Skip to main content
Log in

Optimized dispersion of ZnO nanoparticles and antimicrobial activity against foodborne pathogens and spoilage microorganisms

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Single primary nanoparticles of zinc oxide (nanoZnO) tend to form particle collectives, resulting in loss of antimicrobial activity. This work studied the effects of probe sonication conditions: power, time, and the presence of a dispersing agent (Na4P2O7), on the size of nanoZnO particles. NanoZnO dispersion was optimized by response surface methodology (RSM) and characterized by the zeta potential (ZP) technique. NanoZnO antimicrobial activity was investigated at different concentrations (1, 5, and 10 % w/w) against four foodborne pathogens and four spoilage microorganisms. The presence of the dispersing agent had a significant effect on the size of dispersed nanoZnO. Minimum size after sonication was 238 nm. An optimal dispersion condition was achieved at 200 W for 45 min of sonication in the presence of the dispersing agent. ZP analysis indicated that the ZnO nanoparticle surface charge was altered by the addition of the dispersing agent and changes in pH. At tested concentrations and optimal dispersion, nanoZnO had no antimicrobial activity against Pseudomonas aeruginosa, Lactobacillus plantarum, and Listeria monocytogenes. However, it did have antimicrobial activity against Escherichia coli, Salmonella choleraesuis, Staphylococcus aureus, Saccharomyces cerevisiae, and Aspergillus niger. Based on the exhibited antimicrobial activity of optimized nanoZnO against some foodborne pathogens and spoilage microorganisms, nanoZnO is a promising antimicrobial for food preservation with potential application for incorporation in polymers intended as food-contact surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Adams LK, Lyon DY, Alvarez PJJ (2006) Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions. Water Res 40(19):3527–3532. doi:10.1016/j.watres.2006.08.004

    Article  CAS  Google Scholar 

  • Applerot G, Lipovsky A, Dror R, Perkas N, Nitzan Y, Lubart R, Gedanken A (2009) Enhanced antibacterial activity of nanocrystalline ZnO due to increased ROS-mediated cell injury. Adv Funct Mater 19(6):842–852. doi:10.1002/adfm.200801081

    Article  CAS  Google Scholar 

  • Bezerra MA, Santelli RE, Oliveira EP, Villar LS, Escaleira LA (2008) Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta 76(5):965–977. doi:10.1016/j.talanta.2008.05.019

    Article  CAS  Google Scholar 

  • Bradley EL, Castle L, Chaudhry Q (2011) Applications of nanomaterials in food packaging with a consideration of opportunities for developing countries. Trends Food Sci Technol 22(11):604–610. doi:10.1016/j.tifs.2011.01.002

    Article  CAS  Google Scholar 

  • Casey P (2006) Nanoparticle technologies and applications. In: Hannink RHJ, Hill AJ (eds) Nanostructure control of materials. Woodhead Publishing Limited, Cambridge, pp 1–27

    Chapter  Google Scholar 

  • CDC (2011) Estimates of foodborne illness in the United States. Center for Disease Control and Prevention. http://www.cdc.gov/Features/dsFoodborneEstimates/. Accessed 6 May 2011

  • Chaudhry Q, Scotter M, Blackburn J, Ross B, Boxall A, Castle L, Aitken R, Watkins R (2008) Applications and implications of nanotechnologies for the food sector. Food Addit Contam A 25(3):241–258. doi:10.1080/02652030701744538

    Article  CAS  Google Scholar 

  • Chung SJ, Leonard JP, Nettleship I, Lee JK, Soong Y, Martello DV, Chyu MK (2009) Characterization of ZnO nanoparticle suspension in water: effectiveness of ultrasonic dispersion. Powder Technol 194(1–2):75–80. doi:10.1016/j.powtec.2009.03.025

    Article  CAS  Google Scholar 

  • Cioffi N, Torsi L, Ditaranto N, Tantillo G, Ghibelli L, Sabbatini L, Bleve-Zacheo T, D’Alessio M, Zambonin PG, Traversa E (2005) Copper nanoparticle/polymer composites with antifungal and bacteriostatic properties. Chem Mater 17(21):5255–5262. doi:10.1021/cm0505244

    Article  CAS  Google Scholar 

  • CLSI (2002) Reference method for broth dilution antifungal susceptibility testing of yeast. Approved standard M27-A2. Clinical and Laboratory Standards Institute, Wayne

  • CLSI (2003) Performance standards for antimicrobial disk susceptibility tests. Approved standard M2-A8. Clinical and Laboratory Standards Institute, Wayne

  • Devirgiliis C, Murgia C, Danscher G, Perozzi G (2004) Exchangeable zinc ions transiently accumulate in a vesicular compartment in the yeast Saccharomyces cerevisiae. Biochem Biophys Res Commun 323(1):58–64. doi:10.1016/j.bbrc.2004.08.051

    Article  CAS  Google Scholar 

  • Emami-Karvani Z, Chehrazi P (2011) Antibacterial activity of ZnO nanoparticle on gram-positive and gram-negative bacteria. Afr J Microbiol Res 5(12):1368–1373. doi:10.5897/AJMR10.159

    CAS  Google Scholar 

  • Espitia P, Soares ND, Coimbra J, de Andrade N, Cruz R, Medeiros E (2012) Zinc oxide nanoparticles: synthesis, antimicrobial activity and food packaging applications. Food Bioprocess Technol 5(5):1447–1464. doi:10.1007/s11947-012-0797-6

    Article  CAS  Google Scholar 

  • FDA (2011) Part 182: substances generally recognized as safe. Food and Drug Administration. http://ecfr.gpoaccess.gov/cgi/t/text/text-idx?c=ecfr&sid=786bafc6f6343634fbf79fcdca7061e1&rgn=div5&view=text&node=21:3.0.1.1.13&idno=21#21:3.0.1.1.13.9. Accessed 28 March 2011

  • Gram L, Ravn L, Rasch M, Bruhn JB, Christensen AB, Givskov M (2002) Food spoilage—interactions between food spoilage bacteria. Int J Food Microbiol 78(1–2):79–97. doi:10.1016/s0168-1605(02)00233-7

    Article  Google Scholar 

  • Gustavsson J, Cederberg C, Sonesson U (2011) Global food losses and food waste: extent, causes and prevention. The Swedish Institute for Food and Biotechnology SIK, Rome

    Google Scholar 

  • He L, Liu Y, Mustapha A, Lin M (2011) Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum. Microbiol Res 166(3):207–215. doi:10.1016/j.micres.2010.03.003

    Article  CAS  Google Scholar 

  • Huynh L, Jenkins P (2001) A rheological and electrokinetic investigation of the interactions between pigment particles dispersed in aqueous solutions of short-chain phosphates. Colloids Surf Physicochem Eng Aspects 190(1):35–45. doi:10.1016/s0927-7757(01)00663-x

    Article  CAS  Google Scholar 

  • Jayaseelan C, Rahuman AA, Kirthi AV, Marimuthu S, Santhoshkumar T, Bagavan A, Gaurav K, Karthik L, Rao KVB (2012) Novel microbial route to synthesize ZnO nanoparticles using Aeromonas hydrophila and their activity against pathogenic bacteria and fungi. Spectrochim Acta A 90:78–84. doi:10.1016/j.saa.2012.01.006

    Article  CAS  Google Scholar 

  • Jiang J, Oberdörster G, Biswas P (2009) Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies. J Nanopart Res 11(1):77–89. doi:10.1007/s11051-008-9446-4

    Article  CAS  Google Scholar 

  • Jones N, Ray B, Ranjit KT, Manna AC (2008) Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms. FEMS Microbiol Lett 279(1):71–76. doi:10.1111/j.1574-6968.2007.01012.x

    Article  CAS  Google Scholar 

  • Kasemets K, Ivask A, Dubourguier H-C, Kahru A (2009) Toxicity of nanoparticles of ZnO, CuO and TiO2 to yeast Saccharomyces cerevisiae. Toxicol In Vitro 23(6):1116–1122. doi:10.1016/j.tiv.2009.05.015

    Article  CAS  Google Scholar 

  • Khan R, Kaushik A, Solanki PR, Ansari AA, Pandey MK, Malhotra BD (2008) Zinc oxide nanoparticles-chitosan composite film for cholesterol biosensor. Anal Chim Acta 616(2):207–213. doi:10.1016/j.aca.2008.04.010

    Article  CAS  Google Scholar 

  • Leong YK, Scales PJ, Healy TW, Boger DV, Buscall R (1993) Rheological evidence of adsorbate-mediated short-range steric forces in concentrated dispersions. J Chem Soc Faraday Trans 89(14):2473–2478

    Article  CAS  Google Scholar 

  • Mandzy N, Grulke E, Druffel T (2005) Breakage of TiO2 agglomerates in electrostatically stabilized aqueous dispersions. Powder Technol 160(2):121–126. doi:10.1016/j.powtec.2005.08.020

    Article  CAS  Google Scholar 

  • Michelmore A, Jenkins P, Ralston J (2003) The interaction of linear polyphosphates with zincite surfaces. Int J Miner Process 68(1–4):1–16. doi:10.1016/s0301-7516(01)00085-0

    Article  CAS  Google Scholar 

  • Müller F, Peukert W, Polke R, Stenger F (2004) Dispersing nanoparticles in liquids. Int J Miner Process 74(Supplement (0)):S31–S41. doi:10.1016/j.minpro.2004.07.023

    Article  Google Scholar 

  • Nair S, Sasidharan A, Rani VD, Menon D, Nair S, Manzoor K, Raina S (2009) Role of size scale of ZnO nanoparticles and microparticles on toxicity toward bacteria and osteoblast cancer cells. J Mater Sci Mater Med 20:235–241. doi:10.1007/s10856-008-3548-5

    Article  Google Scholar 

  • Pal S, Tak YK, Song JM (2007) Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the Gram-negative bacterium Escherichia coli. Appl Environ Microbiol 73(6):1712–1720. doi:10.1128/aem.02218-06

    Article  CAS  Google Scholar 

  • Papo A, Piani L, Ricceri R (2002) Sodium tripolyphosphate and polyphosphate as dispersing agents for kaolin suspensions: rheological characterization. Colloids Surf Physicochem Eng Aspects 201(1–3):219–230. doi:10.1016/s0927-7757(01)01024-x

    Article  CAS  Google Scholar 

  • Premanathan M, Karthikeyan K, Jeyasubramanian K, Manivannan G (2011) Selective toxicity of ZnO nanoparticles toward Gram-positive bacteria and cancer cells by apoptosis through lipid peroxidation. Nanomed Nanotechnol Biol Med 7(2):184–192. doi:10.1016/j.nano.2010.10.001

    Article  CAS  Google Scholar 

  • Rai M, Yadav A, Gade A (2009) Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 27(1):76–83. doi:10.1016/j.biotechadv.2008.09.002

    Article  CAS  Google Scholar 

  • Reddy KM, Feris K, Bell J, Wingett DG, Hanley C, Punnoose A (2007) Selective toxicity of zinc oxide nanoparticles to prokaryotic and eukaryotic systems. Appl Phys Lett 90(21):213902. doi:10.1063/1.2742324

    Article  Google Scholar 

  • Ren G, Hu D, Cheng EWC, Vargas-Reus MA, Reip P, Allaker RP (2009) Characterisation of copper oxide nanoparticles for antimicrobial applications. Int J Antimicrob Agents 33(6):587–590

    Article  CAS  Google Scholar 

  • Rhodes R, Asghar S, Krakow R, Horie M, Wang Z, Turner ML, Saunders BR (2009) Hybrid polymer solar cells: from the role colloid science could play in bringing deployment closer to a study of factors affecting the stability of non-aqueous ZnO dispersions. Colloids Surf Physicochem Eng Aspects 343(1–3):50–56. doi:10.1016/j.colsurfa.2009.01.028

    Article  CAS  Google Scholar 

  • Roselli M, Finamore A, Garaguso I, Britti MS, Mengheri E (2003) Zinc oxide protects cultured enterocytes from the damage induced by Escherichia coli. J Nutr 133(12):4077–4082

    CAS  Google Scholar 

  • Sawai J (2003) Quantitative evaluation of antibacterial activities of metallic oxide powders (ZnO, MgO and CaO) by conductimetric assay. J Microbiol Methods 54(2):177–182. doi:10.1016/s0167-7012(03)00037-x

    Article  CAS  Google Scholar 

  • Sawai J, Kojima H, Ishizu N, Itoh M, Igarashi H, Sawaki T, Shimizu M (1997) Bactericidal action of magnesium oxide powder. J Inorg Biochem 67(1–4):443. doi:10.1016/s0162-0134(97)80303-0

    Article  CAS  Google Scholar 

  • Sawai J, Shoji S, Igarashi H, Hashimoto A, Kokugan T, Shimizu M, Kojima H (1998) Hydrogen peroxide as an antibacterial factor in zinc oxide powder slurry. J Ferment Bioeng 86(5):521–522. doi:10.1016/s0922-338x(98)80165-7

    Article  CAS  Google Scholar 

  • Scharff RL (2012) Economic burden from health losses due to foodborne illness in the United States. J Food Prot 75(1):123–131. doi:10.4315/0362-028x.jfp-11-058

    Article  Google Scholar 

  • Schilde C, Mages-Sauter C, Kwade A, Schuchmann HP (2011) Efficiency of different dispersing devices for dispersing nanosized silica and alumina. Powder Technol 207(1–3):353–361. doi:10.1016/j.powtec.2010.11.019

    Article  CAS  Google Scholar 

  • Sharma D, Sharma S, Kaith BS, Rajput J, Kaur M (2011) Synthesis of ZnO nanoparticles using surfactant free in-air and microwave method. Appl Surf Sci 257(22):9661–9672. doi:10.1016/j.apsusc.2011.06.094

    Article  CAS  Google Scholar 

  • Shi L, Zhou J, Gunasekaran S (2008) Low temperature fabrication of ZnO–whey protein isolate nanocomposite. Mater Lett 62(28):4383–4385. doi:10.1016/j.matlet.2008.07.038

    Article  CAS  Google Scholar 

  • Stanković A, Dimitrijević S, Uskoković D (2013) Influence of size scale and morphology on antibacterial properties of ZnO powders hydrothermally synthesized using different surface stabilizing agents. Colloids Surf B Biointerfaces 102:21–28. doi:10.1016/j.colsurfb.2012.07.033

    Article  Google Scholar 

  • Stoimenov PK, Klinger RL, Marchin GL, Klabunde KJ (2002) Metal oxide nanoparticles as bactericidal agents. Langmuir 18(17):6679–6686. doi:10.1021/la0202374

    Article  CAS  Google Scholar 

  • Teófilo RF, Ferreira MMC (2006) Quimiometria II: planilhas eletrônicas para cálculos de planejamentos experimentais, um tutorial. Quim Nova 29:338–350

    Article  Google Scholar 

  • Wei A (2006) Enzymatic glucose biosensor based on ZnO nanorod array grown by hydrothermal decomposition. Appl Phys Lett 89(12):123902

    Article  Google Scholar 

  • Yamamoto O (2001) Influence of particle size on the antibacterial activity of zinc oxide. Int J Inorg Mater 3(7):643–646. doi:10.1016/s1466-6049(01)00197-0

    Article  CAS  Google Scholar 

  • Ying K-L, Hsieh T-E, Hsieh Y-F (2009) Colloidal dispersion of nano-scale ZnO powders using amphibious and anionic polyelectrolytes. Ceram Int 35(3):1165–1171. doi:10.1016/j.ceramint.2008.05.014

    Article  CAS  Google Scholar 

  • Zhang J, Fan Y, Smith E (2009) Experimental design for the optimization of lipid nanoparticles. J Pharm Sci 98(5):1813–1819. doi:10.1002/jps.21549

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge Mr. Nicholas J. Walker for providing language help and writing assistance. Financial support for this research was provided by a doctoral scholarship from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and a grant from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq). Technical support for this research work was provided by INCT–Nanobiofar project. We appreciate the help with the stereoscopic microscope of Gilberto de Oliveira Mendes from the Microbiology Department at Federal University of Viçosa.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nilda de Fátima Ferreira Soares.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Espitia, P.J.P., Soares, N.F.F., Teófilo, R.F. et al. Optimized dispersion of ZnO nanoparticles and antimicrobial activity against foodborne pathogens and spoilage microorganisms. J Nanopart Res 15, 1324 (2013). https://doi.org/10.1007/s11051-012-1324-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-012-1324-4

Keywords

Navigation