarayana Reddy S (2016) Fine Ultrasmall Copper Nanoparticle (UCuNPs) synthesis by using Terminalia bellirica fruit extract and its antimicrobial activity. J Clust Sci 27(1):155–168

    Article  CAS  Google Scholar 

  • WHO (2018) Tuberculosis: multidrug-resistant tuberculosis (MDR-TB). Global Tuberculosis Programme. https://www.who.int/news-room/q-a-detail/tuberculosis-multidrug-resistant-tuberculosis-(mdr-tb)

  • Yousefi M, Dadashpour M, Hejazi M, Hasanzadeh M, Behnam B, de la Guardia M, Shadjou N, Mokhtarzadeh A (2017) Anti-bacterial activity of graphene oxide as a new weapon nanomaterial to combat multidrug-resistance bacteria. Mater Sci Eng C 74:568–581

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Vice Chancellor, King George’s Medical University (KGMU), Lucknow, India, for the encouragement of this work. The authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shailendra K. Saxena .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Srivastava, N., Saxena, S.K. (2022). Microbicidal Nanoparticles. In: Thakur, A., Thakur, P., Khurana, S.P. (eds) Synthesis and Applications of Nanoparticles. Springer, Singapore. https://doi.org/10.1007/978-981-16-6819-7_17

Download citation

Publish with us

Policies and ethics