Skip to main content

The Use of Silver Nanoparticles as a Disinfectant and Media Additive in Plant Micropropagation

  • Chapter
  • First Online:
Plant Tissue Culture: New Techniques and Application in Horticultural Species of Tropical Region

Abstract

Microbial contamination (fungi, bacteria, etc.) is one of the most problematic situations in micropropagation, which causes a reduction of plant quality and loss of value stocks. Therefore, sterilization of culture media and explant surface disinfection is a critical step in plant micropropagation success. The conventional method of autoclaving of media could have reduced the activities of additives and plant growth substances. Some of the common surface disinfectants, such as mercuric chloride, are not eco-friendly and can affect human health. In recent years, silver nanoparticles have been shown to be an effective disinfectant for explants and the culture media and positively affect plant regeneration and eliciting secondary product formation. This chapter highlights recent applications of silver nanoparticles in plant micropropagation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adebomojo AA, AbdulRahaman AA (2020) Surface sterilization of Ocimum seeds and tissues with biosynthesized nanosilver and its effects on callus induction. IOP Conf Ser: Mater Sci Eng 805:012024

    Article  CAS  Google Scholar 

  • Aghdaei M, Salehi H, Sarmast MK (2012) Effects of silver nanoparticles on Tecomellaundulata (Roxb.) Seem. Micropropagation Adv Hort Sci 26:21–24

    Google Scholar 

  • Ahlawat J, Sehrawat AR, Choudhary R, Yadav SK (2020) Biologically synthesized silver nanoparticles eclipse fungal and bacterial contamination in micropropagation of Capparis decidua (FORSK.) Edgew: a substitute to toxic substances. Indian J ExpBiol 58:336–343

    CAS  Google Scholar 

  • Ahmad SA, Das SS, Khatoon A, Ansari MT, Afzal M, Md H, Nayak AK (2020) Bactericidal activity of silver nanoparticles: a mechanistic review. Mater Sci Technol 3:756–769

    Google Scholar 

  • Ali A, Mohammad S, Khan MA, Raja NI, Arif M, Kamil A, Mashwani ZUR (2019) Silver nanoparticles elicited in vitro callus cultures for accumulation of biomass and secondary metabolites in Carallumatuberculata. Artif Cells Nanomed Biotechnol 47(1):715–724

    Article  CAS  PubMed  Google Scholar 

  • Álvarez SP, Tapia MAM, Vega MEG, Ardisana EFH, Medina JAC, Zamora GLF, Bustamante DV (2019) Nanotechnology and plant tissue culture. In: Prasad R (ed) Plant nanobionics, Advances in the understanding of nanomaterials research and applications, vol 1. Springer, Cham, pp 333–370

    Chapter  Google Scholar 

  • Andújar I, González N, García-Ramos JC, Bogdanchikova N, Pestryakov A, Escalona M, Concepción O (2020) Argovit™ silver nanoparticles reduce contamination levels and improve morphological growth in the in vitro culture of Psidiumfriedrichsthalianum (O. Berg). Nied SN ApplS ci 2:2110

    Article  Google Scholar 

  • Anjum S, Anjum I, Hano C, Kousar S (2019) Advances in nanomaterials as novel elicitors of pharmacologically active plant specialized metabolites: Current status and future outlooks. RSC Adv 9:40404–40423

    Article  CAS  Google Scholar 

  • Ball E (1953) Hydrolysis of sucrose by autoclaving media, a neglected aspect in the technique of culture of plant tissues. Bull Torrey Bot Club 80:409–411

    Article  CAS  Google Scholar 

  • Bhojwani SS, Dantu PK (2013) Plant tissue culture: An introductory text. Springer, London, UK, pp 39–43

    Book  Google Scholar 

  • Bhojwani SS, Razdan MK (1996) Plant tissue culture: Theory and practice, a revised edition. Elsevier, Amsterdam, The Netherland, pp 618–766

    Google Scholar 

  • Block SS (ed) (2001) Disinfection, sterilization and preservation, 5th edn. Lippincott Williams & Wilkins, New York, pp 881–917

    Google Scholar 

  • Bragt JV, Mossel DAA, Pierik RML, Veldstra H (1971) Effects of sterilization on components in nutrient media. In: Veenman H, Zonon NV (eds) Misc. Papers 9. Wageningen, the Netherlands, pp 38–104

    Google Scholar 

  • Castro-González CG, Sánchez-Segura L, Gómez-Merino FC, Bello-Bello JJ (2019) Exposure of stevia (Stevia rebaudiana B) to silver nanoparticles in vitro: transport and accumulation. Sci Rep 9(1):1–10

    Article  Google Scholar 

  • Chen C (2016) Cost analysis of plant micropropagation of Phalaenopsis. Plant Cell Tissue Organ Cult 126:167–175

    Article  Google Scholar 

  • Chung IM, Rajakumar G, Thiruvengadam M (2018a) Effect of silver nanoparticles on phenolic compounds production and biological activities in hairy root cultures of Cucumisanguria. Biol Futura 69:97–109

    Article  CAS  Google Scholar 

  • Chung IM, Rekha K, Rajakumar G, Thiruvengadam M (2018b) Influence of silver nanoparticles on the enhancement and transcriptional changes of glucosinolates and phenolic compounds in genetically transformed root cultures of Brassica rapa ssp. rapa. Bioprocess Biosyst Eng 41:1665–1677

    Article  CAS  PubMed  Google Scholar 

  • Cunningham FJ, Goh NS, Demirer GS, Matos JL, Landry MP (2018) Nanoparticle-mediated delivery towards advancing plant genetic engineering. Trends Biotechnol 36:882–897

    Article  CAS  PubMed  Google Scholar 

  • Deshmukh SP, Patil SM, Mullani SB, Delekar SD (2019) Silver nanoparticles as an effective disinfectant: a review. Mater Sci Eng C Mater Biol Appl 97:954–965

    Article  CAS  PubMed  Google Scholar 

  • Duan Y, Zhang H, Sun M, Zhao F, Xue T, Xue J (2019) Use of chlorine dioxide to sterilize medium for tissue culture of potato. Sci Rep 9:10232

    Article  PubMed  PubMed Central  Google Scholar 

  • El-Kosary S, Abd Allatif AM, Stino RG, Hassan MM, Kinawy AA (2020) Effect of silver nanoparticles on micropropagation of Date palm (Phoenix dactylifera L. cv. Sewi and Medjool). Plant Arch 20:9701–9706

    Google Scholar 

  • El-Mahdy MT, Radi AA, Shaaban MM (2019) Impacts of exposure of banana to silver nanoparticles and silver ions in vitro. Middle East J Appl Sci 9(3):727–740

    Google Scholar 

  • El-Sharabasy SF, Ghazzawy HS, Munir M (2017) In vitro application of silver nanoparticles as explant disinfectant for date palm cultivar Barhee. J Appl Hort 19(2):106–112

    Google Scholar 

  • Gamborg OL, Phillips GC (1995) Plant cell, tissue and organ culture. Springer, Heidelberg, Berlin, pp 1–35

    Book  Google Scholar 

  • Golkar P, Moradi M, Garousi GA (2019) Elicitation of Stevia glycosides using salicylic acid and silver nanoparticles under callus culture. Sugar Tech 21:569–577

    Article  CAS  Google Scholar 

  • Hahn EJ, Lee YB, Ahn CH (1996) A new method on mass-production of micropropagated chrysanthemum plants using microponic system in plant factory. Acta Hortic 440:527–532

    Article  Google Scholar 

  • Hahn EJ, Bea JH, Lee YB (2000a) Growth and photosynthetic characteristics ofChrysanthemumplantlets as affected by pH and EC of nutrient solution in microponic culture. J Korean Soc Hort Sci 41(1):12–15

    Google Scholar 

  • Hahn EJ, Kozai T, Paek KY (2000b) Blue and red light-emitting diodes with or without sucrose and ventilation affect in vitro growth of Rehmanniaglutinoseplantlets. J Plant Biol 43:247–250

    Article  Google Scholar 

  • Hamad A, Khashan KS, Hadi A (2020) Silver nanoparticles and silver ions as potential antibacterial agents. J Inorg Organomet Polym 30:4811–4828

    Article  CAS  Google Scholar 

  • Hatami M, NaghdiBadi H, Ghorbanpour M (2019) Nano-elicitation of secondary pharmaceutical metabolites in plant cells: a review. J Med Plants 18:6–36

    Google Scholar 

  • Jadczak P, Kulpa D, Bihun M, Przewodowski W (2019) Positive effect of AgNPs and AuNPs in in vitro cultures of Lavandulaangustifolia Mill. Plant Cell Tissue Organ Cult 139:191–197

    Article  CAS  Google Scholar 

  • Jadczak P, Kulpa D, Drozd R, Przewodowski W, Przewodowska A (2020) Effect of AuNPs and AgNPs on the antioxidant system and antioxidant activity of Lavender (Lavandulaangustifolia Mill.) from in vitro cultures. Molecules 25:5511

    Article  CAS  PubMed Central  Google Scholar 

  • Kaur G, Prakash P, Srivastava R, Verma PC (2021) Enhanced secondary metabolite production in hairy root cultures through biotic and abiotic elicitors. In: Ramawat KG, Ekiert HM, Goyal S (eds) Plant cell and tissue differentiation and secondary metabolites. Springer, pp 625–660

    Chapter  Google Scholar 

  • Kim DH, Gopal J, Sivanesan L (2017) Nanomaterials in plant tissue culture: the disclosed and undisclosed. RSC Adv 7:36392–36505

    Article  Google Scholar 

  • Kralova K, Jampilek J (2021) Response of medicinal and aromatic plants engineered nanoparticles. Appl Sci 11:1813

    Article  CAS  Google Scholar 

  • Krupa-Małkiewicz M, Oszmiański J, Lachowicz S, Szczepanek M, Jaśkiewicz B, Pachnowska K, Ochmian I (2019) Effect of nanosilver (nAg) on disinfection, growth, and chemical composition of young barley leaves under in vitro conditions. J Integr Agric 18(8):1871–1881

    Article  Google Scholar 

  • Lala S (2021) Nanoparticles as elicitors and harvesters of economically important secondary metabolites in higher plants: a review. IET Nanobiotechnol 15:28–57

    Article  PubMed  PubMed Central  Google Scholar 

  • Landa P (2021) Positive effects of metallic nanoparticles on plants: overview of involved mechanisms. Plant Physiol Biochem 161:12–24

    Article  CAS  PubMed  Google Scholar 

  • Lazo-Javalera MF, TroncosoRojas R, Tiznado Hernandez ME, Martinez-Tellez MA, Vargas Arispuro I, Islas-Osuna MA, Rivera-Dominguez M (2016) Surface disinfection procedure and in vitro regeneration of grapevine (Vitisvinifera L) axillary buds. SpringerPlus 5:Article number: 453

    Article  Google Scholar 

  • Leelavathy S, DeepaSankar P (2016) Curbing the menace of contamination in plant tissue culture. J Pure Appl Microbiol 10(3):2145–2152

    CAS  Google Scholar 

  • Leifert C, Morris CE, Waites WM (1994) Ecology of microbial saprophytes and pathogens in tissue culture and field-grown plants: reasons for contamination problems in vitro. Crit Rev Plant Sci 13(2):139–183

    Article  Google Scholar 

  • Lv Z, Jiang R, Chen J, Chen W (2020) Nanoparticle-mediated gene transformation strategies for plant genetic engineering. Plant J 104:880–891

    Article  CAS  PubMed  Google Scholar 

  • Mahendran D, Geetha N, Venkatachalam P (2019) Role of silver nitrate and silver nanoparticles on tissue culture medium and enhanced the plant growth and development. In: Kumar M, Muthusamy A, Kumar V, Bhalla-Sarin N (eds) In vitro plant breeding towards novel agronomic traits. Springer, Singapore, pp 59–74

    Chapter  Google Scholar 

  • Manickavasagam M, Pavan G, Vasudevan V (2019) A comprehensive study of the hormetic influence of biosynthesized AgNPs on regenerating rice calli of Indica cv. IR64. Sci Rep 9:8821

    Article  PubMed  PubMed Central  Google Scholar 

  • McDonnell GE (2007) Antisepsis, disinfection, and sterilization: types, action, and resistance. Wiley, ASM Press, Washington, pp 304–345

    Book  Google Scholar 

  • Mo VT, Cuong LK, Tung HT, Huynh TV, Nghia LT, Khanh CM, Lam NN, Nhut DT (2020) Somatic embryogenesis and plantlet regeneration from the seaweed Kappaphycus striatus. Acta Physiol Plant 42:104

    Article  CAS  Google Scholar 

  • Moradpour M, Aziz MA, Abdullah SNA (2016) Establishment of in vitro culture of rubber (Heveabrasiliensis) from field-derived explants: effective role of silver nanoparticles in reducing contamination and browning. J Nanomed Nanotechnol 7:375

    Google Scholar 

  • Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramírez JT, Yacaman MJ (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16(10):2346–2353

    Article  CAS  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15(1):473–497

    Article  CAS  Google Scholar 

  • Ngan HTM, Cuong DM, Tung HT, Nghiep ND, Le BV, Nhut DT (2020) The effect of cobalt and silver nanoparticles on overcoming leaf abscission and enhanced growth of Rose (Rosa hybrida L. ‘Baby Love’) plantlets cultured in vitro. Plant Cell Tissue Org Cult 141(2):393–405

    Article  Google Scholar 

  • Parzymies M, Pudelska K, Poniewozik M (2019) The use of nano-silver for disinfection of Pennisetumalopecuroides plant material for tissue culture. Acta Sci Pol Hortorum Cultus 18(3):127–135

    Article  Google Scholar 

  • Pe PPW, Naing AH, Soe MT, Kang HH, Park KI, Kim CK (2020) Establishment of meristem culture for virus-free and genetically stable production of the endangered plant Hosta capitata. Sci Hortic 272:109591

    Article  CAS  Google Scholar 

  • Phillips CR, Warshowsky B (1958) Chemical disinfectants. Ann Rev Microbiol 12:525–550

    Article  CAS  Google Scholar 

  • Pryshchepa O, Pomastowski P, Buszewski B (2020) Silver nanoparticles: Synthesis, investigation techniques, and properties. Adv Colloid Interf Sci 284:102246

    Article  CAS  Google Scholar 

  • Ramezannezhad R, Aghdasi M, Fatemi M (2019) Enhanced production of cichoric acid in cell suspension culture of Echinacea purpurea by silver nanoparticle elicitation. Plant Cell Tissue Organ Cult 139:261–273

    Article  CAS  Google Scholar 

  • Rivero-Montejo SDJ, Vargas-Hernandez M, Torres-Pacheco I (2021) Nanoparticles as novel elicitors to improve bioactive compounds in plants. Agriculture 11:134

    Article  CAS  Google Scholar 

  • Saha N, Gupta SD (2018) Promotion of shoot regeneration of Swertiachirata by biosynthesized silver nanoparticles and their involvement in ethylene interceptions and activation of antioxidant activity. Plant Cell Tissue Org Cult 134(2):289–300

    Article  CAS  Google Scholar 

  • Sanzan I, Leone A, Ambrosome A (2019) Nanotechnology in plant science: to make a long story short. Front Bioeng Biotechnol:Article 120

    Google Scholar 

  • Sarmast MK, Salehi H (2016) Silver nanoparticles: an influential element in plant nanobiotechnology. Mol Biotechnol 58(7):441–449

    Article  CAS  PubMed  Google Scholar 

  • Sarmast MK, Salehi H, Khosh-Khui M (2012) Micropropagation of Araucaria excelsa R. Br. var. glauca Carrière from orthotropic stem explants. Physiol Mol Biol Plants 18(3):265–271

    Article  PubMed  PubMed Central  Google Scholar 

  • Sarmast MK, Niazi A, Salehi H, Abolimoghadam A (2015) Silver nanoparticles affect ACS expression in Tecomellaundulatain vitro culture. Plant Cell Tissue Organ Cult 121:227–236

    Article  CAS  Google Scholar 

  • Shaikhaldein HO, Al-Qurainy F, Nadeem M, Khan S, Tarroum M, Salih AM (2020) Biosynthesis and characterization of silver nanoparticles using Ochradenusarabicus and their physiological effect on Maeruaoblongifolia raised in vitro. Sci Rep 10:17569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh P, Kim Y-J, Zhang D, Yang D-C (2016) Biological synthesis of nanoparticles from plants and microorganisms. Trends Biotechnol 34:588–600

    Article  CAS  PubMed  Google Scholar 

  • Spinoso-Castillo J, Chavez-Santoscoy R, Bogdanchikova N, Pérez-Sato J, Morales-Ramos V, Bello-Bello J (2017) Antimicrobial and hormetic effects of silver nanoparticles on in vitro regeneration of vanilla (Vanilla planifolia Jacks. ex Andrews) using a temporary immersion system. Plant Cell Tissue Org Cult 129(2):195–207

    Article  CAS  Google Scholar 

  • Stebbing ARD (1982) Hormesis: the stimulation of growth by low levels of inhibitors. Sci Total Environ 22:213–234

    Article  CAS  PubMed  Google Scholar 

  • Swenson VA, Stacy AD, Gaylor MO, Ushijima B, Philmus B, Cozy LM, Videau NM, Videau P (2018) Assessment and verification of commercially available pressure cookers for laboratory sterilization. PLoS One 13(12):e0208769

    Article  PubMed  PubMed Central  Google Scholar 

  • Teixeira da Silva JA, Duong NT, Michi T, Seiichi F (2003) The effect of antibiotics on the in vitro growth response of chrysanthemum and tobacco stem transverse thin cell layers (tTcLs). SciHortic 97:397–410

    CAS  Google Scholar 

  • Timoteo C, Paiva R, dos Reis MV, Cunha Claro PI, Corrêa da Silva DP, Marconcini JM, de Oliveira JE (2019) Silver nanoparticles in the micropropagation of Campomanesiarufa (O. Berg) Nied. Plant Cell Tissue Organ Cult 137:359–368

    Article  CAS  Google Scholar 

  • Tung HT, Nam NB, Huy NP, Luan VQ, Hien VT, Phuong TTB, Le TD, Nhut DT (2018) A system for large scale production of Chrysanthemum using microponics with the supplement of silver nanoparticles under light-emitting diodes. SciHortic 232:153–161

    CAS  Google Scholar 

  • Tung HT, Bao HG, Cuong DM, Ngan HTM, Hien VT, Luan VQ, Vinh BVT, Phuong HTN, Nam NB, Trieu LN, Truong NK, Hoang PND, Nhut DT (2021) Silver nanoparticles as the sterilant in large-scale micropropagation of chrysanthemum. In Vitro Cell Dev Biol Plant:1–10

    Google Scholar 

  • Vasil IK, Thorpe TA (eds) (1994) Plant cell and tissue culture. Kluwer Academic Publishers, Dordrecht, pp 293–312

    Book  Google Scholar 

  • Wang XJ, Hsiao KC (1995) Sugar degradation during autoclaving: Effects of duration and solution volume on breakdown of glucose. Physiol Plant 94:415–418

    Article  CAS  Google Scholar 

  • Wang JW, Grandio EG, Newkirk GM, Demirer GS, Butrus S, Giraldo JP, Landry MP (2019) Nanoparticle-mediated genetic engineering of plants. Mol Plant 12:1037–1040

    Article  CAS  PubMed  Google Scholar 

  • Zahir A, Nadee M, Ahmad W, Giglioli-Guivarc’h N, Hano C, Abbasi BH (2019) Chemogenic silver nanoparticles enhance lignans and neolignans in cell suspension cultures of Linumusitatissimum L. Plant Cell Tissue Organ Cult 136:589–596

    Article  CAS  Google Scholar 

  • Zia M, Yaqoob K, Mannan A, Nisa S, Raza G, Rehman RU (2020) Regeneration response of carnation cultivars in response of silver nanoparticles under in vitro conditions. Vegetos 33:11–20

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tung, H.T., Bao, H.G., Buu, N.Q., Chau, N.H., Nhut, D.T. (2022). The Use of Silver Nanoparticles as a Disinfectant and Media Additive in Plant Micropropagation. In: Nhut, D.T., Tung, H.T., YEUNG, E.CT. (eds) Plant Tissue Culture: New Techniques and Application in Horticultural Species of Tropical Region. Springer, Singapore. https://doi.org/10.1007/978-981-16-6498-4_14

Download citation

Publish with us

Policies and ethics