Skip to main content

Employment of Seed Priming as a Salt-Stress Mitigating Approach in Agriculture: Challenges and Opportunities

  • Chapter
  • First Online:
Soil Science: Fundamentals to Recent Advances

Abstract

Salinity is one of the several abiotic constraints which prevail under natural and managed ecosystems. The stress drastically affects seed establishment, physiology, and developmental aspects of plants, which are often associated with low yields of economically important crops. To minimize the adverse effects of salt stress on crops, employment of sustainable and cost-effective methods is extensively desired. Seed priming, a technique of pre-germination mediation of seeds which can lead to their ample responses to stresses, has a promising role in the adaptability of plants to salinity stress. Preconditioning with water and several other osmolytes, heat, and irradiation can lead to improved metabolism and post-germination responses of seed when they are encountered by salinity. Selection of appropriate priming agents, understanding of the underlying mechanisms, and economic costs are the leading factors which can lead to the wide adaptability of seed priming in agriculture as a salt-stress mitigating method. The focus of this chapter is to discuss the potential application of different priming methods for reducing the adverse effects of salinity and challenges in agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abdel Latef AA, Tran LSP (2016) Impacts of priming with silicon on the growth and tolerance of maize plants to alkaline stress. Front Plant Sci 7:243

    Article  PubMed  PubMed Central  Google Scholar 

  • Abraha B, Yohannes G (2013) The role of seed priming in improving seedling growth of maize (Zea mays L.) under salt stress at field conditions. Agric Sci 4(12):666–672

    Google Scholar 

  • Afzal I, Butt A, Ur Rehman H, Ahmad Basra AB, Afzal A (2012) Alleviation of salt stress in fine aromatic rice by seed priming. Aust J Crop Sci 6(10):1401

    CAS  Google Scholar 

  • Ahmad M, Zahir ZA, Asghar HN, Arshad M (2012) The combined application of rhizobial strains and plant growth promoting rhizobacteria improves growth and productivity of mung bean (Vigna radiata L.) under salt-stressed conditions. Ann Microbiol 62(3):1321–1330

    Article  CAS  Google Scholar 

  • Ahmad P, Abd-Allah EF, Alyemeni MN, Wijaya L, Alam P, Bhardwaj R, Siddique KH (2018) Exogenous application of calcium to 24-epibrassinosteroid pre-treated tomato seedlings mitigates NaCl toxicity by modifying ascorbate–glutathione cycle and secondary metabolites. Sci Rep 8(1):13515

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ahmed S (2009) Effect of soil salinity on the yield and yield components of mung bean. Pak J Bot 41(1):263–268

    Google Scholar 

  • Ahmed NU, Mahmud NU, Zaman MA, Ferdous Z, Halder SC (2017) Effect of different salinity level on tomato (Lycopersicon esculentum) production under climate change condition in Bangladesh. Annu Res Rev Biol 13(3):1–9

    Article  Google Scholar 

  • Akula R, Ravishankar GA (2011) Influence of abiotic stress signals on secondary metabolites in plants. Plant Signal Behav 6(11):1720–1731

    Article  CAS  Google Scholar 

  • Ali E, Kamel SG (2009) Effects of seed priming on growth and yield of chickpea under saline soil. Recent Res Sci Technol 1(6)

    Google Scholar 

  • Ali Y, Aslam Z, Ashraf MY, Tahir GR (2004) Effect of salinity on chlorophyll concentration, leaf area, yield and yield components of rice genotypes grown under saline environment. Int J Environ Sci Technol 1(3):221–225

    Article  CAS  Google Scholar 

  • Ali Q, Daud MK, Haider MZ, Ali S, Rizwan M, Aslam N et al (2017) Seed priming by sodium nitroprusside improves salt tolerance in wheat (Triticum aestivum L.) by enhancing physiological and biochemical parameters. Plant Physiol Biochem 119:50–58

    Article  CAS  PubMed  Google Scholar 

  • Amirjani MR (2011) Effect of salinity stress on growth, sugar content, pigments and enzyme activity of rice. Int J Bot 7(1):73–81

    Article  CAS  Google Scholar 

  • Amjad M, Ziaf K, Iqbal Q, Ahmad I, Riaz MA, Saqib ZA (2007) Effect of seed priming on seed vigour and salt tolerance in hot pepper. Pak J Agric Sci 44(3):408–416

    Google Scholar 

  • Amooaghaie R (2011) The effect of hydro and osmopriming on alfalfa seed germination and antioxidant defenses under salt stress. Afr J Biotechnol 10(33):6269–6275

    Google Scholar 

  • Anosheh HP, Sadeghi H, Emam Y (2011) Chemical priming with urea and KNO 3 enhances maize hybrids (Zea mays L.) seed viability under abiotic stress. J Crop Sci Biotechnol 14(4):289–295

    Article  Google Scholar 

  • Anwar SHAZMA, Shafi MOHAMMAD, Bakht JEHAN, Jan MT, Hayat Y (2011) Response of barley genotypes to salinity stress as alleviated by seed priming. Pak J Bot 43(6):2687–2691

    CAS  Google Scholar 

  • Ashraf M, Foolad MR (2005) Pre-sowing seed treatment—A shotgun approach to improve germination, plant growth, and crop yield under saline and non saline conditions. Adv Agron 88:223–271

    Article  Google Scholar 

  • Ashraf M, Rauf H (2001) Inducing salt tolerance in maize (Zea mays L.) through seed priming with chloride salts: growth and ion transport at early growth stages. Acta Physiol Plant 23(4):407–414

    Article  CAS  Google Scholar 

  • Ashraf MA, Akbar A, Askari SH, Iqbal M, Rasheed R, Hussain I (2018) Recent advances in abiotic stress tolerance of plants through chemical priming: an overview. In: Advances in seed priming. Springer, Singapore, pp 51–79

    Google Scholar 

  • Awasthi P, Karki H, Bargali K, Bargali SS (2016) Germination and seedling growth of pulse crop (Vigna spp.) as affected by soil salt stress. Curr Agric Res J 4(2):159–170

    Article  Google Scholar 

  • Azimian F, Roshandel P (2016) Increasing salt tolerance and antioxidant activity in Artemisia aucheri by H2O2-priming. J Plant Physiol Breed 6(2):31–47

    Google Scholar 

  • Azooz MM, Alzahrani AM, Youssef MM (2013) The potential role of seed priming with ascorbic acid and nicotinamide and their interactions to enhance salt tolerance in broad bean ('Vicia faba' L.). Aust J Crop Sci 7(13):2091

    Google Scholar 

  • Bahrami H, Razmjoo J (2012) Effect of salinity stress (NaCl) on germination and early seedling growth of ten sesame cultivars (Sesamum indicum L.). Int J Agric Sci 2(6):529–537

    Google Scholar 

  • Bajwa AA, Farooq M, Nawaz A (2018) Seed priming with sorghum extracts and benzyl aminopurine improves the tolerance against salt stress in wheat (Triticum aestivum L.). Physiol Mol Biol Plants 24(2):239–249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bakht J, Shafi M, Jamal Y, Sher H (2011) Response of maize (Zea mays L.) to seed priming with NaCl and salinity stress. Span J Agric Res 9(1):252–261

    Article  Google Scholar 

  • Bewley JD, Bradford K, Hilhorst H (2012) Seeds: physiology of development, germination and dormancy. Springer Science & Business Media, Berlin

    Google Scholar 

  • Bose B, Kumar M, Singhal RK, Mondal S (2018) Impact of seed priming on the modulation of Physico-chemical and molecular processes during germination, growth, and development of crops. In: Advances in seed priming. Springer, Singapore, pp 23–40

    Google Scholar 

  • Bradford KJ (1995) Water relations in seed germination. Seed Dev Germin 1(13):351–396

    Google Scholar 

  • Bruce TJ, Matthes MC, Napier JA, Pickett JA (2007) Stressful “memories” of plants: evidence and possible mechanisms. Plant Sci 173(6):603–608

    Article  CAS  Google Scholar 

  • Bruggink IGT (2004) Update on seed priming: from priming to pregermination, and back. Seed Technol:86–91

    Google Scholar 

  • Chartzoulakis KS (2005) Salinity and olive: growth, salt tolerance, photosynthesis and yield. Agric Water Manag 78(1–2):108–121

    Article  Google Scholar 

  • Chatterjee P, Samaddar S, Niinemets Ü, Sa TM (2018) Brevibacterium linens RS16 confers salt tolerance to Oryza sativa genotypes by regulating antioxidant defense and H+ ATPase activity. Microbiol Res

    Google Scholar 

  • Chaves MM, Flexas J, Pinheiro C (2009) Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann Bot 103(4):551–560

    Article  CAS  PubMed  Google Scholar 

  • Chen K, Arora R (2011) Dynamics of the antioxidant system during seed osmopriming, post-priming germination, and seedling establishment in Spinach (Spinacia oleracea). Plant Sci 180(2):212–220

    Article  CAS  PubMed  Google Scholar 

  • Chiu KY, Chen CL, Sung JM (2002) Effect of priming temperature on storability of primed sh-2 sweet corn seed. Crop Sci 42(6):1996–2003

    Article  CAS  Google Scholar 

  • Cokkizgin A (2012) Salinity stress in common bean (Phaseolus vulgaris L.) seed germination. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 40(1):177–182

    Article  CAS  Google Scholar 

  • Dai LY, Zhu HD, Yin KD, Du JD, Zhang YX (2017) Seed priming mitigates the effects of saline-alkali stress in soybean seedlings. Chilean J Agric Res 77(2):118–125

    Article  Google Scholar 

  • Dkhil BB, Denden M (2012) Effect of salt stress on growth, anthocyanins, membrane permeability and chlorophyll fluorescence of Okra (Abelmoschus esculentus L.) seedlings. Am J Plant Physiol 7(4):174–183

    Article  CAS  Google Scholar 

  • Dong CJ, Li L, Shang QM, Liu XY, Zhang ZG (2014) Endogenous salicylic acid accumulation is required for chilling tolerance in cucumber (Cucumis sativus L.) seedlings. Planta 240:687–700. https://doi.org/10.1007/s00425-014-2115-1

    Article  CAS  PubMed  Google Scholar 

  • El Naim AM, Mohammed KE, Ibrahim EA, Suleiman NN (2012) Impact of salinity on seed germination and early seedling growth of three sorghum (Sorghum biolor L. Moench) cultivars. Sci Technol 2(2):16–20

    Article  Google Scholar 

  • Elgallal M, Fletcher L, Evans B (2016) Assessment of potential risks associated with chemicals in wastewater used for irrigation in arid and semiarid zones: a review. Agric Water Manag 177:419–431

    Article  Google Scholar 

  • Ella ES, Dionisio-Sese ML, Ismail AM (2011) Seed pre-treatment in rice reduces damage, enhances carbohydrate mobilization and improves emergence and seedling establishment under flooded conditions. AoB Plants 2011

    Google Scholar 

  • El-Mageed TAA, Semida WM, El-Wahed MHA (2016) Effect of mulching on plant water status, soil salinity and yield of squash under summer-fall deficit irrigation in salt affected soil. Agric Water Manag 173:1–12

    Article  Google Scholar 

  • Entesari M, Sharif-Zadeh F, Zare S, Farhangfar M, Dashtaki M (2012) Effect of seed priming on mung bean (Vigna radiata) cultivars with salicylic acid and potassium nitrate under salinity stress. Int J Agric Res Rev 2(Special issue):926–932

    Google Scholar 

  • Farooq M, Hussain M, Wakeel A, Siddique KH (2015) Salt stress in maize: effects, resistance mechanisms, and management. A review. Agron Sustain Dev 35(2):461–481

    Article  CAS  Google Scholar 

  • Feng G, Zhang Z, Wan C, Lu P, Bakour A (2017) Effects of saline water irrigation on soil salinity and yield of summer maize (Zea mays L.) in subsurface drainage system. Agric Water Manag 193:205–213

    Article  Google Scholar 

  • Ghassemi-Golezani K, Aliloo AA, Valizadeh M, Moghaddam M (2008a) Effects of different priming techniques on seed invigoration and seedling establishment of lentil (Lens culinaris Medik). J Food Agric Environ 6(2):222

    CAS  Google Scholar 

  • Ghassemi-Golezani K, Aliloo AA, Valizadeh M, Moghaddam M (2008b) Effects of hydro and osmo-priming on seed germination and field emergence of lentil (Lens culinaris Medik.). Notulae Botanicae Horti Agrobotanici Cluj-Napoca 36(1):29–33

    Google Scholar 

  • Gholami M, Mokhtarian F, Baninasab B (2015) Seed halopriming improves the germination performance of black seed (Nigella sativa) under salinity stress conditions. J Crop Sci Biotechnol 18(1):21–26

    Article  Google Scholar 

  • Haghighi M, Pessarakli M (2013) Influence of silicon and nano-silicon on salinity tolerance of cherry tomatoes (Solanum lycopersicum L.) at early growth stage. Sci Hortic 161:111–117

    Article  CAS  Google Scholar 

  • Hakim MA, Juraimi AS, Hanafi MM, Ismail MR, Rafii MY, Islam MM, Selamat A (2014) The effect of salinity on growth, ion accumulation and yield of rice varieties. J Anim Plant Sci 24(3):874–885

    Google Scholar 

  • Hameed A, Iqbal N (2014) Chemo-priming with mannose, mannitol and H2O2 mitigate drought stress in wheat. Cereal Res Commun 42(3):450–462

    Article  CAS  Google Scholar 

  • Harris D (2006) Development and testing of “on-farm” seed priming. Adv Agron 90:129–178

    Article  Google Scholar 

  • Harris D, Pathan AK, Gothkar P, Joshi A, Chivasa W, Nyamudeza P (2001) On-farm seed priming: using participatory methods to revive and refine a key technology. Agric Syst 69(1–2):151–164

    Article  Google Scholar 

  • Hilker M, Schwachtje J, Baier M, Balazadeh S, Bäurle I, Geiselhardt S et al (2016) Priming and memory of stress responses in organisms lacking a nervous system. Biol Rev 91(4):1118–1133

    Article  PubMed  Google Scholar 

  • Hussain S, Khaliq A, Matloob A, Wahid MA, Afzal I (2013) Germination and growth response of three wheat cultivars to NaCl salinity. Soil Environ 32(1):36–43

    CAS  Google Scholar 

  • Hussain S, Zheng M, Khan F, Khaliq A, Fahad S, Peng S et al (2015) Benefits of rice seed priming are offset permanently by prolonged storage and the storage conditions. Sci Rep 5:8101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hussain S, Khan F, Hussain HA, Nie L (2016a) Physiological and biochemical mechanisms of seed priming-induced chilling tolerance in rice cultivars. Front Plant Sci 7:116

    Article  PubMed  PubMed Central  Google Scholar 

  • Hussain S, Yin H, Peng S, Khan FA, Khan F, Sameeullah M et al (2016b) Comparative transcriptional profiling of primed and non-primed rice seedlings under submergence stress. Front Plant Sci 7:1125

    Article  PubMed  PubMed Central  Google Scholar 

  • Hussain S, Khaliq A, Tanveer M, Matloob A, Hussain HA (2018) Aspirin priming circumvents the salinity-induced effects on wheat emergence and seedling growth by regulating starch metabolism and antioxidant enzyme activities. Acta Physiol Plant 40(4):68

    Article  CAS  Google Scholar 

  • Ibrahim EA (2016) Seed priming to alleviate salinity stress in germinating seeds. J Plant Physiol 192:38–46

    Article  CAS  PubMed  Google Scholar 

  • Imran M, Boelt B, Mühling KH (2018) Zinc seed priming improves salt resistance in maize. J Agron Crop Sci 204(4):390–399

    Article  CAS  Google Scholar 

  • Iqbal M, Ashraf M (2007) Seed preconditioning modulates growth, ionic relations, and photosynthetic capacity in adult plants of hexaploid wheat under salt stress. J Plant Nutr 30(3):381–396

    Article  CAS  Google Scholar 

  • Iqbal M, Ashraf M, Jamil A, Ur-Rehman S (2006) Does seed priming induce changes in the levels of some endogenous plant hormones in hexaploid wheat plants under salt stress? J Integr Plant Biol 48(2):181–189

    Article  CAS  Google Scholar 

  • Islam F, Yasmeen T, Ali S, Ali B, Farooq MA, Gill RA (2015) Priming-induced antioxidative responses in two wheat cultivars under saline stress. Acta Physiol Plant 37(8):153

    Article  CAS  Google Scholar 

  • Islam F, Farooq MA, Gill RA, Wang J, Yang C, Ali B et al (2017) 2, 4-D attenuates salinity-induced toxicity by mediating anatomical changes, antioxidant capacity and cation transporters in the roots of rice cultivars. Sci Rep 7(1):10443

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jaarsma R, de Vries RS, de Boer AH (2013) Effect of salt stress on growth, Na+ accumulation and proline metabolism in potato (Solanum tuberosum) cultivars. PLoS One 8(3):e60183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jafar MZ, Farooq M, Cheema MA, Afzal I, Basra SMA, Wahid MA et al (2012) Improving the performance of wheat by seed priming under saline conditions. J Agron Crop Sci 198(1):38–45

    Article  Google Scholar 

  • Jamal Y, Shafi M, Bakht J (2011) Effect of seed priming on growth and biochemical traits of wheat under saline conditions. Afr J Biotechnol 10(75):17127–17133

    CAS  Google Scholar 

  • Jamil M, Bashir S, Anwar S, Bibi S, Bangash A, Ullah F, Rha ES (2012) Effect of salinity on physiological and biochemical characteristics of different varieties of rice. Pak J Bot 44(2012):7–13

    CAS  Google Scholar 

  • Janmohammadi M, Dezfuli PM, Sharifzadeh F (2008) Seed invigoration techniques to improve germination and early growth of inbred line of maize under salinity and drought stress. Gen Appl Plant Physiol 34(3–4):215–226

    Google Scholar 

  • Jisha KC, Puthur JT (2014) Halopriming of seeds imparts tolerance to NaCl and PEG induced stress in Vigna radiata (L.) Wilczek varieties. Physiol Mol Biol Plants 20(3):303–312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jisha KC, Puthur JT (2016) Seed priming with BABA (β-amino butyric acid): a cost-effective method of abiotic stress tolerance in Vigna radiata (L.) Wilczek. Protoplasma 253(2):277–289

    Article  CAS  PubMed  Google Scholar 

  • Jisha KC, Vijayakumari K, Puthur JT (2013) Seed priming for abiotic stress tolerance: an overview. Acta Physiol Plant 35(5):1381–1396

    Article  Google Scholar 

  • Kalaivani K, Kalaiselvi MM, Senthil-Nathan S (2016) Effect of methyl salicylate (MeSA), an elicitor on growth, physiology and pathology of resistant and susceptible rice varieties. Sci Rep 6:34498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang SM, Khan AL, Waqas M, You YH, Kim JH, Kim JG et al (2014) Plant growth-promoting rhizobacteria reduce adverse effects of salinity and osmotic stress by regulating phytohormones and antioxidants in Cucumis sativus. J Plant Interact 9(1):673–682

    Article  CAS  Google Scholar 

  • Karalija E, Selović A (2018) The effect of hydro and proline seed priming on growth, proline and sugar content, and antioxidant activity of maize under cadmium stress. Environ Sci Pollut Res:1–11

    Google Scholar 

  • Kaur S, Gupta AK, Kaur N (2002) Effect of osmo-and hydropriming of chickpea seeds on seedling growth and carbohydrate metabolism under water deficit stress. Plant Growth Regul 37(1):17–22

    Article  CAS  Google Scholar 

  • Kaur S, Gupta AK, Kaur N (2006) Effect of hydro-and osmopriming of chickpea (Cicer arietinum L.) seeds on enzymes of sucrose and nitrogen metabolism in nodules. Plant Growth Regul 49(2–3):177–182

    Article  CAS  Google Scholar 

  • Kaya MD, Okçu G, Atak M, Cıkılı Y, Kolsarıcı Ö (2006) Seed treatments to overcome salt and drought stress during germination in sunflower (Helianthus annuus L.). Eur J Agron 24(4):291–295

    Article  CAS  Google Scholar 

  • Kaymak HÇ, Güvenç İ, Yarali F, Dönmez MF (2009) The effects of bio-priming with PGPR on germination of radish (Raphanus sativus L.) seeds under saline conditions. Turk J Agric For 33(2):173–179

    CAS  Google Scholar 

  • Khajeh-Hosseini M, Powell AA, Bingham IJ (2003) The interaction between salinity stress and seed vigour during germination of soyabean seeds. Seed Sci Technol 31(3):715–725

    Article  Google Scholar 

  • Khalid A, Aftab F (2016) Effect of exogenous application of 24-epibrassinolide on growth, protein contents, and antioxidant enzyme activities of in vitro-grown Solanum tuberosum L. under salt stress. In Vitro Cell Dev Biol Plant 52(1):81–91

    Article  CAS  Google Scholar 

  • Khaliq A, Aslam F, Matloob A, Hussain S, Geng M, Wahid A, ur Rehman, H. (2015) Seed priming with selenium: consequences for emergence, seedling growth, and biochemical attributes of rice. Biol Trace Elem Res 166(2):236–244

    Article  CAS  PubMed  Google Scholar 

  • Khan HA, Ayub CM, Pervez MA, Bilal RM, Shahid MA, Ziaf K (2009) Effect of seed priming with NaCl on salinity tolerance of hot pepper (Capsicum annuum L.) at seedling stage. Soil Environ 28(1):81–87

    CAS  Google Scholar 

  • Khodarahmpour Z, Ifar M, Motamedi M (2012) Effects of NaCl salinity on maize (Zea mays L.) at germination and early seedling stage. Afr J Biotechnol 11(2):298–304

    CAS  Google Scholar 

  • Kubala S, Wojtyla Ł, Quinet M, Lechowska K, Lutts S, Garnczarska M (2015) Enhanced expression of the proline synthesis gene P5CSA in relation to seed osmopriming improvement of Brassica napus germination under salinity stress. J Plant Physiol 183:1–12

    Article  CAS  PubMed  Google Scholar 

  • Läuchli A, Grattan SR (2007) Plant growth and development under salinity stress. In: Advances in molecular breeding toward drought and salt tolerant crops. Springer, Dordrecht, pp 1–32

    Google Scholar 

  • Li Z, Xu J, Gao Y, Wang C, Guo G, Luo Y et al (2017) The synergistic priming effect of exogenous salicylic acid and H2O2 on chilling tolerance enhancement during maize (Zea mays L.) seed germination. Front Plant Sci 8:1153

    Article  PubMed  PubMed Central  Google Scholar 

  • Mahajan S, Tuteja N (2005) Cold, salinity and drought stresses: an overview. Arch Biochem Biophys 444(2):139–158

    Article  CAS  PubMed  Google Scholar 

  • Majeed A, Muhammad Z, Ahmad H (2018) Plant growth promoting bacteria: role in soil improvement, abiotic and biotic stress management of crops. Plant Cell Rep 37(12):1599–1609

    Article  CAS  PubMed  Google Scholar 

  • Matias JR, Torres SB, Leal CC, Leite MDS, Carvalho S (2018) Hydropriming as inducer of salinity tolerance in sunflower seeds. Rev Brasil Engenharia Agrícola e Ambiental 22(4):255–260

    Article  Google Scholar 

  • Moghanibashi M, Karimmojeni H, Nikneshan P, Behrozi D (2012) Effect of hydropriming on seed germination indices of sunflower (Helianthus annuus L.) under salt and drought conditions. Plant Knowledge J 1(1):10

    Google Scholar 

  • Moulick D, Ghosh D, Santra SC (2016) Evaluation of effectiveness of seed priming with selenium in rice during germination under arsenic stress. Plant Physiol Biochem 109:571–578

    Article  CAS  PubMed  Google Scholar 

  • Munns R, Gilliham M (2015) Salinity tolerance of crops–what is the cost? New Phytol 208(3):668–673

    Article  CAS  PubMed  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  • Nasibi F, Kalantari KM, Zanganeh R, Mohammadinejad G, Oloumi H (2016) Seed priming with cysteine modulates the growth and metabolic activity of wheat plants under salinity and osmotic stresses at early stages of growth. Indian J Plant Physiol 21(3):279–286

    Article  Google Scholar 

  • Nawaz A, Amjad M, Pervez MA, Afzal I (2011) Effect of halopriming on germination and seedling vigor of tomato. Afr J Agric Res 6(15):3551–3559

    Google Scholar 

  • Negrão S, Schmöckel SM, Tester M (2017) Evaluating physiological responses of plants to salinity stress. Ann Bot 119(1):1–11

    Article  PubMed  Google Scholar 

  • Ologundudu AF, Adelusi AA, Akinwale RO (2014) Effect of salt stress on germination and growth parameters of Rice (Oryza sativa L.). Notulae Sci Biol 6(2)

    Google Scholar 

  • Pagano A, Araújo SDS, Macovei A, Leonetti P, Balestrazzi A (2017) The seed repair response during germination: disclosing correlations between DNA repair, antioxidant response, and chromatin remodeling in Medicago truncatula. Front Plant Sci 8:1972

    Article  PubMed  PubMed Central  Google Scholar 

  • Paparella S, Araújo SS, Rossi G, Wijayasinghe M, Carbonera D, Balestrazzi A (2015) Seed priming: state of the art and new perspectives. Plant Cell Rep 34(8):1281–1293

    Article  CAS  PubMed  Google Scholar 

  • Parera CA, Cantliffe DJ (1994) Pre-sowing seed priming. Hortic Rev 16:109–141

    Google Scholar 

  • Parihar P, Singh S, Singh R, Singh VP, Prasad SM (2015) Effect of salinity stress on plants and its tolerance strategies: a review. Environ Sci Pollut Res 22(6):4056–4075

    Article  CAS  Google Scholar 

  • Patade VY, Bhargava S, Suprasanna P (2009) Halopriming imparts tolerance to salt and PEG induced drought stress in sugarcane. Agric Ecosyst Environ 134(1–2):24–28

    Article  CAS  Google Scholar 

  • Patane C, Cavallaro V, Avola G, D'Agosta G (2006) Seed respiration of sorghum [Sorghum bicolor (L.) Moench] during germination as affected by temperature and osmoconditioning. Seed Sci Res 16(4):251–260

    Article  CAS  Google Scholar 

  • Pehlivan N, Yesilyurt AM, Durmus N, Karaoglu SA (2017) Trichoderma lixii ID11D seed biopriming mitigates dose dependent salt toxicity in maize. Acta Physiol Plant 39(3):79

    Article  CAS  Google Scholar 

  • Płażek A, Dubert F, Kopeć P, Dziurka M, Kalandyk A, Pastuszak J, Wolko B (2018) Seed hydropriming and smoke water significantly improve low-temperature germination of Lupinus angustifolius L. Int J Mol Sci 19(4):992

    Article  PubMed Central  CAS  Google Scholar 

  • Qados AMA (2011) Effect of salt stress on plant growth and metabolism of bean plant Vicia faba (L.). J Saudi Soc Agric Sci 10(1):7–15

    Google Scholar 

  • Rasool S, Ahmad A, Siddiqi TO, Ahmad P (2013) Changes in growth, lipid peroxidation and some key antioxidant enzymes in chickpea genotypes under salt stress. Acta Physiol Plant 35(4):1039–1050

    Article  CAS  Google Scholar 

  • Rengasamy P (2010) Soil processes affecting crop production in salt-affected soils. Funct Plant Biol 37(7):613–620

    Article  Google Scholar 

  • Rojas-Tapias D, Moreno-Galván A, Pardo-Díaz S, Obando M, Rivera D, Bonilla R (2012) Effect of inoculation with plant growth-promoting bacteria (PGPB) on amelioration of saline stress in maize (Zea mays). Appl Soil Ecol 61:264–272

    Article  Google Scholar 

  • Ryu H, Cho YG (2015) Plant hormones in salt stress tolerance. J Plant Biol 58(3):147–155

    Article  CAS  Google Scholar 

  • Salah SM, Yajing G, Dongdong C, Jie L, Aamir N, Qijuan H et al (2015) Seed priming with polyethylene glycol regulating the physiological and molecular mechanism in rice (Oryza sativa L.) under nano-ZnO stress. Sci Rep 5:14278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Samota MK, Sasi M, Awana M, Yadav OP, Amitha Mithra SV, Tyagi A et al (2017) Elicitor-induced biochemical and molecular manifestations to improve drought tolerance in rice (Oryza sativa L.) through seed-priming. Front Plant Sci 8:934

    Article  PubMed  PubMed Central  Google Scholar 

  • Sano N, Seo M (2019) Cell cycle inhibitors improve seed storability after priming treatments. J Plant Res:1–9

    Google Scholar 

  • Sano N, Kim JS, Onda Y, Nomura T, Mochida K, Okamoto M, Seo M (2017) RNA-Seq using bulked recombinant inbred line populations uncovers the importance of brassinosteroid for seed longevity after priming treatments. Sci Rep 7(1):8095

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Savvides A, Ali S, Tester M, Fotopoulos V (2016) Chemical priming of plants against multiple abiotic stresses: mission possible? Trends Plant Sci 21(4):329–340

    Article  CAS  PubMed  Google Scholar 

  • Schwember AR, Bradford KJ (2005) Drying rates following priming affect temperature sensitivity of germination and longevity of lettuce seeds. Hort Sci 40(3):778–781

    Google Scholar 

  • Sen SK, Mandal P (2018) Application of solid matrix priming to ameliorate salinity stress in mung bean (‘Vigna radiata’). Aust J Crop Sci 12(3):458

    Article  CAS  Google Scholar 

  • Sharma SN, Maheshwari A (2015) Expression patterns of DNA repair genes associated with priming small and large chickpea (Cicer arietinum) seeds. Seed Sci Technol 43(2):250–261

    Article  Google Scholar 

  • Shereen A, Mumtaz S, Raza S, Khan MA, Solangi S (2005) Salinity effects on seedling growth and yield components of different inbred rice lines. Pak J Bot 37(1):131–139

    Google Scholar 

  • Sheteiwy MS, Fu Y, Hu Q, Nawaz A, Guan Y, Li Z et al (2016) Seed priming with polyethylene glycol induces antioxidative defense and metabolic regulation of rice under nano-ZnO stress. Environ Sci Pollut Res 23(19):19989–20002

    Article  CAS  Google Scholar 

  • Shrivastava P, Kumar R (2015) Soil salinity: a serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J Biol Sci 22(2):123–131

    Article  CAS  PubMed  Google Scholar 

  • Singh J, Sastry ED, Singh V (2012) Effect of salinity on tomato (Lycopersicon esculentum mill.) during seed germination stage. Physiol Mol Biol Plants 18(1):45–50

    Article  PubMed  Google Scholar 

  • Sivritepe N (2008) Organic priming with seaweed extract (Ascophyllum nodosum) affects viability of pepper seeds. Asian J Chem 20(7):5689

    CAS  Google Scholar 

  • Song GC, Choi HK, Kim YS, Choi JS, Ryu CM (2017) Seed defense biopriming with bacterial cyclodipeptides triggers immunity in cucumber and pepper. Sci Rep 7(1):14209

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Srivastava AK, Lokhande VH, Patade VY, Suprasanna P, Sjahril R, D’Souza SF (2010) Comparative evaluation of hydro-, chemo-, and hormonal-priming methods for imparting salt and PEG stress tolerance in Indian mustard (Brassica juncea L.). Acta Physiol Plant 32(6):1135–1144

    Article  Google Scholar 

  • Tanou G, Fotopoulos V, Molassiotis A (2012) Priming against environmental challenges and proteomics in plants: update and agricultural perspectives. Front Plant Sci 3:216

    Article  PubMed  PubMed Central  Google Scholar 

  • Tavakkoli E, Rengasamy P, McDonald GK (2010) High concentrations of Na+ and Cl–ions in soil solution have simultaneous detrimental effects on growth of faba bean under salinity stress. J Exp Bot 61(15):4449–4459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsegay BA, Gebreslassie B (2014) The effect of salinity (NaCl) on germination and early seedling growth of Lathyrus sativus and Pisum sativum var. abyssinicum. African J Plant Sci 8(5):225–231

    Article  CAS  Google Scholar 

  • Varier A, Vari AK, Dadlani M (2010) The subcellular basis of seed priming. Curr Sci:450–456

    Google Scholar 

  • Vibhuti CS, Bargali K, Bargali SS (2015) Seed germination and seedling growth parameters of rice (Oryza sativa L.) varieties as affected by salt and water stress. Indian J Agric Sci 85(1):102–108

    Google Scholar 

  • Wahid A, Perveen M, Gelani S, Basra SM (2007) Pretreatment of seed with H2O2 improves salt tolerance of wheat seedlings by alleviation of oxidative damage and expression of stress proteins. J Plant Physiol 164(3):283–294

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218(1):1–14

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Chen Q, Hussain S, Mei J, Dong H, Peng S et al (2016) Pre-sowing seed treatments in direct-seeded early rice: consequences for emergence, seedling growth and associated metabolic events under chilling stress. Sci Rep 6:19637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang W, He A, Peng S, Huang J, Cui K, Nie L (2018) The effect of storage condition and duration on the deterioration of primed rice seeds. Front Plant Sci 9:172

    Article  PubMed  PubMed Central  Google Scholar 

  • Wojtyla L, Lechowska K, Kubala S, Garnczarska M (2016) Molecular processes induced in primed seeds—increasing the potential to stabilize crop yields under drought conditions. J Plant Physiol 203:116–126

    Article  CAS  PubMed  Google Scholar 

  • Wu QS, Zou YN, He XH (2010) Contributions of arbuscular mycorrhizal fungi to growth, photosynthesis, root morphology and ionic balance of citrus seedlings under salt stress. Acta Physiol Plant 32(2):297–304

    Article  CAS  Google Scholar 

  • Wu B, Munkhtuya Y, Li J, Hu Y, Zhang Q, Zhang Z (2018) Comparative transcriptional profiling and physiological responses of two contrasting oat genotypes under salt stress. Sci Rep 8(1):16248

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang A, Akhtar SS, Iqbal S, Qi Z, Alandia G, Saddiq MS, Jacobsen SE (2018) Saponin seed priming improves salt tolerance in quinoa. J Agron Crop Sci 204(1):31–39

    Article  CAS  Google Scholar 

  • Yasmeen A, Basra SMA, Farooq M, ur Rehman H, Hussain N (2013) Exogenous application of moringa leaf extract modulates the antioxidant enzyme system to improve wheat performance under saline conditions. Plant Growth Regul 69(3):225–233

    Article  CAS  Google Scholar 

  • Zhang J, Jia W, Yang J, Ismail AM (2006) Role of ABA in integrating plant responses to drought and salt stresses. Field Crop Res 97(1):111–119

    Article  Google Scholar 

  • Zhang S, Hu J, Zhang Y, Xie XJ, Knapp A (2007) Seed priming with brassinolide improves lucerne (Medicago sativa L.) seed germination and seedling growth in relation to physiological changes under salinity stress. Aust J Agric Res 58(8):811–815

    Article  CAS  Google Scholar 

  • Ziosi V, Zandoli R, Vitali F, di Nardo A (2012) Folicist®, a biostimulant based on acetyl-thioproline, folic acid and plant extracts, improves seed germination and radicle extension. In: I world congress on the use of biostimulants in agriculture 1009, pp 79–82

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdul Majeed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Majeed, A., Muhammad, Z., Siyyar, S. (2021). Employment of Seed Priming as a Salt-Stress Mitigating Approach in Agriculture: Challenges and Opportunities. In: Rakshit, A., Singh, S., Abhilash, P., Biswas, A. (eds) Soil Science: Fundamentals to Recent Advances. Springer, Singapore. https://doi.org/10.1007/978-981-16-0917-6_21

Download citation

Publish with us

Policies and ethics