Skip to main content
Log in

Antimicrobial Activity and Physical Characterization of Silver Nanoparticles Green Synthesized Using Nitrate Reductase from Fusarium oxysporum

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Nanostructures from natural sources have received major attention due to wide array of biological activities and less toxicity for humans, animals, and the environment. In the present study, silver nanoparticles were successfully synthesized using a fungal nitrate reductase, and their biological activity was assessed against human pathogenic fungi and bacteria. The enzyme was isolated from Fusarium oxysporum IRAN 31C after culturing on malt extract-glucose-yeast extract-peptone (MGYP) medium. The enzyme was purified by a combination of ultrafiltration and ion exchange chromatography on DEAE Sephadex and its molecular weight was estimated by gel filtration on Sephacryl S-300. The purified enzyme had a maximum yield of 50.84 % with a final purification of 70 folds. With a molecular weight of 214 KDa, it is composed of three subunits of 125, 60, and 25 KDa. The purified enzyme was successfully used for synthesis of silver nanoparticles in a way dependent upon NADPH using gelatin as a capping agent. The synthesized silver nanoparticles were characterized by X-ray diffraction, dynamic light scattering spectroscopy, and transmission and scanning electron microscopy. These stable nonaggregating nanoparticles were spherical in shape with an average size of 50 nm and a zeta potential of −34.3. Evaluation of the antimicrobial effects of synthesized nanoparticles by disk diffusion method showed strong growth inhibitory activity against all tested human pathogenic fungi and bacteria as evident from inhibition zones that ranged from 14 to 25 mm. Successful green synthesis of biologically active silver nanoparticles by a nitrate reductase from F. oxysporum in the present work not only reduces laborious downstream steps such as purification of nanoparticle from interfering cellular components, but also provides a constant source of safe biologically-active nanomaterials with potential application in agriculture and medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Mohanpuria, P., Rana, N. K., & Yada, S. K. (2008). Biosynthesis of nanoparticles: technological concepts and future applications. Journal of Nanoparticle Research, 10, 507–517.

    Article  CAS  Google Scholar 

  2. Rai, M., Yadav, A., & Gade, A. (2008). Current trends in phytosynthesis of metal nanoparticles. Critical Reviews in Biotechnology, 28, 277–284.

    Article  CAS  Google Scholar 

  3. Sinha, S. H., Pan, L., Chanda, P., & Sen, S. K. (2009). Nanoparticles fabrication using ambient biological resources. Journal of Applied Biosciences, 19, 1113–1130.

    Google Scholar 

  4. Silver, S., Phung, L. T., & Silver, G. (2006). Silver as biocides in burn and wound dressings and bacterial resistance to silver compounds. Journal of Industrial Microbiology & Biotechnology, 33, 627–634.

    Article  CAS  Google Scholar 

  5. Rai, M., Yadav, A., & Gade, A. (2009). Silver nanoparticles as a new generation of antimicrobials. Biotechnology Advances, 27, 76–83.

    Article  CAS  Google Scholar 

  6. Kalishwaralal, K., Banumathi, E., Pandian, S. B. R. K., Deepak, V., Muniyandi, J., & Eom, S. H. (2009). Silver nanoparticles inhibit VEGF induced cell proliferation and migration in bovine retinal endothelial cells. Colloids and Surfaces, B: Biointerfaces, 73, 51–57.

    Article  CAS  Google Scholar 

  7. Sheikpranbabu, S., Kalishwaralal, K., Venkataraman, D., Eom, S. H., Park, J., & Gurunathan, S. (2009). Silver nanoparticles inhibit VEGF-and IL-1b-induced vascular permeability via Src-dependent pathway in porcine retinal endothelial cells. Journal of Nanobiotechnology, 7, 8.

    Article  Google Scholar 

  8. Vaidyanathan, R., Kalishwaralal, K., Gopalram, S. H., & Gurunathan, S. (2009). Nanosilver—the burgeoning therapeutic molecule and its green synthesis. Biotechnology Advances, 27, 924–937.

    Article  CAS  Google Scholar 

  9. Mukherjee, P., Ahmad, A., Mandal, D., Senapati, S., Sainkar, S. R., Khan, M. I., et al. (2001). Bioreduction of AuCl4 ions by the fungus Verticillium sp. and surface trapping of the gold nanoparticles formed. Angewandte Chemie International Edition, 40, 3585–3588.

    Article  CAS  Google Scholar 

  10. Chen, J. C., Lin, Z. H., & Ma, X. X. (2003). Evidence of the production of silver nanoparticles via pretreatment of Phoma sp. 32883 with silver nitrate. Letters in Applied Microbiology, 37, 105–108.

    Article  CAS  Google Scholar 

  11. Mouxing, F., Qingbiao, L., Daohua, S., Yinghua, L., Ning, H., Xu, D., et al. (2006). Rapid preparation process of silver nanoparticles by bioreduction and their characterizations. Chinese Journal Chemical Engineering, 14, 114–117.

    Article  Google Scholar 

  12. Birla, S., Tiwari, V. V., Gade, A. K., Ingle, A. P., Yadav, A. P., & Rai, M. K. (2009). Fabrication of silver nanoparticles by Phoma glomerata and its combined effect against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. Letters in Applied Microbiology, 48, 173–182.

    Article  CAS  Google Scholar 

  13. Jha, A. K., Prasad, K., Prasad, K., & Kulkarni, A. R. (2009). Plant system: nature’s nanofactory. Colloids and Surfaces, B: Biointerfaces, 73, 219–223.

    Article  CAS  Google Scholar 

  14. Shaligram, N. S., Bule, M., Bhambure, R. M., Singhal, R. S., Singh, S. K., Szakacs, G., et al. (2009). Biosynthesis of silver nanoparticles using aqueous extract from the compactin producing fungal strain. Process Biochemistry, 44, 939–948.

    Article  CAS  Google Scholar 

  15. Ogi, T., Saitoh, N., Nomura, T., & Konishi, Y. (2010). Room-temperature synthesis of gold nanoparticles and nanoplates using Shewanella algae cell extract. Journal of Nanoparticles Research, 12, 2531–2539.

    Article  CAS  Google Scholar 

  16. Pandian, S. R. K., Deepak, V., Kalishwaralal, K., Viswanathan, P., & Gurunathan, S. (2010). Mechanism of bactericidal activity of silver nitrate—a concentration dependent bi-functional molecule. Brazilian Journal of Microbiology, 41, 805–809.

    Article  CAS  Google Scholar 

  17. Roe, D., Karandikar, B., Bonn-Savage, N., Gibbins, B., & Roullet, J. B. (2008). Antimicrobial surface functionalization of plastic catheters by silver nanoparticles. Journal of Antimicrobial Chemotherapy, 61, 869–876.

    Article  CAS  Google Scholar 

  18. Matsumura, Y., Yoshikata, K., Kunisak, S., & Tsuchido, T. (2003). Mode of bactericidal action of silver zeolite and its comparison with that of silver nitrate. Applied and Environmental Microbiology, 69, 4278–4281.

    Article  CAS  Google Scholar 

  19. Fayaz, M., Tiwary, C. S., Kalaichelvan, P. T., & Venkatesan, R. (2010). Blue orange light emission from biogenic synthesized silver nanoparticles using Trichoderma viride. Colloids and Surfaces, B: Biointerfaces, 75, 175–178.

    Article  CAS  Google Scholar 

  20. Thakkar, K. N., Mhatre, S. S., & Parikh, R. Y. (2010). Biological synthesis of metallic nanoparticles. Nanomedicine, 6, 257–262.

    Article  CAS  Google Scholar 

  21. Kalimuthu, K., Babu, R. S., Venkataraman, D., Bilal, M., & Gurunathan, S. (2008). Biosynthesis of silver nanocrystals by Bacillus licheniformis. Colloids and Surfaces, B: Biointerfaces, 65, 150–153.

    Article  CAS  Google Scholar 

  22. Duran, N., Marcato, P. D., Alves, O. L., DeSouza, G., & Esposito, E. (2005). Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. Journal of Nanobiotechnology, 3, 1–8.

    Article  Google Scholar 

  23. Kumar, A. S., Abyaneh, M. K., GosaviSulabha, S. W., Ahmad, A., & Khan, M. I. (2007). Nitrate reductase mediated synthesis of silver nanoparticles from AgNO3. Biotechnology Letters, 29, 439–445.

    Article  CAS  Google Scholar 

  24. Moteshafi, H., Mousavi, S. M., & Shojaosadati, S. A. (2012). The possible mechanisms involved in nanoparticles biosynthesis. Journal of Industrial and Engineering Chemistry, 18, 2046–2050.

    Article  CAS  Google Scholar 

  25. Cannons, A. C., Barber, M. J., & Solomonson, L. P. (1993). Expression and characterization of the heme-binding domain of Chlorella nitrate reductase. Journal of Biological Chemistry, 268, 3268–3271.

    CAS  Google Scholar 

  26. He, S., Guo, Z., Zhang, Y., Zhang, S., Wang, J., & Gu, N. (2007). Biosynthesis of gold nanoparticles using the bacteria Rhodopseudomonas capsulate. Materials Letters, 61, 3984–3987.

    Article  CAS  Google Scholar 

  27. Gade, A. K., Bonde, P., Ingle, A. P., Marcato, P. D., Durán, N., & Rai, M. K. (2008). Exploitation of Aspergillus niger for synthesis of silver nanoparticles. Journal of Biobased Materials and Bioenerg, 2, 123–129.

    Article  Google Scholar 

  28. Ingle, A., Gade, A., Pierrat, S., Sonnichsen, C., & Rai, M. K. (2008). Mycosynthesis of silver nanoparticles using the fungus Fusarium acuminatum and its activity against some human pathogenic bacteria. Current Nanoscience, 4, 141–144.

    Article  CAS  Google Scholar 

  29. Karbasian, M., Atyabi, S. M., Siadat, S. D., Momen, S. B., & Norouzian, D. (2008). Optimizing nanosilver formation by Fusarium oxysporum PTCC 5115 employing response surface methodology. American Journal of Agricultural and Biological Sciences, 3, 433–437.

    Article  Google Scholar 

  30. Thaivanich, S., & Incharoensakdi, A. (2007). Purification and characterization of nitrate reductase from the halotolerant cyanobacterium Aphanothece halophytica. World Journal of Microbiology and Biotechnology, 23, 58–92.

    Article  Google Scholar 

  31. Laemmli, U. K. (1970). Cleavage of structural proteins during assembly of the head of bacteriophage T4. Nature, 277, 680–685.

    Article  Google Scholar 

  32. Clark, D. S. (1994). Can immobilization be exploited to modify enzyme activity? Trends Biotechnology, 12, 439–443.

    Article  CAS  Google Scholar 

  33. Huang, J., Lin, L., Li, Q., Sun, D., Wang, Y., Lu, Y., et al. (2008). Continuous-flow biosynthesis of silver nanoparticles by lixivium of sundried Cinnamomum camphora leaf in tubular microreactors. Industrial and Engineering Chemistry Research, 47, 6081–6090.

    Article  CAS  Google Scholar 

  34. Clegg, S., Yu, F., Griffiths, L., & Cole, J. A. (2002). The roles of the polytopic membrane proteins NarK, NarU and NirC in Escherichia coli K-12: two nitrate and three nitrite transporters. Journal of Molecular Microbiology, 44, 143–155.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported financially by the Pasteur Institute of Iran (Grants Nos. 586 and 647).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Razzaghi-Abyaneh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gholami-Shabani, M., Akbarzadeh, A., Norouzian, D. et al. Antimicrobial Activity and Physical Characterization of Silver Nanoparticles Green Synthesized Using Nitrate Reductase from Fusarium oxysporum . Appl Biochem Biotechnol 172, 4084–4098 (2014). https://doi.org/10.1007/s12010-014-0809-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-0809-2

Keywords

Navigation