Skip to main content

Application of Microbial Technology for Waste Removal

  • Chapter
  • First Online:
Microbial Technology for Sustainable Environment

Abstract

The continuous rise of waste in the environment becomes a global burden as it decreases the natural balance of waste recycle. It has further accelerated due to quality and amount of waste added in the environment in the last century. Increasing human population, introduction of xenobiotic compounds, overexploitation of natural resources and alarming increased waste generation rate are major threats to environmental safety. Several waste management practices have been implemented to decrease the harmful impacts of waste. Microorganisms are inhabitants of nature that play a major role in biodegradation, bioremediation, nutrient cycling and detoxification to maintain a sustainable environment. Microbial technology utilizes a wide range of selective microorganisms in specific condition for removal of waste from the environment. The utilization of microbes is only limited to culture-dependent method, and the majority of undiscovered microbes has also been explored using culture-independent techniques. Technological advancement has increased the exploration of microbial diversity for their utilization in solid and liquid waste management. Traditional and advanced techniques such as composting, anaerobic digestion and bioremediation techniques have been implemented in solid waste management. Waste from wastewater has been successfully removed using fixed-film processes, activated sludge, biosorption technology and microbial electrochemical technology. Notorious chemicals such as synthetic dyes and oil spillage have been also removed from wastewater using microbial technology. Microbial technology has been magnificently implemented around the world for removal of waste from the environment. This chapter represents traditional and advanced microbial technology in both solid and liquid waste treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abadulla E, Tzanov T, Costa S, Robra KH, Cavaco-Paulo A, Gubitz GM (2000) Decolorization and detoxification of textile dyes with a laccase from Trametes hirsuta. Appl Environ Microbiol 66(8):3357–3362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Abdulsalam S, Omale AB (2009) Comparison of biostimulation and bioaugmentation techniques for the remediation of used motor oil contaminated soil. Brazilian Arch Biol Technol 52(3):747–754

    Article  CAS  Google Scholar 

  • Aguilera A, Souza-Egipsy V, Gómez F, Amils R (2007) Development and structure of eukaryotic biofilms in an extreme acidic environment, Río Tinto (SW, Spain). Microb Ecol 53(2):294–305

    Article  PubMed  Google Scholar 

  • Aislabie J, Saul DJ, Foght JM (2006) Bioremediation of hydrocarbon-contaminated polar soils. Extremophiles 10(3):171–179

    Article  CAS  PubMed  Google Scholar 

  • Akpor OB, Adelani-Akande TA, Aderiye BI (2013) The effect of temperature on nutrient removal from wastewater by selected fungal species. Int J Curr Microbiol 2(9):328–340

    Google Scholar 

  • Albrecht R, Périssol C, Ruaudel F, Le Petit J, Terrom G (2010) Functional changes in culturable microbial communities during a co-composting process: carbon source utilization and co-metabolism. Waste Manage 30(5):764–770. https://doi.org/10.1016/j.wasman.2009.12.008

    Article  CAS  Google Scholar 

  • Amani T, Nosrati M, Sreekrishnan TR (2010) Anaerobic digestion from the viewpoint of microbiological, chemical, and operational aspects - a review. Environ Rev 18(1):255–278

    Article  CAS  Google Scholar 

  • Amaral AL, Da Motta M, Pons MN, Vivier H, Roche N, Mota M et al (2004) Survey of Protozoa and Metazoa populations in wastewater treatment plants by image analysis and discriminant analysis. Environmetrics 15(4):381–390

    Article  Google Scholar 

  • Arezoo D, Mohammed Maikudi U, Kang Tzin L, Rita Devi V, Nasser S, Pravin V et al (2017) Microbial aspects in wastewater treatment – a technical review. Environ Pollut Prot 2(2):75–84

    Google Scholar 

  • Arous F, Jaouani A, Mechichi T (2019) Oleaginous microorganisms for simultaneous biodiesel production and wastewater treatment: a review. In: Microbial wastewater treatment. Elsevier, Amsterdam, pp 153–174. https://doi.org/10.1016/B978-0-12-816809-7.00008-7

    Chapter  Google Scholar 

  • Arumugam K, Renganathan S, Renganathan K, Sharma NK, Babalola OO (2017) Enhancing the post consumer waste management through vermicomposting along with bioinoculumn. Int J Eng Trends Technol 44(4):179–182

    Article  Google Scholar 

  • Aulenta F, Catervi A, Majone M, Panero S, Reale P, Rossetti S (2007) Electron transfer from a solid-state electrode assisted by methyl viologen sustains efficient microbial reductive dechlorination of TCE. Environ Sci Technol 41(7):2554–2559

    Article  CAS  PubMed  Google Scholar 

  • Ayilara MS, Olanrewaju OS, Babalola OO, Odeyemi O (2020) Waste management through composting: challenges and potentials. Sustainability 12(11):1–23

    Article  CAS  Google Scholar 

  • Azócar L, Ciudad G, Heipieper HJ, Navia R (2010) Biotechnological processes for biodiesel production using alternative oils. Appl Microbiol Biotechnol 88(3):621–636

    Article  PubMed  CAS  Google Scholar 

  • Beffa T (2002) The composting biotechnology: a microbial aerobic slid substrate fermentation complex process. HappyswissCom [Internet], pp 1–37. http://www.happyswiss.com/compag/pdf/THECOMPOSTING BIOTECHNOLOGY COMPLETE.pdf

  • Brunner PH, Rechberger H (2015) Waste to energy - key element for sustainable waste management. Waste Manag 37(April 2018):3–12

    Article  CAS  PubMed  Google Scholar 

  • Cai T, Park SY, Li Y (2013) Nutrient recovery from wastewater streams by microalgae: status and prospects. Renew Sustain Energy Rev 19:360–369. https://doi.org/10.1016/j.rser.2012.11.030

    Article  CAS  Google Scholar 

  • Cayllahua JEB, Torem ML (2010) Biosorption of aluminum ions onto Rhodococcus opacus from wastewaters. Chem Eng J 161(1):1–8. http://www.sciencedirect.com/science/article/pii/S1385894710002445

    Article  CAS  Google Scholar 

  • Chen KF, Kao CM, Chen TY, Weng CH, Tsai CT (2006) Intrinsic bioremediation of MTBE-contaminated groundwater at a petroleum-hydrocarbon spill site. Environ Geol 50(3):439–445

    Article  CAS  Google Scholar 

  • Conesa JA, Martín-Gullón I, Font R, Jauhiainen J (2004) Complete study of the pyrolysis and gasification of scrap tires in a pilot plant reactor. Environ Sci Technol 38(11):3189–3194

    Article  CAS  PubMed  Google Scholar 

  • Cripps C, Bumpus JA, Aust SD (1990) Biodegradation of azo and heterocyclic dyes by Phanerochaete chrysosporium. Appl Environ Microbiol 56(4):1114–1118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • D’Annibale A, Rosetto F, Leonardi V, Federici F, Petruccioli M (2006) Role of autochthonous filamentous fungi in bioremediation of a soil historically contaminated with aromatic hydrocarbons. Appl Environ Microbiol 72(1):28–36

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Delille D, Duval A, Pelletier E (2008) Highly efficient pilot biopiles for on-site fertilization treatment of diesel oil-contaminated sub-Antarctic soil. Cold Reg Sci Technol 54(1):7–18

    Article  Google Scholar 

  • Demirbas A (2011) Waste management, waste resource facilities and waste conversion processes. Energy Convers Manag [Internet] 52(2):1280–1287. https://doi.org/10.1016/j.enconman.2010.09.025

    Article  Google Scholar 

  • Dias RL, Ruberto L, Calabró A, Lo BA, Del Panno MT, Mac Cormack WP (2015) Hydrocarbon removal and bacterial community structure in on-site biostimulated biopile systems designed for bioremediation of diesel-contaminated Antarctic soil. Polar Biol 38(5):677–687

    Article  Google Scholar 

  • Diaz LF, Savage GM (2007) Chapter 4 factors that affect the process. Waste Manage Ser 8:49–65

    Article  Google Scholar 

  • Dijkema GPJ, Reuter MA, Verhoef EV (2000) A new paradigm for waste management. Waste Manag 20(8):633–638

    Article  CAS  Google Scholar 

  • Fdez-Güelfo LA, Álvarez-Gallego C, Sales Márquez D, Romero García LI (2011) Dry-thermophilic anaerobic digestion of simulated organic fraction of municipal solid waste: process modeling. Bioresour Technol 102(2):606–611

    Article  PubMed  CAS  Google Scholar 

  • Fernandes L, Lucas MS, Maldonado MI, Oller I, Sampaio A (2014) Treatment of pulp mill wastewater by Cryptococcus podzolicus and solar photo-Fenton: a case study. Chem Eng J 245:158–165. https://doi.org/10.1016/j.cej.2014.02.043

    Article  CAS  Google Scholar 

  • Finstein MS, Miller FC, Strom PF (1983) Composting ecosystem management for waste treatment. Rev Med Suisse Romande 103(6):347–353

    Google Scholar 

  • Flemming H-C, Wingender J (2001) Relevance of microbial extracellular polymeric substances (EPSs) - Part II: technical aspects. Water Sci Technol 43(6):9–16. https://doi.org/10.2166/wst.2001.0328

    Article  CAS  PubMed  Google Scholar 

  • Gandolla M, Aragno M (1992) The importance of microbiology in waste management. Experientia 48:362–366

    Article  Google Scholar 

  • Garg A, Tothill IE (2009) A review of solid waste composting process-the UK perspective. J Dyn Soil Dyn Plant 3(1):57–63. http://www.ecochem.com/t_compost_faq2.html

    Google Scholar 

  • Ghiani G, Laganà D, Manni E, Musmanno R, Vigo D (2014) Operations research in solid waste management: A survey of strategic and tactical issues. Comput Oper Res [Internet] 44:22–32. https://doi.org/10.1016/j.cor.2013.10.006

    Article  Google Scholar 

  • Gonawala SS, Jardosh H (2018) Organic waste in composting: a brief review. Int J Curr Eng Technol 8(01):36–38

    Article  Google Scholar 

  • Goswami S, Syiem MB, Pakshirajan K (2015) Cadmium removal by Anabaena doliolum Ind1 isolated from a coal mining area in Meghalaya, India: associated structural and physiological alterations. Environ Eng Res 20(1):41–50

    Article  Google Scholar 

  • Guo X, Gu J, Gao H, Qin Q, Chen Z, Shao L et al (2012) Effects of Cu on metabolisms and enzyme activities of microbial communities in the process of composting. Bioresour Technol 108:140–148. https://doi.org/10.1016/j.biortech.2011.12.087

    Article  CAS  PubMed  Google Scholar 

  • Gupta J, Tyagi B, Rathour R (2019) Microbial diversity in ecosystem sustainability and biotechnological applications. Springer, New York

    Google Scholar 

  • Hachicha S, Sellami F, Cegarra J, Hachicha R, Drira N, Medhioub K et al (2009) Biological activity during co-composting of sludge issued from the OMW evaporation ponds with poultry manure-Physico-chemical characterization of the processed organic matter. J Hazard Mater 162(1):402–409

    Article  CAS  PubMed  Google Scholar 

  • Hoeppel RE, Hinchee RE, Arthur MF (1991) Bioventing soils contaminated with petroleum hydrocarbons. J Ind Microbiol 8(3):141–146

    Article  CAS  Google Scholar 

  • Holst O, Stenberg B, Christiansson M (1998) Biotechnological possibilities for waste tyre-rubber treatment. Biodegradation 9(3–4):301–310

    Article  CAS  PubMed  Google Scholar 

  • Huang B, Feng H, Ding Y, Zheng X, Wang M, Li N et al (2013) Microbial metabolism and activity in terms of nitrate removal in bioelectrochemical systems. Electrochim Acta 113:29–36

    Article  CAS  Google Scholar 

  • Idi A, Md Nor MH, Abdul Wahab MF, Ibrahim Z (2015) Photosynthetic bacteria: an eco-friendly and cheap tool for bioremediation. Rev Environ Sci Biotechnol 14(2):271–285

    Article  CAS  Google Scholar 

  • Jiunn-Jyi L, Yu-You L, Noike T (1997) Influences of pH and moisture content on the methane production in high-solids sludge digestion. Water Res 31(6):1518–1524

    Article  Google Scholar 

  • Johnston J, LaPara T, Behrens S (2019) Composition and dynamics of the activated sludge microbiome during seasonal nitrification failure. Sci Rep 9(1):1–15

    Article  Google Scholar 

  • Kanekar P, Sarnaik S (1991) An activated sludge process to reduce the pollution load of a dye-industry waste. Environ Pollut 70(1):27–33

    Article  CAS  PubMed  Google Scholar 

  • Kaouther Zaafouri AA (2014) Feasibility of a bioremediation process using biostimulation with inorganic nutrient NPK for hydrocarbon contaminated soil in Tunisia. J Bioremediat Biodegrad 5(4):224

    Article  CAS  Google Scholar 

  • Karanasios KA, Vasiliadou IA, Pavlou S, Vayenas DV (2010) Hydrogenotrophic denitrification of potable water: a review. J Hazard Mater 180(1–3):20–37. https://doi.org/10.1016/j.jhazmat.2010.04.090

    Article  CAS  PubMed  Google Scholar 

  • Kaushik P, Malik A (2009) Fungal dye decolourization: recent advances and future potential. Environ Int 35(1):127–141. http://www.sciencedirect.com/science/article/pii/S0160412008001037

    Article  CAS  PubMed  Google Scholar 

  • Khalid A, Arshad M, Anjum M, Mahmood T, Dawson L (2011) The anaerobic digestion of solid organic waste. Waste Manage 31(8):1737–1744. https://doi.org/10.1016/j.wasman.2011.03.021

    Article  CAS  Google Scholar 

  • Kumar S, Smith SR, Fowler G, Velis C, Kumar SJ, Arya S et al (2017) Challenges and opportunities associated with waste management in India. R Soc Open Sci 4(3):160764

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumari D, Li M, Pan X, Xin-Yi Q (2014) Effect of bacterial treatment on Cr(VI) remediation from soil and subsequent plantation of Pisum sativum. Ecol Eng 73:404–408. http://www.sciencedirect.com/science/article/pii/S0925857414005047

    Article  Google Scholar 

  • Kutsanedzie F (2015) Maturity and safety of compost processed in HV and TW composting systems. Int J Sci Technol Soc 3(4):232

    Article  Google Scholar 

  • Larsen MB, Schultz L, Glarborg P, Skaarup-Jensen L, Dam-Johansen K, Frandsen F et al (2006) Devolatilization characteristics of large particles of tyre rubber under combustion conditions. Fuel 85(10–11):1335–1345

    Article  CAS  Google Scholar 

  • Lee MD, Swindoll CM (1993) Bioventing for in situ remediation. Hydrol Sci J 38(4):273–282

    Article  CAS  Google Scholar 

  • Leow CW, Van Fan Y, Chua LS, Muhamad II, Klemes JJ, Lee CT (2018) A review on application of microorganisms for organic waste management. Chem Eng Trans 63:85–90

    Google Scholar 

  • Liu J, Wu Y, Wu C, Muylaert K, Vyverman W, Yu HQ et al (2017) Advanced nutrient removal from surface water by a consortium of attached microalgae and bacteria: a review. Bioresour Technol 241:1127–1137. https://doi.org/10.1016/j.biortech.2017.06.054

    Article  CAS  PubMed  Google Scholar 

  • Louhasakul Y, Cheirsilp B, Prasertsan P (2016) Valorization of palm oil mill effluent into lipid and cell-bound lipase by marine yeast Yarrowia lipolytica and their application in biodiesel production. Waste Biomass Valor 7(3):417–426

    Article  Google Scholar 

  • Ma X, Wang Y, Feng S, Wang S (2015) Comparison of four flocculants for removing algae in Dianchi Lake. Environ Earth Sci 74(5):3795–3804

    Article  CAS  Google Scholar 

  • Martins J, Peixe L, Vasconcelos V (2010) Cyanobacteria and bacteria co-occurrence in a wastewater treatment plant: absence of allelopathic effects. Water Sci Technol 62(8):1954–1962

    Article  CAS  PubMed  Google Scholar 

  • Mary KV (2011) Bioremediation - an overview. J Ind Pollut Control 27(2):161–168

    Google Scholar 

  • Mata-Alvarez J (2002) The biomethanization of the organic fraction of municipal solid waste. Water 21(October):59–61

    Google Scholar 

  • McKinney RE (1957) Activity of microorganisms in organic waste disposal. II. Aerobic processes. Appl Microbiol 5(3):167–174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller RM, Bartha R (1989) Evidence from liposome encapsulation for transport-limited microbial metabolism of solid alkanes. Appl Environ Microbiol 55(2):269–274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mishra A, Kumar S, Bhatnagar A (2019) Potential of fungal laccase in decolorization of synthetic dyes. In: Microbial wastewater treatment. Elsevier, Amsterdam, pp 127–151. https://doi.org/10.1016/B978-0-12-816809-7.00007-5

    Chapter  Google Scholar 

  • Mrozik A, Piotrowska-Seget Z (2010) Bioaugmentation as a strategy for cleaning up of soils contaminated with aromatic compounds. Microbiol Res 165(5):363–375. https://doi.org/10.1016/j.micres.2009.08.001

    Article  CAS  PubMed  Google Scholar 

  • Muniraj IK, Xiao L, Hu Z, Zhan X, Shi J (2013) Microbial lipid production from potato processing wastewater using oleaginous filamentous fungi Aspergillus oryzae. Water Res 47(10):3477–3483. https://doi.org/10.1016/j.watres.2013.03.046

    Article  CAS  PubMed  Google Scholar 

  • Ogawa T, Yatome C (1990) Biodégradation of azo dyes in multistage rotating biological contactor immobilized by assimilating bacteria. Bull Environ Contam Toxicol 44(4):561–566

    Article  CAS  PubMed  Google Scholar 

  • Omokhagbor Adams G, Tawari Fufeyin P, Eruke Okoro S, Ehinomen I (2020) Bioremediation, biostimulation and Bioaugmention: a review. Int J Environ Bioremediat Biodegrad 3(1):28–39

    Google Scholar 

  • Paillard D, Dubois V, Thiebaut R, Nathier F, Hoogland E, Caumette P et al (2005) Occurrence of Listeria spp. in effluents of French urban wastewater treatment plants. Appl Environ Microbiol 71(11):7562–7566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Panswad T, Luangdilok W (2000) Decolorization of reactive dyes with different molecular structures under different environmental conditions. Water Res 34(17):4177–4184

    Article  CAS  Google Scholar 

  • Perez-Garcia O, Escalante FME, de-Bashan LE, Bashan Y (2011) Heterotrophic cultures of microalgae: metabolism and potential products. Water Res 45(1):11–36

    Article  CAS  PubMed  Google Scholar 

  • Petric I, Avdihodžić E, Ibrić N (2015) Numerical simulation of composting process for mixture of organic fraction of municipal solid waste and poultry manure. Ecol Eng 75:242–249

    Article  Google Scholar 

  • Pous N, Puig S, Balaguer MD, Colprim J (2017) Effect of hydraulic retention time and substrate availability in denitrifying bioelectrochemical systems. Environ Sci Water Res Technol 3(5):922–929

    Article  CAS  Google Scholar 

  • Rabaey K, Van De Sompel K, Maignien L, Boon N, Aelterman P, Clauwaert P et al (2006) Microbial fuel cells for sulfide removal. Environ Sci Technol 40(17):5218–5224

    Article  CAS  PubMed  Google Scholar 

  • Rani N, Sangwan P, Joshi M, Sagar A, Bala K (2019) Microbes: a key player in industrial wastewater treatment. In: Microbial wastewater treatment. Elsevier, Amsterdam, pp 83–102. https://doi.org/10.1016/B978-0-12-816809-7.00005-1

    Chapter  Google Scholar 

  • Rastogi M, Nandal M, Khosla B (2020) Microbes as vital additives for solid waste composting. Heliyon 6(2):e03343. https://doi.org/10.1016/j.heliyon.2020.e03343

    Article  PubMed  PubMed Central  Google Scholar 

  • Rathour R, Gupta J, Kumar M, Hiloidhari M, Mehrotra AK, Thakur IS (2017) Metagenomic sequencing of microbial communities from brackish water of Pangong lake of the Northwest Indian Himalayas. Genome Announc 5(40):40–41

    Article  Google Scholar 

  • Ravikumar S, Baylon MG, Park SJ, Choi J (2017) Engineered microbial biosensors based on bacterial two-component systems as synthetic biotechnology platforms in bioremediation and biorefinery. Microb Cell Factories 16(1):1–10

    Article  CAS  Google Scholar 

  • Raza S, Ahmad J (2016) Composting process: a review. Int J Biol Res 4(2):102

    Article  Google Scholar 

  • Rogayan JD V, Tomboc EHF, Paje AV, Lim KLP, Ararro JAR, Ocampo JG, et al. Vermiculture and vermicomposting 2010;6(October 2010):1–23

    Google Scholar 

  • Sani RK, Banerjee UC (1999) Decolorization of triphenylmethane dyes and textile and dye-stuff effluent by Kurthia sp. Enzym Microb Technol 24(7):433–437

    Article  CAS  Google Scholar 

  • Sanscartier D, Zeeb B, Koch I, Reimer K (2009) Bioremediation of diesel-contaminated soil by heated and humidified biopile system in cold climates. Cold Reg Sci Technol 55(1):167–173. https://doi.org/10.1016/j.coldregions.2008.07.004

    Article  Google Scholar 

  • Schliephake K, Lonergan GT (1996) Laccase variation during dye decolonisation in A 200 L packed-bed bioreactor. Biotechnol Lett 18(8):881–886

    Article  CAS  Google Scholar 

  • Schröder U, Harnisch F, Angenent LT (2015) Microbial electrochemistry and technology: terminology and classification. Energy Environ Sci 8(2):513–519

    Article  CAS  Google Scholar 

  • Shalaby EA (2011) Prospects of effective microorganisms technology in wastes treatment in Egypt. Asian Pac J Trop Biomed 1(3):243–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharholy M, Ahmad K, Mahmood G, Trivedi RC (2008) Municipal solid waste management in Indian cities - a review. Waste Manag 28(2):459–467

    Article  PubMed  Google Scholar 

  • Sheng Y, Chen F, Sheng G, Fu J (2012) Water quality remediation in a heavily polluted tidal river in Guangzhou, South China. Aquat Ecosyst Health Manag 15(2):219–226

    Article  CAS  Google Scholar 

  • Silva-Bedoya LM, Sánchez-Pinzón MS, Cadavid-Restrepo GE, Moreno-Herrera CX (2016) Bacterial community analysis of an industrial wastewater treatment plant in Colombia with screening for lipid-degrading microorganisms. Microbiol Res 192:313–325. https://doi.org/10.1016/j.micres.2016.08.006

    Article  CAS  PubMed  Google Scholar 

  • Singh SPTG (2014) Application of bioremediation on solid waste management: a review. J Bioremediation Biodegrad 5(6):248

    Article  CAS  Google Scholar 

  • Stevenson K, Stallwood B, Hart AG (2008) Tire rubber recycling and bioremediation: a review. Biorem J 12(1):1–11

    Article  CAS  Google Scholar 

  • Tyagi M, da Fonseca MMR, de Carvalho CCCR (2011) Bioaugmentation and biostimulation strategies to improve the effectiveness of bioremediation processes. Biodegradation 22(2):231–241

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Zhang W, Zhao Y, Peng H, Shi Y (2016) Modelling water quality and quantity with the influence of inter-basin water diversion projects and cascade reservoirs in the middle-lower Hanjiang River. J Hydrol [Internet] 541:1348–1362. https://doi.org/10.1016/j.jhydrol.2016.08.039

    Article  Google Scholar 

  • Ward AJ, Hobbs PJ, Holliman PJ, Jones DL (2008) Optimisation of the anaerobic digestion of agricultural resources. Bioresour Technol 99(17):7928–7940

    Article  CAS  PubMed  Google Scholar 

  • Waszkielis KM, Wronowski R, Chlebus W, Białobrzewski I, Dach J, Pilarski K et al (2013) The effect of temperature, composition and phase of the composting process on the thermal conductivity of the substrate. Ecol Eng 61:354–357. https://doi.org/10.1016/j.ecoleng.2013.09.024

    Article  Google Scholar 

  • Wei Y, Li J, Shi D, Liu G, Zhao Y, Shimaoka T (2017) Environmental challenges impeding the composting of biodegradable municipal solid waste: a critical review. Resour Conserv Recyclying 122:51–65. https://doi.org/10.1016/j.resconrec.2017.01.024

    Article  Google Scholar 

  • Whelan MJ, Coulon F, Hince G, Rayner J, McWatters R, Spedding T et al (2015) Fate and transport of petroleum hydrocarbons in engineered biopiles in polar regions. Chemosphere 131:232–240. https://doi.org/10.1016/j.chemosphere.2014.10.088

    Article  CAS  PubMed  Google Scholar 

  • Wu X, Xie YB (2012) The field application of microbial technology used in bioremediation of urban polluted river. Adv Mater Res 518–523:2906–2911

    Article  CAS  Google Scholar 

  • Xu L, Yu H, Yu J, Luo H, Li Z (2017) Study on ecological remediation method of purification of rural polluted slow-flow water. 2017;3(Bep):275–282

    Google Scholar 

  • Yang Y, Wang L, Xiang F, Zhao L, Qiao Z (2020) Activated sludge microbial community and treatment performance of wastewater treatment plants in industrial and municipal zones. Int J Environ Res Public Health 17(2):436

    Article  CAS  PubMed Central  Google Scholar 

  • Young L, Yu J (1997) Ligninase-catalysed decolorization of synthetic dyes. Water Res 31(5):1187–1193

    Article  CAS  Google Scholar 

  • Zabaniotou AA, Stavropoulos G (2003) Pyrolysis of used automobile tires and residual char utilization. J Anal Appl Pyrolysis 70(2):711–722

    Article  CAS  Google Scholar 

  • Zhang L, Sun X (2016) Influence of bulking agents on physical, chemical, and microbiological properties during the two-stage composting of green waste. Waste Manage 48:115–126. https://doi.org/10.1016/j.wasman.2015.11.032

    Article  CAS  Google Scholar 

  • Zhou W, Wang W, Li Y, Zhang Y (2013) Lipid production by Rhodosporidium toruloides Y2 in bioethanol wastewater and evaluation of biomass energetic yield. Bioresour Technol 127:435–440. https://doi.org/10.1016/j.biortech.2012.09.067

    Article  CAS  PubMed  Google Scholar 

  • Zissi U, Lyberatos G (1996) Azo-dye biodegradation under anoxic conditions. Water Sci Technol 34(5–6):495–500. https://doi.org/10.1016/0273-1223(96)00684-1

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, R.R., Bhattacharya, C., Vishwakarma, N.P. (2021). Application of Microbial Technology for Waste Removal. In: Bhatt, P., Gangola, S., Udayanga, D., Kumar, G. (eds) Microbial Technology for Sustainable Environment. Springer, Singapore. https://doi.org/10.1007/978-981-16-3840-4_16

Download citation

Publish with us

Policies and ethics