Skip to main content

Eco-Friendly Bioremediation Approach for Dye Removal from Wastewaters: Challenges and Prospects

  • Chapter
  • First Online:
Climate Resilience and Environmental Sustainability Approaches

Abstract

Discharge of huge quantities of toxic dyes along with textile wastewaters causes irreversible damage to the aquatic ecosystems on entering the rivers or streams. The conventional physico-chemical treatment methods being costly, energy intensive and less efficient in dye removal have necessitated looking for novel methods of treatment. The bioremediation approach involving biological systems has emerged as a more effective, less expensive, less energy demanding and eco-friendly treatment method for dyes. The present chapter focuses on the use of pure and mixed bacterial cultures isolated from different habitats for bioremediation of Reactive dyes, a widely used and toxic group of azo dyes. The effects of various process parameters including both nutritional and physical factors viz. carbon and nitrogen source, temperature, pH, agitation and presence or absence of oxygen on dye decolorization have been critically reviewed along with possibilities of process optimization for enhanced dye degradation using Response Surface Methodology (RSM) models. The chapter also highlights the biotransformation pathways followed by different types of microbes and the role of enzymes responsible for dye degradation. Biotoxicity assays that could be conducted to examine the dye detoxifying capability of the microbe have also been discussed. A critical appraisal of the bioremediation approach, its limitations, major challenges and future perspectives opens avenues for its application as an economically and environmentally sustainable treatment method for dye-laden wastewaters, so that the treated waters could be used safely for some designated purposes, thus helping in meeting the goals of sustainable water management.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdullah E, Tzanov T, Kosta S, Robra KH, Cavaco-Paulo A, Gubitz G (2000) Decolorization and detoxification of textile dyes with a laccase from Trametes hirsuta. Appl Environ Microbiol 66:3357–3362

    Article  Google Scholar 

  • Ahmed A (1995) Reactive dyes development: a review. Text Dye Print 28:19–24

    CAS  Google Scholar 

  • Aksu Z, Donmez G (2005) Combined effects of molasses sucrose and reactive dye on the growth and dye bioaccumulation properties of Candida tropicalis. Process Biochem 40:2443–2454

    Article  CAS  Google Scholar 

  • Asgher M, Bhatti HN (2012) Evaluation of thermodynamics and effect of chemical treatments on sorption potential of citrus waste biomass for removal of anionic dyes from aqueous solutions. Ecol Eng 38:79–85

    Article  Google Scholar 

  • Ates O (2015) Systems biology of microbial exoploysaccharides production. Front Bioeng Biotechnol 3:200

    Article  Google Scholar 

  • Banat IM, Nigam P, Singh D, Marchant R (1996) Microbial decolorization of textile-dye-containing effluents: a review. Bioresour Technol 58:217–227

    Article  CAS  Google Scholar 

  • Behbahani M, Alavi M, Reza M (2011) Techno-economical evaluation of fluoride removal by electrocoagulation process: optimization through response surface methodology. Desalination 271:209–218

    Article  CAS  Google Scholar 

  • Bhattacharya A, Singhal N, Gupta A (2017) Degradation of azo dye methyl red by alkaliphilic, halotolerant Nesterenkonia lacusekhoensis EMLA3: application in alkaline and salt-rich dyeing effluent treatment. Extremophiles 21:479–490

    Article  CAS  Google Scholar 

  • Bhosale S, Saratale G, Govindwar S (2006) Mixed function oxidase in Cunninghamella blakesleeana (NCIM-687). J Basic Microbiol 46:444–448

    Article  CAS  Google Scholar 

  • Birmole R, Patade S, Sirwaiya V, Bargir F, Aruna K (2014) Biodegradation study of reactive blue 172 by Shewanella haliotis DW01 isolated from lake sediment. Indian J Sci Res 5:139–152

    CAS  Google Scholar 

  • Biswas G, Kumari M, Adhikari K, Dutta S (2017) Application of response surface methodology for optimization of biosorption of fluoride from groundwater using Shorea robusta flower petal. Appl Water Sci 7:4673–4690

    Google Scholar 

  • Blaga A, Tatyana A, Lilyana S, Sava M (2008) Temperature effect on bacterial azo bond reduction kinetics: an Arrhenius plot analysis. Biodegradation 19:387–393

    Article  Google Scholar 

  • Blumel S, Stolz A (2003) Cloning and characterization of the gene coding for the aerobic reductase from Pigmentiphaga kullae K24. Appl Microbiol Biotechnol 62:186–190

    Article  CAS  Google Scholar 

  • Bromley-Challenor K, Knapp JS, Zhang Z, Gray NCC, Hetheridge M, Malcol EMR (2000) Dye reduction of an azo dye by unacclimated activated sludge under anaerobic conditions. Water Res 34:4410–4418

    Article  CAS  Google Scholar 

  • Chang JS, Kuo TS (2000) Kinetics of bacterial decolorization of azo dye with Escherichia coli NO3. Bioresour Technol 75:107–111

    Article  CAS  Google Scholar 

  • Chang JS, Lin YC (2000) Fed-batch bioreactor strategies for microbial decolorization of azo dye using a Pseudomonas luteola strain. Biotechnol Prog 16:979–985

    Article  CAS  Google Scholar 

  • Chang JS, Chou C, Chen SY (2001) Decolorization of azo dyes with immobilized Pseudomonas luteola. Process Biochem 36:757–763

    Article  CAS  Google Scholar 

  • Chen H, Hopper SL, Cerniglia CE (2005) Biochemical and molecular characterization of an azoreductase from Staphylococcus aureus, a tetrameric NADPH-dependent flavoprotein. Microbiology 151:1433–1441

    Article  CAS  Google Scholar 

  • Chivukula M, Renganathan V (1995) Phenolic azo dye oxidation by laccase from Pyricularia oryzae. Appl Environ Microbiol 61:4374–4377

    Article  CAS  Google Scholar 

  • Dawkar VV, Jadhav UU, Telke AA, Govindwar SP (2009) Peroxidase from Bacillus sp. VUS and its role in the decolourization of textile dyes. Biotechnol Bioprocess Eng 14:361–368

    Google Scholar 

  • De Roos AJ, Ray RM, Gao DL, Wernli KJ, Fitzgibbons ED, Zinding F, Astrakianakis G, Thoma DB, Checkoway H (2005) Colorectal cancer incidence among female textile workers in Shanghai, China: a case-Cohort analysis of occupational exposures. Cancer Causes Control 16:1177–1188

    Google Scholar 

  • Dogan EE, Yesilada E, Ozata L, Yologlu S (2005) Genotoxicity testing of four textile dyes in two crosses of Drosophila using wing somatic mutation and recombination test. Drug Chem Toxicol 28:289–301

    Google Scholar 

  • Dong X, Zhou J, Liu Y (2003) Peptone-induced biodecolorization of reactive brilliant blue (KN-R) by Rhodocyclus gelatinosus XL-1. Process Biochem 39:89–94

    Article  CAS  Google Scholar 

  • Dos Santos AB, Cervantes FJ, Van Lier JB (2007) Review paper on current technologies for decolorization of textile wastewaters: perspectives for anaerobic biotechnology. Bioresour Technol 98:2369–2385

    Article  CAS  Google Scholar 

  • Duran N, Esposito E (2000) Potential applications of oxidative enzymes and phenoloxidase-like compounds in wastewater and soil treatment: a review. Appl Catal B Environ 28:83–99

    Article  CAS  Google Scholar 

  • Elisangela F, Andrea Z, Dias F, Ragagnin C, Lucia D, Artur C (2009) Biodegradation of textile azo dyes by a facultative Staphylococcus arlettae strain VN-11 using a sequential microaerophilic/aerobic process. Int Biodeterior Biodegradation 63:280–288

    Article  CAS  Google Scholar 

  • Field JA, Brady J (2003) Riboflavin as a redox mediator accelerating the reduction of the azo dye mordant yellow 10 by anaerobic granular sludge. Water Sci Technol 36:1497–1504

    Google Scholar 

  • Franciscon E, Grossman MJ, Paschoal JAR, Reyes FGR, Durrant LR (2012) Decolorization and biodegradation of reactive sulfonated azo dyes by a newly isolated Brevibacterium sp. strain VN-15. Springplus 1:37

    Google Scholar 

  • Garg S, Tripathi M, Lal N (2015) Statistical design for optimization of process parameters for biodecolorization of Reactive Orange 4 Azo Dye by Bacillus cereus isolate. Res J Microbiol 10:502–512

    Google Scholar 

  • Giwa A, Giwa FJ, Ifu BJ (2012) Microbial decolourization of an anthra- quinone dye C.I. reactive blue 19 using Bacillus cereus. Am J Chem Sci 2:60–68

    Article  CAS  Google Scholar 

  • Gomare SS, Tamboli DP, Kagalkar AN, Govindwar SP (2009) Eco-friendly biodegradation of a reactive textile dye golden yellow HER by Brevibacillus laterosporus MTCC 2298. Int Biodeterior Biodegradation 63:582–586

    Article  CAS  Google Scholar 

  • Gordon S, Hsieh YL (2007) Cotton: science and technology. Ch. 13. Woodhead Publishing and CRC Press, Cambridge

    Book  Google Scholar 

  • Guadie A, Tizazu S, Melese M, Guo W, Ngo HH, Xia S (2017) Biodecolorization of textile azo dye using Bacillus sp. strain CH12 isolated from alkaline lake. Biotechnol Rep (Amst) 15:92–100

    Article  Google Scholar 

  • Haghshenas H, Khodaii A, Khedmati TS (2015) A mathematical model for predicting stripping potential of hot mix asphalt. Constr Build Mater 75:488–495

    Article  Google Scholar 

  • Hao OJ, Kim H, Chiang PC (2000) Decolorization of wastewater. Crit Rev Environ Sci Technol 30:449–505

    Article  CAS  Google Scholar 

  • Hatvani N, Mecs I (2001) Production of laccase and manganese peroxidase by Lentinus edodes on malt containing by-product of the brewing process. Process Biochem 37:91–496

    Article  Google Scholar 

  • Humnabadkar IP, Saratake GD, Govindwar SP (2008) Decolorization of purple 2R by Aspergillus ochraceus (NCIM-1146). Asian J Microbiol Biotechnol Environ Sci 10:693–697

    Google Scholar 

  • Ingelman M, Ramaswamy S, Nivière V, Fontecave M, Eklund H (1999) Crystal structure of NAD(P)H:flavin oxidoreductase from Escherichia coli. Biochemi 38:7040–7049

    Article  CAS  Google Scholar 

  • Jadhav SU, Jadhav MU, Anuradha NK, Govindwar SP (2008a) Decolorization of brilliant blue G dye mediated by degradation of the microbial consortium of Galactomyces geotrichum and Bacillus sp. J Chin Inst Chem Eng 39:563–570

    Article  CAS  Google Scholar 

  • Jadhav SU, Jadhav MU, Anuradha NK, Govindwar SP (2008b) Biodegradation of disperse dye brown 3REL by microbial consortium of Galactomyces geotrichum MTCC 1360 and Bacillus sp. VUS. Biotechnol Bioprocess Eng 13:232–239

    Article  CAS  Google Scholar 

  • Jadhav SU, Dawkar VV, Telke AA, Govindwar SP (2009) Decolorization of direct blue GLL with enhanced lignin peroxidase enzyme production in Comamonas sp UVS. J Chem Technol Biotechnol 84:126–132

    Article  CAS  Google Scholar 

  • Jadhav JP, Kalyani DC, Telke AA, Phugare SS, Govindwar SP (2010) Evaluation of the efficacy of a bacterial consortium for the removal of color, reduction of heavy metals, and toxicity from textile dye effluent. Bioresour Technol 101:165–173

    Article  CAS  Google Scholar 

  • Jadhav SB, Surwase SN, Phugare SS, Jadhav JP (2013) Response surface methodology mediated optimization of Remazol Orange decolorization in plain distilled water by Pseudomonas aeruginosa BCH. Int J Environ Sci Technol 10:181–190

    Article  CAS  Google Scholar 

  • Jin X, Liu G, Xu Z, Tao W (2007) Decolourisation of a dye industry effluent by Aspergillus fumigatus XC6. Appl Microbiol Biotechnol 74:239–243

    Article  CAS  Google Scholar 

  • Joe MH, Lim SY, Kim DH, Lee IS (2008) Decolorization of reactive dyes by Clostridium bifermentans SL186 isolated from contaminated soil. World J Microbiol Biotechnol 24:2221–2226

    Article  CAS  Google Scholar 

  • Joshi T, Iyengar L, Singh K, Garg S (2008) Isolation, identification and application of novel bacterial consortium TJ-1 for the decolorization of structurally different azo dyes. Bioresour Technol 99:7115–7121

    Article  CAS  Google Scholar 

  • Kalme S, Parshetti GK, Jadhav S, Govindwar S (2007) Biodegradation of benzidine based dye direct blue-6 by Pseudomonas desmolyticum NCIM 2112. Bioresour Technol 98:1405–1410

    Article  CAS  Google Scholar 

  • Kalme S, Jadhav S, Jadhav M, Govindwar S (2009) Textile dye degrading laccase from Pseudomonas desmolyticum NCIM 2112. Enzym Microb Technol 44:65–71

    Article  CAS  Google Scholar 

  • Kalyani DC, Patil PS, Jadhav JP, Govindwar SP (2008) Biodegradation of reactive textile dye Red BLI by an isolated bacterium Pseudomonas sp. SUK1. Bioresource Technol 99(11):4635–4641

    Google Scholar 

  • Kalyani DC, Telke AA, Dhanve RS, Jadhav JP (2009a) Eco-friendly biodegradation and detoxification of reactive red 2 textile dye by newly isolated Pseudomonas sp. SUK1. J Hazard Mater 163:735–742

    Article  CAS  Google Scholar 

  • Kalyani DC, Telke AA, Govindwar SP, Jadhav JP (2009b) Biodegradation and detoxification of reactive textile dye by isolated Pseudomonas sp. SUK1. Water Environ Res 81:298–307

    Article  CAS  Google Scholar 

  • Karimifard S, Alavi Moghaddam MR (2018) Application of response surface methodology in physicochemical removal of dyes from wastewater: a critical review. Sci Total Environ 640–641:772–797

    Article  CAS  Google Scholar 

  • Khan S, Malik A (2016) Degradation of reactive black 5 dye by newly isolated bacterium Pseudomonas entomophila BS1. Can J Microbiol 62:220–232

    Article  CAS  Google Scholar 

  • Khan Z, Jain K, Soni A, Madamwar D (2014) Microaerophilic degradation of sulphonated azo dye–reactive red 195 by bacterial consortium AR1 through co-metabolism. Int Biodeterior Biodegradation 94:167–175

    Article  CAS  Google Scholar 

  • Khan S, Anas M, Malik A (2019) Mutagenicity and genotoxicity evaluation of textile industry wastewater using bacterial and plant bioassays. Toxicol Rep 6:193–201

    Article  CAS  Google Scholar 

  • Khatri A, Peerzada MH, Mohsin M, White M (2015) A review on developments in dyeing cotton fabrics with reactive dyes for reducing effluent pollution. J Clean Prod 87:50–57

    Article  CAS  Google Scholar 

  • Khedmati M, Khodaii A, Haghshenas HF (2017) A study on moisture susceptibility of stone matrix warm mix asphalt. Constr Build Mater 144:42–49

    Article  Google Scholar 

  • Khehra MS, Saini HS, Sharma DK, Chadha BS, Chimni SS (2006) Biodegradation of azo dye C.I. Acid red 88 by anoxic-aerobic sequential bioreactor. Dyes Pigments 70:1–7

    Article  CAS  Google Scholar 

  • Kilic NK, Nielsen JL, Yuce M, Donmez G (2007) Characterization of a simple bacterial consortium for effective treatment of wastewaters with reactive dyes and Cr(VI). Chemosphere 67:826–831

    Article  CAS  Google Scholar 

  • Kılıç Z, Atakol O, Emregül E, Çelikkol P, Aras S, Cansaran-Duman D (2008) Biosorption characteristics of zinc(II) from aqueous solutions by Pseudevernia furfuracea. Presented at 6th international Conference of Chemical Societies of South Eastern European Countries, 10–14 Sept, Sofia

    Google Scholar 

  • King D (2007) Dyeing of cotton and cotton products. In: Gordon S, Hsieh YL (eds) Cotton: science and technology. Woodhead Publishing, Cambridge, pp 353–377

    Chapter  Google Scholar 

  • Knapp JS, Newby PS (1995) The microbiological decolorization of an industrial effluent containing a diazo-linked chromophore. Water Res 29:1807–1809

    Article  CAS  Google Scholar 

  • Kulandaivel S, Kaleeswari P, Mohanapriya P (2014) Decolorization and adsorption of dyes by consortium of bacteria with agriculture waste. Int J Curr Microbiol App Sci 3:865–882

    Google Scholar 

  • Lade H, Kadam A, Paul D, Govindwar S (2015) Biodegradation and detoxification of textile azo dyes by bacterial consortium under sequential microaerophilic/aerobic processes. EXCLI J 14:158–174

    Google Scholar 

  • Lalnunhlimi S, Krishnaswamy V (2016) Decolorization of azo dyes (direct blue 151 and direct red 31) by moderately alkaliphilic bacterial consortium. Braz J Microbiol 47:39–46

    Article  CAS  Google Scholar 

  • Lewis DM, Broadbent PJ, Vo LTT (2008) Covalent fixation of reactive dyes on cotton under neutral conditions. AATCC Rev 8:35–41

    CAS  Google Scholar 

  • Maier J, Kandelbauer A, Erlacher A, Cavaco-Paulo A, Guebitz G (2004) A new alkali-thermostable azoreductase from Bacillus sp. strain SF. Appl Environ Microbiol 70:837–844

    Article  CAS  Google Scholar 

  • Majcherczyk A, Johannes C, Huttermann A (1998) Oxidation of polycyclic aromatic hydrocarbons (PAH) by laccase of Trametes versicolor. Enzym Microb Technol 22:335–341

    Article  CAS  Google Scholar 

  • Mathur N, Bhatnagar P, Bakre P (2006) Assessing mutagenicity of textile dyes from Pali (Rajasthan) using Ames bioassay. J Appl Ecol Environ Res 4(1):111–118

    Article  Google Scholar 

  • McMahon AM, Doyle EM, Brooks S, O’Connor KE (2007) Biochemical characterisation of the coexisting tyrosinase and laccase in the soil bacterium Pseudomonas putida F6. Enzyme Microb Technol 40:1435–1441

    Google Scholar 

  • Mona S, Kaushik A, Kaushik CP (2011a) Biosorption of reactive dye by waste biomass of Nostoc linckia. Ecol Eng 37:1589–1594

    Article  Google Scholar 

  • Mona S, Kaushik A, Kaushik CP (2011b) Waste biomass of Nostoc linckia as adsorbent of crystal violet dye: optimization based on statistical model. Int Biodeterior Biodegradation 65:513–521

    Article  CAS  Google Scholar 

  • Moosvi S, Kher X, Madamwar D (2007) Isolation, characterization and decolorization of textile dyes by a mixed bacterial consortium JW-2. Dyes Pigments 74:723–729

    Article  CAS  Google Scholar 

  • Nachiyar CV, Rajkumar GS (2003) Degradation of tannery and textile dye, Navitan Fast Blue S5R by Pseudomonas aeruginosa. World J Microbiol Biotechnol 19:609–614

    Article  CAS  Google Scholar 

  • Nachiyar CV, Rajkumar GS (2005) Purification and characterization of an oxygen insensitive azoreductase from Pseudomonas aeruginosa. Enzym Microb Technol 36:503–509

    Article  CAS  Google Scholar 

  • Nigam P, Armour G, Banat IM, Singh D, Marchant R (2000) Physical removal of textile dyes from effluents and solid-state fermentation of dye adsorbed agricultural residues. Bioresour Technol 72:219–226

    Article  CAS  Google Scholar 

  • Nilsson R, Nordlinder R, Wass U, Meding B, Belin L (1993) Asthma, rhinitis, and dermatitis in workers exposed to reactive dyes. Br J Ind Med 50:65–70

    CAS  Google Scholar 

  • Olukanni OD, Osuntoki AA, Gbenle GO (2006) Textile effluent biodegradation potentials of textile effluent-adapted and non-adapted bacteria. Afr J Biotechnol 5:1980–1984

    CAS  Google Scholar 

  • Pandey A, Singh P, Iyengar L (2007) Bacterial decolorization and degradation of azo dyes. Int Biodeterior Biodegr 59:73–84

    Article  CAS  Google Scholar 

  • Pearce CI, Lioyd JR, Guthrie JT (2003) The removal of colour from textile wastewater using whole bacterial cells: a review. Dyes Pigments 58:179–186

    Article  CAS  Google Scholar 

  • Prabhakar Y, Gupta A, Kaushik A (2019a) Enhanced decolorization of reactive violet dye 1 by halo-alkaliphilic Nesterenkonia strain: process optimization, short acclimatization and reusability analysis in batch cycles. Process Saf Environ Prot 131:116–126

    Article  CAS  Google Scholar 

  • Prabhakar Y, Gupta A, Kaushik A (2019b) Effect of some organic co-pollutants on decolorization of reactive violet 1 dye by an indigenous microbial strain from textile wastewater. Environ We Int J Sci Tech 14:159–168

    Google Scholar 

  • Prabhakar Y, Gupta A, Kaushik A (2021) Microbial degradation of reactive red-35 dye: upgraded progression through Box–Behnken design modeling and cyclic acclimatization. J Water Process Eng 40:101782

    Article  Google Scholar 

  • Prasad ASA, Rao KVB (2013) Aerobic biodegradation of azo dye by Bacillus cohnii MTCC 3616, an obligately alkaliphilic bacterium and toxicity evaluation of metabolites by different bioassay systems. Appl Microbiol Biotechnol 97:7469–7481

    Article  CAS  Google Scholar 

  • Preeti R, Kaushik A, Kaushik CP (2015) Exploring biosorption potential of dry immobilized biomass of cyanobacteria for removal of triphenylmethane dye under thermal conditions. Int J Multidiscip Res Dev 2:748–753

    Google Scholar 

  • Rehm B (2009) Microbial production of biopolymers and polymer precursors. Caister Academic, Norfolk

    Google Scholar 

  • Russ R, Rau J, Stolz A (2000) The function of cytoplasmic flavin reductases in the reduction of azo dyes by bacteria. Appl Environ Microbiol 66:1429–1434

    Article  CAS  Google Scholar 

  • Salokhe MD, Govindwar S (2003) Inducibility of biotransformation enzymes in Serratia marcescens. World J Microbiol Biotechnol 19:199–200

    Article  CAS  Google Scholar 

  • Saratale G, Humnabadkar R, Govindwar S (2007) Study of mixed function oxidase system in Aspergillus ochraceus (NCIM 1146). Ind J Microbiol 47:304–309

    Google Scholar 

  • Saratale GD, Chen SD, Lo YC, Saratale RG, Chang JS (2008) Outlook of biohydrogen production from lignocellulosic feedstock using dark fermentation-a review. J Sci Ind Res 67:162–179

    Google Scholar 

  • Saratale RG, Saratale GD, Kalyani DC, Chang JS, Govindwar SP (2009) Enhanced decolorization and biodegradation of textile azo dye scarlet R by using developed microbial consortium-GR. Bioresour Technol 100:2493–2500

    Article  CAS  Google Scholar 

  • Saratale RG, Saratale GD, Chang J, Govindwar SP (2010) Decolorization and biodegradation of reactive dyes and dye wastewater by a developed bacterial consortium. Biodegradation 21:999–1015

    Article  CAS  Google Scholar 

  • Saratale RG, Saratale GD, Change JS, Govindwar SP (2011) Bacterial decolorization and degradation of azo dyes: a review. J Taiwan Inst Chem Eng 42:138–157

    Article  CAS  Google Scholar 

  • Senthilkumar S, Prabhu HJ, Perumalsamy M (2013) Response surface optimization for biodegradation of textile azo dyes using isolated bacterial strain Pseudomonas sp. Arab J Sci Eng 38:2279–2291

    Article  CAS  Google Scholar 

  • Shah K (2014) Biodegradation of azo dye compounds. Int Res J Biochem Biotechnol 1:5–13

    Google Scholar 

  • Shah PD, Dave SR, Rao MS (2012) Enzymatic degradation of textile dye reactive orange 13 by newly isolated bacterial strain Alcaligenes faecalis PMS-1. Int J Biodeter Biodegr 69:41–50

    Article  CAS  Google Scholar 

  • Shah MP, Patel KA, Nair SS, Darji AM (2013) Microbial degradation and decolorization of reactive orange dye by strain of Pseudomonas spp. Int J Environ Bioremediat Biodegr 1:1–5

    Google Scholar 

  • Shore J (2002) Chemistry of reactive dyes. In: Shore J (ed) Colorants and auxiliaries, vol 1. Society of Dyers and Colourists, Bradford, pp 356–443

    Google Scholar 

  • Smith B (2003) Wastes from textile processing. In: Andrady AL (ed) Plastics and the environment. Wiley, Hoboken, pp 293–295

    Google Scholar 

  • Stolz A (2001) Basic and applied aspects in the microbial degradation of azo dyes. Appl Microbiol Biotechnol 56:69–80

    Google Scholar 

  • Sudhakar R, Gowda NKN, Venu G (2001) Mitotic abnormalities induced by silk dyeing industry effluents in the cells of Allium cepa. Cytologia 66:235–239

    Google Scholar 

  • Suganya K, Revathi K (2016) Decolorization of reactive dyes by immobilized bacterial cells from textile effluents. Int J Curr Microbiol App Sci 5:528–532

    Google Scholar 

  • Tallur PN, Mulla SI, Megadi VB, Talwar MP, Ninnekar HZ (2015) Biodegradation of cypermethrin by immobilized cells of Micrococcus sp. strain CPN 1. Braz J Microbiol 46:667–672

    Google Scholar 

  • Tan L, Ning S, Xia H, Sun J (2013) Aerobic decolorization and mineralization of azo dyes by a microbial community in the absence of an external carbon source. Int Biodeterior Biodegradation 85:210–216

    Article  CAS  Google Scholar 

  • Taylor JA, Pasha K, Phillips DA (2001) The dyeing of cotton with hetero bi-functional reactive dyes containing both a monochlorotriazinyl and a chloroacetylamino reactive group. Dyes Pigments 51:145–152

    Article  CAS  Google Scholar 

  • Telke A, Kalyani D, Jadhav J, Govindwar S (2008) Kinetics and mechanism of reactive red 141 degradation by a bacterial isolate Rhizobium radiobacter MTCC 8161. Acta Chim Slov 55:320–329

    CAS  Google Scholar 

  • Telke A, Kalyani D, Jadhav U, Parshetti G, Govindwar S (2009) Purification and characterization of an extracellular laccase from a Pseudomonas sp. LBC1 and its application for the removal of bisphenol A. J Mol Catal B Enzym 61:252–260

    Article  CAS  Google Scholar 

  • Usha MS, Sasirekha B, Bela RB, Devi S, Kamalini C, Manasa GA, Neha PM (2010) Batch, repeated batch and continuous degradation of reactive black 5 and reactive red 120 dye by immobilized bacteria. J Sci Ind Res 71:504–510

    Google Scholar 

  • Vijayaraghavan K, Yun YS (2008) Bacterial biosorbents and biosorption. Biotechnol Adv 26:266–291

    Article  CAS  Google Scholar 

  • Wang H, Ren ZJ (2014) Bioelectrochemical metal recovery from wastewater: a review. Water Res 66:219–232

    Article  CAS  Google Scholar 

  • Wang CJ, Hagemeier C, Rahman N, Lowe E, Noble M, Coughtrie M, Sim E, Westwood I (2007) Molecular cloning, characterisation and ligand-bound structure of an azoreductase from Pseudomonas aeruginosa. J Mol Biol 373:1213–1228

    Article  CAS  Google Scholar 

  • Wang H, Su JQ, Zheng HW, Tian Y (2009) Bacterial decolorization and degradation of the reactive dye reactive red 180 by Citrobacter sp. CK3. Int Biodeterior Biodegradation 63:395–399

    Article  CAS  Google Scholar 

  • Witek-Krowiak A, Chojnacka K, Podstawczyk D, Dawiec A, Pokomeda K (2014) Application of response surface methodology and artificial neural network methods in modelling and optimization of biosorption process. Bioresour Technol 160:150–160

    Article  CAS  Google Scholar 

  • Wu C, Liu X, Wei D, Fan J, Wang L (2001) Photosonochemical degradation of phenol in water. Water Res 35:3927–3933

    Article  CAS  Google Scholar 

  • Wuhrmann K, Mechsner K, Kappeler T (1980) Investigation on rate-determining factors in the microbial reduction of azo dyes. Eur J Appl Microbiol Biotechnol 9:325–338

    Article  CAS  Google Scholar 

  • Zhang X, Flurkey WH (1997) Phenoloxidases in portabella mushrooms. J Food Sci 62:97–100

    Article  CAS  Google Scholar 

  • Zhang F, Yediler A, Liang X, Kettrup A (2004) Effects of dye additives on the ozonation process and oxidation by-products: a comparative study using hydrolyzed C1 reactive red 120. Dyes Pigments 60:1–7

    Article  CAS  Google Scholar 

  • Zimmermann T, Kulla HG, Leisinger T (1982) Properties of purified orange II azoreductase, the enzyme initiating azo dye degradation by Pseudomonas KF46. Eur J Biochem 129:197–203

    Article  CAS  Google Scholar 

  • Zimmermann T, Gasser F, Kulla H, Leisinger T (1984) Comparison of two bacterial azoreductases acquired during adaptation to growth on azo dyes. Arch Microbiol 138:37–43

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anshu Gupta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Prabhakar, Y., Gupta, A., Kaushik, A. (2021). Eco-Friendly Bioremediation Approach for Dye Removal from Wastewaters: Challenges and Prospects. In: Kaushik, A., Kaushik, C.P., Attri, S.D. (eds) Climate Resilience and Environmental Sustainability Approaches. Springer, Singapore. https://doi.org/10.1007/978-981-16-0902-2_15

Download citation

Publish with us

Policies and ethics