Skip to main content

Potential of Metabolomics in Plant Abiotic Stress Management

  • Chapter
  • First Online:
Omics Technologies for Sustainable Agriculture and Global Food Security (Vol II)

Abstract

Metabolomics reveals the metabolite profile of biological systems, its various chemical compositions, its physiology, and complexity at a point in time. Metabolites are the main working horses to drive for any phenotype as compared to their corresponding DNA or RNA component by itself alone. This omics tool integrated with mass spectrometric analysis can be applied to study the molecular responses in plants against biotic and abiotic stresses. Changes in the flux of both primary and secondary metabolites are observed against several stress conditions. The tools of metabolomics help the scientists to understand the core-metabolite profile conferring stress-resistance in plants and to develop core-metabolite profile in any crop species for resilience against climate change and various biotic and abiotic stresses. Several key metabolites may play roles against multiple stress-resistance mechanisms in plants. Integration of multi-omics and meta-omics studies may reveal a globalized overview of biochemical, physiological, and molecular processes of stress response in plants. It will help in the studies for the improvement of quality and yield as well as development of stress-resistance in commercially important crops.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ABA:

Abscisic acid

APX:

Ascorbate peroxidase

CAT:

Catalase

DHAR:

Dehydro-ascorbate reductase

MS:

Mass spectrometry

NO:

Nitric oxide

t-ZOG:

Trans-zeatin-O-glucoside

UPLC:

Ultra-performance liquid chromatography

References

  • Abd Ghafar SZ, Mediani A, Maulidiani M, Rudiyanto R, Mohd GH, Ramli NS, Abas F (2020) Complementary NMR- and MS-based metabolomics approaches reveal the correlations of phytochemicals and biological activities in Phyllanthus acidus leaf extracts. Food Res Int 136:109312

    Article  CAS  PubMed  Google Scholar 

  • Afendi FM, Okada T, Yamazaki M, Hirai-Morita A, Nakamura Y, Nakamura K, Ikeda S, Takahashi H, Altaf-Ul-Amin M, Darusman LK, Saito K, Kanaya S (2012) KNApSAcK family databases: integrated metabolite-plant species databases for multifaceted plant research. Plant Cell Physiol 53(2):e1

    Article  CAS  PubMed  Google Scholar 

  • Aharoni A, Ric de Vos CH, Verhoeven HA, Maliepaard CA, Kruppa G, Bino R, Goodenowe DB (2002) Nontargeted metabolome analysis by use of Fourier transform ion cyclotron mass spectrometry. OMICS 6:217–234

    Article  CAS  PubMed  Google Scholar 

  • Ahsan N, Lee SH, Lee DG, Lee H, Lee SW, Bahk JD, Lee BH (2007) Physiological and protein profiles alternation of germinating rice seedlings exposed to acute cadmium toxicity. C R Biol 330(10):735–746

    Article  CAS  PubMed  Google Scholar 

  • Allwood JW, De Vos RC, Moing A, Deborde C, Erban A, Kopka J, Goodacre R, Hall RD (2011) Plant metabolomics and its potential for systems biology research background concepts, technology, and methodology. Methods Enzymol 500:299–336

    Article  CAS  PubMed  Google Scholar 

  • Angelone M, Bini C (1992) Trace element concentrations in soils and plants of western Europe. In: Adriano DC (ed) Biogeochemistry of trace metals. CRC Press, Boca Raton, pp 19–60

    Google Scholar 

  • Ashmore MR (2005) Assessing the future global impacts of ozone on vegetation. Plant Cell Environ 28(8):949–964

    Article  CAS  Google Scholar 

  • Ashraf M, Harris PJC (2004) Potential biochemical indicators of salinity tolerance in plants. Plant Sci 166(1):3–16

    Article  CAS  Google Scholar 

  • Balla K, Bencze S, Janda T, Veisz O (2009) Analysis of heat stress tolerance in winter wheat. Acta Agron Hung 57(4):437–444

    Article  Google Scholar 

  • Banu MN, Hoque MA, Watanabe-Sugimoto M, Islam MM, Uraji M, Matsuoka K, Nakamura Y, Murata Y (2010) Proline and glycinebetaine ameliorated NaCl stress via scavenging of hydrogen peroxide and methylglyoxal but not superoxide or nitric oxide in tobacco cultured cells. Biosci Biotechnol Biochem 74(10):2043–2049

    Article  CAS  PubMed  Google Scholar 

  • Barding GA Jr, Béni S, Fukao T, Bailey-Serres J, Larive CK (2013) Comparison of GC-MS and NMR for metabolite profiling of rice subjected to submergence stress. J Proteome Res 12(2):898–909

    Article  CAS  PubMed  Google Scholar 

  • Barnett NM, Naylor AW (1966) Amino acid and protein metabolism in Bermuda grass during water stress. Plant Physiol 41(7):1222–1230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bornman JF, Vogelmann TC, Martin G (1991) Measurement of chlorophyll fluorescence within leaves using a fibreoptic microprobe. Plant Cell Environ 14(7):719–725

    Article  CAS  Google Scholar 

  • Brown SC, Kruppa G, Dasseux JL (2005) Metabolomics applications of FT-ICR mass spectrometry. Mass Spectrom Rev 24(2):223–231

    Article  CAS  PubMed  Google Scholar 

  • Caspi R, Billington R, Ferrer L, Foerster H, Fulcher CA, Keseler IM, Kothari A, Krummenacker M, Latendresse M, Mueller LA, Ong Q, Paley S, Subhraveti P, Weaver DS, Karp PD (2015) The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genomedatabases. Nucleic Acids Res 2015:1164

    Google Scholar 

  • Casson SA, Chilley PM, Topping JF, Evans IM, Souter MA, Lindsey K (2002) The POLARIS gene of Arabidopsis encodes a predicted peptide required for correct root growth and leaf vascular patterning. Plant Cell 14:1705–1721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chakraborty U, Pradhan B (2011) Drought stress-induced oxidative stress and antioxidative responses in four wheat (Triticum aestivum L.) varieties. Arch Agron Soil Sci 58(6):617–630

    Article  CAS  Google Scholar 

  • Cisneros-Zevallos L (2003) The use of controlled postharvest abiotic stresses as a tool for enhancing the nutraceutical content and adding-value of fresh fruits and vegetables. J Food Sci 68(5):1560–1565

    Article  CAS  Google Scholar 

  • Cui G, Lu Y, Zheng C, Liu Z, Sai J (2019) Relationship between Soil Salinization and Groundwater Hydration in Yaoba Oasis, Northwest China. Watermark 11(1):175

    Article  CAS  Google Scholar 

  • Demiral T, Türkan I (2005) Comparative lipid peroxidation, antioxidant defense systems and proline content in roots of two rice cultivars differing in salt tolerance. Environ Exp Bot 53(3):247–257

    Article  CAS  Google Scholar 

  • Dreher K (2014) Putting the plant metabolic network pathway databases to work: going offline to gain new capabilities. Methods Mol Biol 1083:151–171

    Article  CAS  PubMed  Google Scholar 

  • Egli DB, TeKrony DM, Spears JF (2005) Effect of high temperature stress during different stages of seed development in soybean [Glycine max (L.) Merrill]. Seed Technol 27(2):177–189

    Google Scholar 

  • Elhiti M, Stasolla C (2012) Abnormal development and altered hormone profile and sensitivity in Arabidopsis plants ectopically expressing Brassica shoot apical meristem genes. J Genet Eng Biotechnol 10:23–32

    Article  CAS  Google Scholar 

  • El-Shabrawi H, Kumar B, Kaul T, Reddy MK, Singla-Pareek SL, Sopory SK (2010) Redox homeostasis, antioxidant defense, and methylglyoxal detoxification as markers for salt tolerance in Pokkali rice. Protoplasma 245(1-4):85–96

    Article  CAS  PubMed  Google Scholar 

  • Empadinhas N, da Costa MS (2008) Osmoadaptation mechanisms in prokaryotes: distribution of compatible solutes. Int Microbiol 3:151–161

    Google Scholar 

  • FAO (2009) Food security and agricultural mitigation in developing countries: options for capturing synergies. Rome, Italy. www.fao.org/docrep/012/i1318e/i1318e00.pdf

  • Farooq M, Wahid A, Kobayash N (2009) Plant drought stress: effects, mechanisms and management. Agron Sustain Dev 29:185–212

    Article  Google Scholar 

  • Fernandez-Pozo N, Menda N, Edwards JD, Saha S, Tecle IY, Strickler SR, Bombarely A, Fisher-York T, Pujar A, Foerster H, Yan A, Mueller LA (2015) The sol genomics network (SGN)--from genotype to phenotype to breeding. Nucleic Acids Res 43:1036–1041

    Article  CAS  Google Scholar 

  • Fukushima A, Kusano M, Mejia RF, Iwasa M, Kobayashi M, Hayashi N, Watanabe-Takahashi A, Narisawa T, Tohge T, Hur M, Wurtele ES, Nikolau BJ, Saito K (2014) Metabolomic characterization of knockout mutants in arabidopsis: development of a metabolite profiling database for knockout mutants in arabidopsis. Plant Physiol 165(3):948–961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galinski EA, Trüper HG (1994) Microbial behaviour in salt-stressed ecosystems. FEMS Microbiol Rev 15(2-3):95–108

    Article  CAS  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48(12):909–930

    Article  CAS  PubMed  Google Scholar 

  • Gill SS, Khan NA, Anjum NA, Tuteja N (2011) Amelioration of cadmium stress in crop plants by nutrients management: morphological, physiological and biochemical aspects. Plant Stress 5(1):1–23

    Google Scholar 

  • Gillespie KM, Rogers A, Ainsworth EA (2011) Growth at elevated ozone or elevated carbon dioxide concentration alters antioxidant capacity and response to acute oxidative stress in soybean (Glycine max). J Exp Bot 62(8):2667–2678

    Article  CAS  PubMed  Google Scholar 

  • Groszmann M, Gonzalez-Bayon R, Lyons RL, Greaves IK, Kazan K, Peacock WJ, Dennis ES (2015) Hormone regulated defense and stress response networks contribute to heterosis in Arabidopsis F1 hybrids. Proc Natl Acad Sci U S A 2015:19926

    Google Scholar 

  • Guo YP, Zhou HF, Zhang LC (2006) Photosynthetic characteristics and protective mechanisms against photooxidation during high temperature stress in two citrus species. Sci Hortic 108:260–267

    Article  CAS  Google Scholar 

  • Hall AE (1992) Breeding for heat tolerance. Plant Breed Rev 10:129–168

    Google Scholar 

  • Hasanuzzaman M, Hossain MA, Fujita M (2011a) Nitric oxide modulates antioxidant defense and the methylglyoxal detoxification system and reduces salinity-induced damage of wheat seedlings. Plant Biotechnol Rep 5:353–365

    Article  Google Scholar 

  • Hasanuzzaman M, Hossain MA, Fujita M (2011b) Selenium-induced upregulation of the antioxidant defense and methylglyoxal detoxification system reduces salinity-induced damage in rapeseed seedlings. Biol Trace Elem Res 143:1704–1721

    Article  CAS  PubMed  Google Scholar 

  • He DL, Wong CH, He YH (2003) The effect of reduction of ultraviolet–B radiance on the content of flavonoid in leaves of wheat. Chin J Agrometerol 24(4):32

    Google Scholar 

  • Heckathorn SA, Mueller JK, Laguidice S, Zhu B, Barrett T, Blair B, Dong Y (2004) Chloroplast small heat-shock proteins protect photosynthesis during heavy metal stress. Am J Bot 91(9):1312–1318

    Article  CAS  PubMed  Google Scholar 

  • Heuberger AL, Robison FM, Lyons SM, Broeckling CD, Prenni JE (2014) Evaluating plant immunity using mass spectrometry-based metabolomics workflows. Front Plant Sci 5:291

    Article  PubMed  PubMed Central  Google Scholar 

  • Hossain MA, Hasanuzzaman M, Fujita M (2010) Up-regulation of antioxidant and glyoxalase systems by exogenous glycinebetaine and proline in mung bean confer tolerance to cadmium stress. Physiol Mol Biol Plants 16:259–272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hossain M, Hanafi M, Jol H, Jamal T (2011) Dry matter and nutrient partitioning of kenaf (Hibiscus cannabinus L.) varieties grown on sandy bris soil. Aust J Crop Sci 5(6):654–659

    CAS  Google Scholar 

  • Howarth CJ (2005) Genetic improvements of tolerance to high temperature. In: Ashraf M, Harris PJC (eds) Abiotic stresses: plant resistance through breeding and molecular approaches. Haworth Press Inc, New York, pp 277–300

    Google Scholar 

  • Huala E, Dickerman AW, Garcia-Hernandez M, Weems D, Reiser L, LaFond F et al (2001) The Arabidopsis Information Resource (TAIR): a comprehensive database and web-based information retrieval, analysis, and visualization system for a model plant. Nucleic Acids Res 29(1):102–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang M, Guo Z (2005) Responses of antioxidative system to chilling stress in two rice cultivars differing in sensitivity. Biol Plant 49:81–84

    Article  CAS  Google Scholar 

  • Irfan M, Hayat S, Hayat Q, Afroz S, Ahmad A (2010) Physiological and biochemical changes in plants under waterlogging. Protoplasma 241:3–17

    Article  CAS  PubMed  Google Scholar 

  • Islam MN, Downey F, Ng CKY (2011) Comparative analysis of bioactive phytochemicals from Scutellaria baicalensis, Scutellaria lateriflora, Scutellaria racemosa, Scutellaria tomentosa and Scutellaria wrightii by LC-DAD-MS. Metabolomics 7:446–453

    Article  CAS  Google Scholar 

  • Ismail AM, Hall AE (1999) Reproductive-stage heat tolerance, leaf membrane thermostability and plant morphology in cowpea. Crop Sci 39(6):1762–1768

    Article  Google Scholar 

  • Issaq HJ, Van QN, Waybright TJ, Muschik GM, Veenstra TD (2009) Analytical and statistical approaches to metabolomics research. J Sep Sci 32(13):2183–2199

    Article  CAS  PubMed  Google Scholar 

  • Jones RA, Scott SJ (1983) Improvement of tomato flavor by genetically increasing sugar and acid contents. Euphytica 32:845–855

    Article  Google Scholar 

  • Kalinová B, Jiros P, Zd'árek J, Wen X, Hoskovec M (2006) GCxGC/TOF MS technique-a new tool in identification of insect pheromones: analysis of the persimmon bark borer sex pheromone gland. Talanta 69(3):542–547

    Article  PubMed  CAS  Google Scholar 

  • Kamthan A, Kamthan M, Chakraborty N, Chakraborty S, Datta A (2013) A simple protocol for extraction, derivatization, and analysis of tomato leaf and fruit lipophilic metabolites using GC-MS. https://doi.org/10.1038/protex.2012.061

  • Khan TA, Mazid M, Mohammad F (2011) Status of secondary plant products under abiotic stress: an overview. J Stress Physiol Biochem 7(2):75–98

    Google Scholar 

  • Krasensky J, Jonak C (2012) Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. J Exp Bot 63(4):1593–1608

    Article  CAS  PubMed  Google Scholar 

  • Kumar R, Bohra A, Pandey AK, Pandey MK, Kumar A (2017) Metabolomics for plant improvement: status and prospects. Front Plant Sci 8:1302

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar R, Sharma V, Suryavanshi SS, Ramrao DP, Veershetty V et al (2021) Understanding omics driven plant improvement and de-novo crop domestication: some examples. Front Genet. https://doi.org/10.3389/fgene.2021.637141

  • Lamesch P, Berardini TZ, Li D, Swarbreck D, Wilks C, Sasidharan R, Muller R, Dreher K, Alexander DL, Garcia-Hernandez M et al (2012) The arabidopsis information resource (TAIR): improved gene annotation and new tools. Nucleic Acids Res 40:1202–1210

    Article  CAS  Google Scholar 

  • Larson RA (1988) The antioxidants of higher plants. Phytochemistry 27:969–978

    Article  CAS  Google Scholar 

  • Lei Z, Huhman DV, Sumner LW (2011) Mass spectrometry strategies in metabolomics. J Biol Chem 286:25435–25442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li JG, Li HL, Peng SQ (2011) Three R2R3 MYB transcription factor genes from Capsicum annuum showing differential expression during fruit ripening. Afr J Biotecnol 10(42):8267–8274

    Article  CAS  Google Scholar 

  • Liang CJ, Huang XH, Zhou Q (2006) Effect of cerium on photosynthetic characteristics of soybean seedling exposed to supplementary ultraviolet-B radiation. J Environ Sci 18:1147–1151

    Article  CAS  Google Scholar 

  • Lin T, Zhu G, Zhang J, Xu X, Yu Q, Zheng Z, Zhang Z, Lun Y, Li S, Wang X, Huang Z, Li J, Zhang C, Wang T, Zhang Y et al (2014) Genomic analyses provide insights into the history of tomato breeding. Nat Genet 46(11):1220–1226

    Google Scholar 

  • Liu J, Mehdi S, Topping J, Tarkowski P, Lindsey K (2010) Modelling and experimental analysis of hormonal crosstalk in Arabidopsis. Mol Syst Biol 6:373

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Llamas A, Ullrich CI, Sanz A (2000) Plant Soil 219(1/2):21–28

    Article  CAS  Google Scholar 

  • Mackerness AHS, John CF, Jordan B, Thomas B (2001) Early signaling components in ultraviolet-B responses: distinct roles for different reactive oxygen species and nitric oxide. FEBS Lett 489:237–242

    Article  CAS  Google Scholar 

  • Mahajan S, Tuteja N (2005) Cold, salinity and drought stresses: an overview. Arch Biochem Biophys 444(2):139–158

    Article  CAS  PubMed  Google Scholar 

  • Malik AI, Colmer TD, Lambers H, Setter TL, Schortemeyer M (2002) Short-term waterlogging has long-term effects on the growth and physiology of wheat. New Phytol 153:225–236

    Article  Google Scholar 

  • Marrs KA (1996) The functions and regulation of glutathione s-transferases in plants. Annu Rev Plant Physiol Plant Mol Biol 47:127–158

    Article  CAS  PubMed  Google Scholar 

  • Matsuda F, Hirai MY, Sasaki E, Akiyama K, Yonekura-Sakakibara K, Provart NJ, Sakurai T, Shimada Y, Saito K (2011) AtMetExpress development: a phytochemical atlas of Arabidopsis development. Plant Physiol 152:566–578

    Article  CAS  Google Scholar 

  • Mattioli R, Costantino P, Trovato M (2009) Proline accumulation in plants: not only stress. Plant Signal Behav 4(11):1016–1018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meng W, Su YC, Saunders RM, Chye ML (2011) The rice acyl-CoA-binding protein gene family: phylogeny, expression and functional analysis. New Phytol 189(4):1170–1184

    Article  CAS  PubMed  Google Scholar 

  • Mittova V, Guy M, Tal M, Volokita M (2004) Salinity up-regulates the antioxidative system in root mitochondria and peroxisomes of the wild salt-tolerant tomato species Lycopersicon pennellii. J Exp Bot 55(399):1105–1113

    Article  CAS  PubMed  Google Scholar 

  • Muchate NS, Nikalje GC, Rajurkar NS et al (2016) Plant salt stress: adaptive responses, tolerance mechanism and bioengineering for salt tolerance. Bot Rev 82:371–406

    Article  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  • Newton AC, Johnson SN, Gregory PJ (2011) Implications of climate change for diseases, crop yields and food security. Euphytica 179(1):3–18

    Article  Google Scholar 

  • Nordzieke DE, Medraño-Fernandez I (2018) The plasma membrane: a platform for intra- and intercellular redox signaling. Antioxidants 7(11):168

    Article  PubMed Central  CAS  Google Scholar 

  • Oikawa K, Yamasato A, Kong SG, Kasahara M, Nakai M, Takahashi F, Ogura Y, Kagawa T, Wada M (2008) Chloroplast outer envelope protein CHUP1 is essential for chloroplast anchorage to the plasma membrane and chloroplast movement. Plant Physiol 2:829–842

    Article  CAS  Google Scholar 

  • Orozco-Cárdenas ML, Narváez-Vásquez J, Ryan CA (2001) Hydrogen peroxide acts as a second messenger for the induction of defense genes in tomato plants in response to wounding, system in, and methyl jasmonate. Plant Cell 13(1):179–191

    Article  PubMed  PubMed Central  Google Scholar 

  • Phang TH, Shao G, Lam HM (2008) Salt tolerance in soybean. J Integr Plant Biol 50(10):1196–1212

    Article  CAS  PubMed  Google Scholar 

  • Ralston-Hooper K, Hopf A, Oh C, Zhang X, Adamec J, Sepúlveda MS (2008) Development of GCxGC/TOF-MS metabolomics for use in ecotoxicological studies with invertebrates. Aquat Toxicol 88(1):48–52

    Article  CAS  PubMed  Google Scholar 

  • Ramautar R, de Jong GJ (2014) Recent developments in liquid-phase separation techniques for metabolomics. Bioanalysis 6(7):1011–1026

    Article  CAS  PubMed  Google Scholar 

  • Ramautar R, Somsen GW, de Jong GJ (2013) CE-MS in metabolomics: developments and applications in the period 2010-2012. Electrophoresis 30(1):276–291

    Article  CAS  Google Scholar 

  • Rao MV, Paliyath G, Ormrod DP (1996) Ultraviolet-B- and ozone-induced biochemical changes in antioxidant enzymes of arabidopsis thaliana. Plant Physiol 110(1):125–136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rathinasabapathi B (2000) Metabolic engineering for stress tolerance: installing osmoprotectant synthesis pathways. Ann Bot 86(4):709–716

    Article  CAS  Google Scholar 

  • Ren HB, Wei KF, Jia WS, Davies WJ, Zhang JH (2007) Modulation of root signals in relation to stomatal sensitivity to root-sourced abscisic acid in drought-affected plants. J Integr Plant Biol 49:1410–1420

    Article  CAS  Google Scholar 

  • Rivas-Ubach A, Sardans J, Pérez-Trujillo M, Estiarte M, Peñuelas J (2012) Strong relationship between elemental stoichiometry and metabolome in plants. Proc Natl Acad Sci U S A 109(11):4181–4186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saika H, Oikawa A, Nakabayashi R, Matsuda F, Saito K, Toki S (2012) Changes in primary and secondary metabolite levels in response to gene targeting-mediated site-directed mutagenesis of the anthranilate synthase gene in rice. Meta 2(4):1123–1138

    CAS  Google Scholar 

  • Schmidt H, Günther C, Weber M, Spörlein C, Loscher S, Böttcher C, Schobert R, Clemens S (2014) Metabolome analysis of Arabidopsis thaliana roots identifies a key metabolic pathway for iron acquisition. PLoS One 9:e102444

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schöffl F, Prändl R, Reindl A (1999) Molecular responses to heat stress. In: Yamaguchi-Shinozai K, Shinozaki K (eds) Molecular responses to cold, drought, heat and salt stress in higher plants. Landes Co., Austin, pp 81–98

    Google Scholar 

  • Sharma P, Dubey RS (2007) Involvement of oxidative stress and role of antioxidative defense system in growing rice seedlings exposed to toxic concentrations of aluminum. Plant Cell Rep 26:2027–2038

    Article  CAS  PubMed  Google Scholar 

  • Sharma K, Sarma S, Bohra A, Mitra A, Sharma NK, Kumar A (2018) Plant metabolomics: an emerging technology for crop improvement. In: Çelik O (ed) New visions in plant science, 1st edn. IntechOpen, London, pp 65–79

    Google Scholar 

  • Sharma V, Gupta P, Priscilla K, Hangargi B, Veershetty A, Ramrao DP, Suresh S, Narasanna R, Naik GR, Kumar A, Guo B, Zhuang W, Varshney RK, Pandey MK, Kumar R (2021) Metabolomics intervention towards better understanding of plant traits. Cells 10(2):346. https://doi.org/10.3390/cells10020346

  • Shuhai L, Zhu Y, Yang S, Cai Z (2011) LC/MS-based non-targeted metabolomics for the investigation of general toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin in C57BL/6J and DBA/2J mice. Int J Mass Spectrom 301(1-3):29–36

    Article  CAS  Google Scholar 

  • Shulaev V, Cortes D, Miller G, Mittler R (2008) Metabolomics for plant stress response. Physiol Plant 32(2):199–208

    Article  CAS  Google Scholar 

  • Shunya S, Nobuyuki U (2019) Guard cell membrane anion transport systems and their regulatory components: an elaborate mechanism controlling stress-induced stomatal closure. Plan Theory 8(1):9

    Google Scholar 

  • Singh K, Kumar S, Rani A, Gulati A, Ahuja PS (2009) Phenylalanine ammonia-lyase (PAL) and cinnamate 4-hydroxylase (C4H) and catechins (flavan-3-ols) accumulation in tea. Funct Integr Genomics 9(1):125–134

    Article  CAS  PubMed  Google Scholar 

  • Sinha RP, Barbieri ES, Lebert M, Helbling EW, Häder D-P (2003) Effects of solar radiation on phycobiliproteins of marine red algae. Trends Photochem Photobiol 10:149–157

    CAS  Google Scholar 

  • Solanke AU, Sharma AK (2008) Signal transduction during cold stress in plants. Physiol Mol Biol Plants 14(1-2):69–79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun WY, Lu QW, Gao H et al (2017) Simultaneous determination of hydrophilic and lipophilic constituents in herbal medicines using directly-coupled reversed-phase and hydrophilic interaction liquid chromatography-tandem mass spectrometry. Sci Rep 7:7061

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sun LR, Yue CM, Hao FS (2019) Update on roles of nitric oxide in regulating stomatal closure. Plant Signal Behav 14:10

    Google Scholar 

  • Timischl B, Dettmer K, Kaspar H, Thieme M, Oefner PJ (2008) Development of a quantitative, validated capillary electrophoresis-time of flight-mass spectrometry method with integrated high-confidence analyte identification for metabolomics. Electrophoresis 29(10):2203–2214

    Article  CAS  PubMed  Google Scholar 

  • Tsugawa H, Bamba T, Shinohara M, Nishiumi S, Yoshida M, Fukusaki E (2011) Practical non-targeted gas chromatography/mass spectrometry-based metabolomics platform for metabolic phenotype analysis. J Biosci Bioeng 112:292–298

    Article  CAS  PubMed  Google Scholar 

  • Verbruggen N, Hermans C (2008) Proline accumulation in plants: a review. Amino Acids 35(4):753–759

    Article  CAS  PubMed  Google Scholar 

  • Verheul MJ, Picatto C, Stamp P (1996) Growth and development of maize (Zea mays L.) seedlings under chilling conditions in the field. Eur J Agron 5(1-2):31–43

    Article  Google Scholar 

  • Verslues PE, Bray EA (2006) Role of abscisic acid (ABA) and Arabidopsis thaliana ABA-insensitive loci in low water potential-induced ABA and proline accumulation. J Exp Bot 57:201–212

    Article  CAS  PubMed  Google Scholar 

  • Vickers CE, Gershenzon J, Lerdau MT, Loreto FA (2009) Unified mechanism of action for volatile isoprenoids in plant abiotic stress. Nat Chem Biol 5(5):283–291

    Article  CAS  PubMed  Google Scholar 

  • Vinit-Dunand F, Epron D, Alaoui-SossC B, Badot P-M (2002) Effects of copper on growth and on photosynthesis of mature and expanding leaves in cucumber plants. Plant Sci 163:53–58

    Article  CAS  Google Scholar 

  • Wahid A, Gelani S, Ashraf M, Foolad MR (2007) Heat tolerance in plants: an overview. Environ Exp Bot 61(3):199–223

    Article  Google Scholar 

  • Wang A, Yamakake J, Kudo H, Wakasa Y, Hatsuyama Y, Igarashi M, Kasai A, Li T, Harada T (2009) Null mutation of the MdACS3 gene, coding for a ripening-specific 1-aminocyclopropane-1-carboxylate synthase, leads to long shelf life in apple fruit. Plant Physiol 151(1):391–399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winning H, Rold E, Dragsted LO, Viereck N, Poulsen M, Sanchez-Moreno C, Cano P, Engelsen SB (2009) An exploratory NMR nutri-metabonomic investigation reveals dimethyl sulfone as a dietary biomarker for onion intake. Analyst 134:2344–2351

    Article  CAS  PubMed  Google Scholar 

  • Wu CY, Trieu A, Radhakrishnan P, Kwok SF, Harris S, Zhang K, Wang J, Wan J, Zhai H, Takatsuto S, Matsumoto S, Fujioka S, Feldmann KA, Pennell RI (2008) Brassinosteroids regulate grain filling in rice. Plant Cell 20(8):2130–2145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Z, Zhou G, Shimizu H (2010) Plant responses to drought and rewatering. Plant Signal Behav 5(6):649–654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yancey PH (2005) Organic osmolytes as compatible, metabolic and counteracting cytoprotectants in high osmolarity and other stresses. J Exp Biol 208(Pt 15):2819–2830

    Article  CAS  PubMed  Google Scholar 

  • Yin H, Chen Q, Yi M (2008) Effects of short-term heat stress on oxidative damage and responses of antioxidant system in Lilium longiflorum. Plant Growth Regul 54(1):45–54

    Article  CAS  Google Scholar 

  • Zhang P, Foerster H, Tissier CP, Mueller L, Paley S, Karp PD, Rhee SY (2005) MetaCyc and AraCyc. Metabolic pathway databases for plant research. Plant Physiol 138(1):27–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang S, NaganaGowda GA, Ye T, Raftery D (2010) Advances in NMR-based biofluid analysis and metabolite profiling. Analyst 135:1490–1498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang A, Sun H, Wang P, Han Y, Wang X (2012) Modern analytical techniques in metabolomics analysis. Analyst 137:293–30010

    Article  CAS  PubMed  Google Scholar 

  • Zrodnikov Y, Davis CE (2012) The highs and lows of FAIMS: predictions and future trends for high field asymmetric waveform ion mobility spectrometry. J Nanomed Nanotechnol 3(5):109

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anirudh Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, N., Mansoori, A., Dey, D., Kumar, R., Kumar, A. (2021). Potential of Metabolomics in Plant Abiotic Stress Management. In: Kumar, A., Kumar, R., Shukla, P., Patel, H.K. (eds) Omics Technologies for Sustainable Agriculture and Global Food Security (Vol II). Springer, Singapore. https://doi.org/10.1007/978-981-16-2956-3_7

Download citation

Publish with us

Policies and ethics