Skip to main content

Seed Priming Technology in the Amelioration of Salinity Stress in Plants

  • Chapter
  • First Online:
Advances in Seed Priming

Abstract

A large proportion of the global cultivable land is inflicted by saline conditions. Several popular plants and staple crops cannot be cultivated on these vast stretches of land due to their susceptibility to salt stress. Crops growing under such suboptimal conditions exhibit deteriorated physiological development and compromised yields. Several agro-biotechnology-supported programmes are available to enhance plant salt tolerance. Among them, seed priming or ‘pretreatment’ is the most acceptable one from the point of biosafety and socio-economic views. Seed priming provides an abiotic stress-like condition to the dormant seed. It partially reprogrammes the seed metabolome so that it experiences such suboptimal condition and can better adapt to salt stress. Partial hydration of the seed during priming weakens the endosperm, channelizes the energy reserves, makes the seed ready for radicle protrusion (germination) and recharges the entire antioxidant machinery. This chapter provides an insight into the multiple mechanisms via which seed priming with various inorganic as well as endogenous agents can ameliorate salinity stress-related damages across multiple plant species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aloui H, Souguir M, Latique S, Hannachi C (2014) Germination and growth in control and primed seeds of pepper as affected by salt stress. Cercet Agronomice Moldova 47:83–95

    Article  Google Scholar 

  • Anjum NA, Sofo A, Scopa A, Roychoudhury A, Gill SS et al (2015) Lipids and proteins-major targets of oxidative modifications in abiotic stressed plants. Environ Sci Pollut Res 22:4099–4121

    Article  CAS  Google Scholar 

  • Ashraf M, Iram A (2002) Optimization and influence of seed priming with salts of potassium or calcium in two spring wheat cultivars differing in salt tolerance at the initial growth stages. Agro Chim 46:47–55

    CAS  Google Scholar 

  • Azeem M, Iqbal N, Kausar S, Javed MT, Akram MS, Sajid MA (2015) Efficacy of silicon priming and fertigation to modulate seedling’s vigor and ion homeostasis of wheat (Triticum aestivum L.) under saline environment. Environ Sci Pollut Res Int 22:14367–14371

    Article  CAS  PubMed  Google Scholar 

  • Bajehbaj AA (2010) The effects of NaCl priming on salt tolerance in sunflower germination and seedling grown under salinity conditions. Afr J Biotechnol 9:1764–1770

    Article  CAS  Google Scholar 

  • Bakht J, Shafi M, Jamal Y, Sher H (2011) Response of maize (Zea mays L.) to seed priming with NaCl and salinity stress. Span J Agric Res 9:252–261

    Article  Google Scholar 

  • Banerjee A, Roychoudhury A (2016a) Group II late embryogenesis abundant (LEA) proteins: structural and functional aspects in plant abiotic stress. Plant Growth Regul 79:1–17

    Article  CAS  Google Scholar 

  • Banerjee A, Roychoudhury A (2016b) Plant responses to light stress: oxidative damages, photoprotection and role of phytohormones. In: Ahammed GJ, Yu J-Q (eds) Plant hormones under challenging environmental factors. Springer Nature, Dordrecht, pp 181–213

    Google Scholar 

  • Banerjee A, Roychoudhury A (2017a) Melatonin as a regulator of abiotic stress tolerance in plants. In: Singh VP, Singh S, Mohan Prasad S (eds) Mechanisms behind phytohormonal signalling and crop abiotic stress tolerance. Nova Science Publishers, New York, pp 47–60

    Google Scholar 

  • Banerjee A, Roychoudhury A (2017b) Abscisic-acid-dependent basic leucine zipper (bZIP) transcription factors in plant abiotic stress. Protoplasma 254:3–16

    Article  CAS  PubMed  Google Scholar 

  • Banerjee A, Roychoudhury A (2017c) Epigenetic regulation during salinity and drought stress in plants: Histone modifications and DNA methylation. Plant Gene 11:199–204

    Article  CAS  Google Scholar 

  • Banerjee A, Roychoudhury A, Krishnamoorthi S (2016) Emerging techniques to decipher microRNAs (miRNAs) and their regulatory role in conferring abiotic stress tolerance of plants. Plant Biotechnol Rep 10:185–205

    Article  Google Scholar 

  • Basu S, Roychoudhury A (2014) Expression profiling of abiotic stress-inducible genes in response to multiple stresses in rice (Oryza sativa L.) varieties with contrasting level of stress tolerance. BioMed Res Int Article ID: 706890

    Google Scholar 

  • Bernstein L, Hayward HE (1958) Physiology of salt tolerance. Ann Rev Plant Physiol 9:25–46

    Article  CAS  Google Scholar 

  • Bewley JD, Bradford KJ, Hilhorst HWM, Nonogaki H (2013) Seeds physiology of development. In: Germination and dormancy, 3rd ed. Springer, New York

    Google Scholar 

  • Bruce TJA, Matthes MC, Napier JA, Pickett JA (2007) Stressful memories of plants: evidence and possible mechanisms. Plant Sci 173:603–608

    Article  CAS  Google Scholar 

  • Bruggink GT, Ooms JJJ, van der Toorn P (1999) Induction of longevity in primed seeds. Seed Sci Res 9:49–53

    Article  Google Scholar 

  • Chang-Zheng H, Jin H, Zhi-Yu Z, Song-Lin R, Wen-Jian S (2002) Effect of seed priming with mixed-salt solution on germination and physiological characteristics of seedling in rice (Oryza sativa L.) under stress conditions. J Zhejiang Univ (Agric Life Sci) 28:175–178

    Google Scholar 

  • Chen K, Arora R (2011) Dynamics of the antioxidant system during seed osmopriming, post-priming germination, and seedling establishment in spinach (Spinacia oleracea). Plant Sci 180:212–220

    Article  CAS  PubMed  Google Scholar 

  • Das K, Roychoudhury A (2014) Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front Environ Sci 2:53

    Article  Google Scholar 

  • Daszkowska-Golec A (2011) Arabidopsis seed germination under abiotic stress as a concert of action of phytohormones. OMICS 15:763–774

    Article  CAS  PubMed  Google Scholar 

  • Dawood MG, EL-Awadi ME (2015) Alleviation of salinity stress on Vicia faba L. plants via seed priming with melatonin. Acta Boil Colomb 20:223–235

    CAS  Google Scholar 

  • Ellouzi H, Sghayar S, Abdelly C (2017) H2O2 seed priming improves tolerance to salinity; drought and their combined effect more than mannitol in Cakile maritima when compared to Eutrema salsugineum. J Plant Physiol 210:38–50

    Article  CAS  PubMed  Google Scholar 

  • Esechie HA (1995) Partitioning of chloride ion in the germinating seed of two forage legumes under varied salinity and temperature regimes. Comm Soil Sci Plant Anal 26:3357–3370

    Article  CAS  Google Scholar 

  • FAO (2011) The state of the world’s land and water resources for food and agriculture (SOLAW)-managing systems at risk. Food and Agriculture. Organization of the United Nations, Rome and Earthscan, London

    Google Scholar 

  • Farhoudi R, Saeedipour S, Mohammadreza D (2011) The effect of NaCl seed priming on salt tolerance, antioxidant enzyme activity, proline and carbohydrate accumulation of muskmelon (Cucumis melo L.) under saline condition. Afr J Agric Res 6:1363–1370

    Google Scholar 

  • Farooq M, Basra SMA, Wahid A, Ahmad N, Saleem BA (2009) Improving the drought tolerance in rice (Oryza sativa L.) by exogenous application of salicylic acid. J Agron Crop Sci 195:237–246

    Article  CAS  Google Scholar 

  • Fazlali R, Asli DE, Moradi P (2013) The effect of seed priming by ascorbic acid on bioactive compounds of naked seed pumpkin (Cucurbita pepo var. styriaca) under salinity stress. Int J Farm Alli Sci 2:587–590

    Google Scholar 

  • Fercha A, Capriotti AL, Caruso G, Cavaliere C, Samperi R, Stampachiacchiere S, Laganà A (2014) Comparative analysis of metabolic proteome variation in ascorbate-primed and unprimed wheat seeds during germination under salt stress. J Proteome 108:238–257

    Article  CAS  Google Scholar 

  • Gadelha CG, Miranda RS, Alencar NLM, Costa JH, Prisco JT, Gomes-Filho E (2017) Exogenous nitric oxide improves salt tolerance during establishment of Jatropha curcas seedlings by ameliorating oxidative damage and toxic ion accumulation. J Plant Physiol 212:69–79

    Article  CAS  PubMed  Google Scholar 

  • Garg R, Chevala VVSN, Shankar R, Jain M (2015) Divergent DNA methylation patterns associated with gene expression in rice cultivars with contrasting drought and salinity stress response. Sci Rep 5:14922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gobinathan P, Sankar B, Murali PV, Panneerselvam RN (2009) Effect of calcium chloride on salinity – induced oxidative stress in Pennisetum typoidies. Bot Res Int 2:143–148

    CAS  Google Scholar 

  • Gurusinghe SH, Bradford KJ (2001) Galactosyl-sucrose oligosaccharides and potential longevity of primed seeds. Seed Sci Res 11:121–133

    CAS  Google Scholar 

  • Hassini I, Baenas N, Moreno DA, Carvajal M, Boughanmi N, Martinez Ballesta MDC (2017) Effects of seed priming, salinity and methyl jasmonate treatment on bioactive composition of Brassica oleracea var. capitata (white and red varieties) sprouts. J Sci Food Agric 97:2291–2299

    Article  CAS  PubMed  Google Scholar 

  • Hela M, Zargouni H, Tarchoune I, Baatour O, Nasri N, Ben Massoud R et al (2012) Combined effect of hormonal priming and salt treatments on germination percentage and antioxidant activities in lettuce seedlings. Afr J Biotechnol 11:10373–10380

    Google Scholar 

  • Hubbard M, Germida J, Vujanovic V (2012) Fungal endophytes improve wheat seed germination under heat and drought stress. Botany 90:137–149

    Article  Google Scholar 

  • Ibrahim EA (2016) Seed priming to alleviate salinity stress in germinating seeds. J Plant Physiol 192:38–46

    Article  CAS  PubMed  Google Scholar 

  • Jisha KC, Puthur JT (2016) Seed priming with BABA (β-amino butyric acid): a cost-effective method of abiotic stress tolerance in Vigna radiata (L.) Wilczek. Protoplasma 253:277–289

    Article  CAS  PubMed  Google Scholar 

  • Jisha KC, Vijayakumari K, Puthur JT (2013) Seed priming for abiotic stress tolerance: an overview. Acta Physiol Plant 35:1381–1396

    Article  Google Scholar 

  • Joshi N, Jain A, Arya K (2013) Alleviation of salt stress in Cucumis sativus L. through seed priming with calcium chloride. Indian J Appl Res 11:22–25

    Google Scholar 

  • Jyotsna V, Srivastava AK (1998) Physiological basis of salt stress resistance in pigeonpea (Cajanus cajan L.)-II. Pre-sowing seed soaking treatment in regulating early seedling metabolism during seed germination. Plant Physiol Biochem 25:89–94

    Google Scholar 

  • Karadag B, Yucel NC (2017) Salicylic acid and fish flour pre-treatments affect wheat phenolic and flavonoid compounds, lipid peroxidation levels under salt stress. Cereal Res Commun 45: 192–201

    Article  CAS  Google Scholar 

  • Khan MA, Weber DJ (2008) Ecophysiology of high salinity tolerant plants (tasks for vegetation science), 1st edn. Springer, Amsterdam

    Google Scholar 

  • Khan HA, Ayub CM, Pervez MA, Bilal RM, Shahid MA, Ziaf K (2009) Effect of seed priming with NaCl on salinity tolerance of hot pepper (Capsicum annuum L.) at seedling stage. Soil Environ 28:81–87

    CAS  Google Scholar 

  • Korkmaz A, Şirikçi R (2011) Improving salinity tolerance of germinating seeds by exogenous application of glycine betaine in pepper. Seed Sci Technol 39:377–388

    Article  Google Scholar 

  • Kubala S, Garnczarska M, Wojtyla Ł, Clippe A, Kosmala A et al (2015) Deciphering priming induced improvement of rapeseed (Brassica napus L.) germination through an integrated transcriptomic and proteomic approach. Plant Sci 231:94–113

    Article  CAS  PubMed  Google Scholar 

  • Maiti R, Pramanik K (2013) Vegetable seed priming: a low cost, simple and powerful techniques for farmers’ livelihood. Int J Bio-Resour Stress Manag 4:475–481

    Google Scholar 

  • Mostofa MG, Hossain MA, Fujita M (2015) Trehalose pretreatment induces salt tolerance in rice (Oryza sativa L.) seedlings: oxidative damage and co-induction of antioxidant defense and glyoxalase systems. Protoplasma 252:461–475

    Article  CAS  PubMed  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  Google Scholar 

  • Nakaune M, Hanada A, Yin YG, Matsukura C, Yamaguchi S (2012) Molecular and physiological dissection of enhanced seed germination using short-term low-concentration salt seed priming in tomato. Plant Physiol Biochem 52:28–37

    Article  CAS  PubMed  Google Scholar 

  • Nawaz A, Amjad M, Jahangir MM, Khan SM, Cui H, Hu J (2012) Induction of salt tolerance in tomato (Lycopersicon esculentum Mill.) seeds through sand priming. Aust J Crop Sci 6:1199–1203

    CAS  Google Scholar 

  • Netondo GW, Onyango JC, Beck E (2004) Sorghum and salinity: II. Gas exchange and chlorophyll fluorescence of sorghum under salt stress. Crop Sci 44:806–811

    Article  Google Scholar 

  • Ouhibi C, Attia H, Rebah F, Msilini N, Chebbi M et al (2014) Salt stress mitigation by seed priming with UV-C in lettuce plants: growth, antioxidant activity and phenolic compounds. Plant Physiol Biochem 83:126–133

    Article  CAS  PubMed  Google Scholar 

  • Paparella S, Araújo SS, Rossi G, Wijayasinghe M, Carbonera D, Balestrazzi A (2015) Seed priming: state of the art and new perspectives. Plant Cell Rep 34:1281–1293

    Article  CAS  PubMed  Google Scholar 

  • Pastor V, Luna E, Mauch-Mani B, Ton J, Flors V (2013) Primed plants do not forget. Environ Exp Bot 94:46–56

    Article  CAS  Google Scholar 

  • Paul S, Roychoudhury A (2016) Seed priming with spermine ameliorates salinity stress in the germinated seedlings of two rice cultivars differing in their level of salt tolerance. Trop Plant Res 3:616–633

    Article  Google Scholar 

  • Paul S, Roychoudhury A (2017) Effect of seed priming with spermine/spermidine on transcriptional regulation of stress-responsive genes in salt-stressed seedlings of an aromatic rice cultivar. Plant Gene 11:133–142

    Article  CAS  Google Scholar 

  • Paul S, Roychoudhury A, Banerjee A, Chaudhuri N, Ghosh P (2017) Seed pre-treatment with spermidine alleviates oxidative damages to different extent in the salt (NaCl)-stressed seedlings of three indica rice cultivars with contrasting level of salt tolerance. Plant Gene 11:112–123

    Article  CAS  Google Scholar 

  • Rajjou L, Duval M, Gallardo K, Catusse J, Bally J, Job C, Job D (2012) Seed germination and vigor. Annu Rev Plant Biol 63:507–533

    Article  CAS  PubMed  Google Scholar 

  • Ratikanta KM (2011) Seed priming: an efficient farmers’ technology to improve seedling vigour, seedling establishment and crop productivity. Int J Bio-Resour Stress Manag 2:297

    Google Scholar 

  • Roychoudhury A, Banerjee A (2016) Endogenous glycine betaine accumulation mediates abiotic stress tolerance in plants. Trop Plant Res 3:105–111

    Google Scholar 

  • Roychoudhury A, Chakraborty M (2013) Biochemical and molecular basis of varietal difference in plant salt tolerance. Ann Rev Res Biol 3:422–454

    CAS  Google Scholar 

  • Roychoudhury A, Roy C, Sengupta DN (2007) Transgenic tobacco plants overexpressing the heterologous lea gene Rab16A from rice during high salt and water deficit display enhanced tolerance to salinity stress. Plant Cell Rep 26:1839–1859

    Article  CAS  PubMed  Google Scholar 

  • Roychoudhury A, Basu S, Sarkar SN, Sengupta DN (2008) Comparative physiological and molecular responses of a common aromatic indica rice cultivar to high salinity with non-aromatic indica rice cultivars. Plant Cell Rep 27:1395–1410

    Article  CAS  PubMed  Google Scholar 

  • Roychoudhury A, Basu S, Sengupta DN (2009) Effects of exogenous abscisic acid on some physiological responses in a popular aromatic indica rice compared with those from two traditional non-aromatic indica rice cultivars. Acta Physiol Plant 31:915–926

    Article  CAS  Google Scholar 

  • Roychoudhury A, Basu S, Sengupta DN (2012) Antioxidants and stress-related metabolites in the seedlings of two indica rice varieties exposed to cadmium chloride toxicity. Acta Physiol Plant 34:835–847

    Article  CAS  Google Scholar 

  • Roychoudhury A, Paul S, Basu S (2013) Cross-talk between abscisic acid-dependent and abscisic acid-independent pathways during abiotic stress. Plant Cell Rep 32:985–1006

    Article  CAS  PubMed  Google Scholar 

  • Sadeghi H, Khazaei F, Yari L, Sheidaei S (2011) Effect of seed osmopriming on seed germination behaviour and vigor of soybean (Glycine max L.). J Agric Biol Sci 6:39–43

    Google Scholar 

  • Salama KHA, Mansour MMF, Hassan NS (2011) Choline priming improves salt tolerance in wheat (Triticum aestivum L.). Aust J Basic Appl Sci 5:126–132

    CAS  Google Scholar 

  • Salama KHA, Ahmed HFS, El-Araby MMA (2015) Interaction of exogenous abscisic acid and salinity on the lipid root plasma membrane of Phaseolus vulgaris L. Egypt J Exp Biol (Bot) 11:189–196

    Google Scholar 

  • Sedghi M, Nemati A, Esmaielpour B (2010) Effect of seed priming on germination and seedling growth of two medicinal plants under salinity. Emir J Food Agric 22:130–139

    Article  Google Scholar 

  • Sharma AD, Rathore SVS, Srinivasan K, Tyagi RK (2014) Comparison of various seed priming methods for seed germination, seedling vigour and fruit yield in okra (Abelmoschus esculentus L. Moench). Sci Hortic 165:75–81

    Article  CAS  Google Scholar 

  • Sharma KK, Singh US, Sharma P, Kumar A, Sharma L (2015) Seed treatments for sustainable agriculture – a review. J Appl Nat Sci 7:521–539

    Article  Google Scholar 

  • Siri B, Vichitphan K, Kaewnaree P, Vichitphan S, Klanrit P (2013) Improvement of quality, membrane integrity and antioxidant systems in sweet pepper (Capsicum annuum Linn.) seeds affected by osmopriming. Aust J Crop Sci 7:2068–2073

    Google Scholar 

  • Summart J, Thanonkeo P, Panichajakul S, Prathepha P, McManus MT (2010) Effect of salt stress on growth, inorganic ion and proline accumulation in Thai aromatic rice, Khao Dawk Mail 105, callus culture. Afr J Biotechnol 9:145–152

    CAS  Google Scholar 

  • Tanou G, Fotopoulos V, Molassiotis A (2012) Priming against environmental challenges and proteomics in plants: update and agricultural perspectives. Front Plant Sci 3:216

    Article  PubMed  PubMed Central  Google Scholar 

  • Thiam M, Champion A, Diouf D, Mame Ourèye SY (2013) NaCl effects on in vitro germination and growth of some Senegalese cowpea (Vigna unguiculata (L.) Walp.) Cultivars. ISRN Biotech 11

    Google Scholar 

  • Varier A, Vari AK, Dadlani M (2010) The sub cellular basis of seed priming. Cur Sci 99:450–456

    CAS  Google Scholar 

  • Xiao-Fang S, Qing Song Z, You Liang L (2000) Regulations of salt tolerance of cotton plants at seedling emergence stage by soaking seeds in Pix (DPC) and CaCI2 solutions. Jiangsu J Agric Sci 16:204–207

    Google Scholar 

  • Younesi O, Moradi A (2015) Effect of priming of seeds of Medicago sativa ‘bami’ with gibberellic acid on germination, seedlings growth and antioxidant enzymes activity under salinity stress. J Hortic Res 22:167–174

    Article  Google Scholar 

  • Yucel NC, Heybet EH (2016) Salicylic acid and calcium treatments improves wheat vigor, lipids and phenolics under high salinity. Acta Chim Slov 63:738–746

    Article  CAS  Google Scholar 

  • Zavariyan A, Rad M, Asghari M (2015) Effect of seed priming by potassium nitrate on germination and biochemical indices in Silybum marianum L. under salinity stress. Int J Life Sci 9:23–29

    Google Scholar 

  • Zhang HJ, Zhang N, Yang RC, Wang L, Sun QQ et al (2014) Melatonin promotes seed germination under high salinity by regulating antioxidant systems, ABA and GA4 interaction in cucumber (Cucumis sativus L.). J Pineal Res 57:269–279

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The financial support from Council of Scientific and Industrial Research (CSIR), Government of India, through the Project [38(1387)/14/EMR-II] to Dr. Aryadeep Roychoudhury is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Banerjee, A., Roychoudhury, A. (2018). Seed Priming Technology in the Amelioration of Salinity Stress in Plants. In: Rakshit, A., Singh, H. (eds) Advances in Seed Priming . Springer, Singapore. https://doi.org/10.1007/978-981-13-0032-5_5

Download citation

Publish with us

Policies and ethics