Skip to main content
Log in

Aerobic biodegradation of Azo dye by Bacillus cohnii MTCC 3616; an obligately alkaliphilic bacterium and toxicity evaluation of metabolites by different bioassay systems

  • Environmental Biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

An obligate alkaliphilic bacterium Bacillus cohnii MTCC 3616 aerobically decolorized a textile azo dye Direct Red-22 (5,000 mg l−1) with 95 % efficiency at 37 °C and pH 9 in 4 h under static conditions. The decolorization of Direct Red-22 (DR-22) was possible through a broad pH (7–11), temperature (10–45 °C), salinity (1–7 %), and dye concentration (5–10 g l−1) range. Decolorization of dye was assessed by UV–vis spectrophotometer with reduction of peak intensity at 549 nm (λ max). Biodegradation of dye was analyzed by Fourier transform infrared spectroscopy (FTIR) and high-performance liquid chromatography (HPLC). The FTIR spectrum revealed that B. cohnii specifically targeted azo bond (N=N) at 1,614.42 cm−1 to break down Direct Red-22. Formation of metabolites with different retention times in HPLC analysis further confirmed the degradation of dye. The phytotoxicity test with 5,000 mg l−1 of untreated dye showed 80 % germination inhibition in Vigna mungo, 70 % in Sorghum bicolor and 80 % in Vigna radiata. No germination inhibition was noticed in all three plants by DR-22 metabolites at 5,000 mg l−1. Biotoxicity test with Artemia salina proved the lethality of the azo dye at LC50 of 4 and 8 % for degraded metabolites by causing death of its nauplii compared to its less toxic-degraded metabolites. Bioaccumulation of dye was observed in the mid-gut of A. salina. The cytogenotoxicity assay on the meristematic root tip cells of Allium cepa further confirmed the cytotoxic nature of azo dye (DR-22) with decrease in mitotic index (0.5 % at 500 ppm) and increase in aberrant index (4.56 %) over 4-h exposure period. Genotoxic damages (lagging chromosome, metaphase cluster, chromosome bridges, and dye accumulation in cytoplasm) were noticed at different stages of cell cycle. The degraded metabolites had negligible cytotoxic and genotoxic effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adedayo O, Javadpour S, Taylor C, Anderson WA, Moo-Young M (2004) Decolorization and detoxification of methyl red by aerobic bacteria from a wastewater treatment plant. World J Microbiol Biotechnol 20:545–550

    Article  CAS  Google Scholar 

  • Aksu Z (2003) Reactive dye bioaccumulation by Saccharomyces cerevisiae. Process Biochem 38:1437–1444

    Article  CAS  Google Scholar 

  • Asad S, Amoozegar MA, Pourbabaee AA, Sarbolouki MN, Dastgheib SMM (2006) Decolorization of textile azo dyes by newly isolated halophilic and halotolerant bacteria. Bioresour Technol 98:2082–2088

    Article  PubMed  Google Scholar 

  • Asgher M, Bhatti HN, Shah SAH, Javaid Asad M, Legge RL (2006) Decolorization potential of mixed microbial consortia for reactive and disperse textile dye stuffs. Biodegr 18:311–316

    Article  Google Scholar 

  • Ayed L, Mahdhi A, Cheref A, Bakhrouf A (2011) Decolorization and degradation of azo dye Methyl Red by an isolated Sphingomonas paucimobilis: biotoxicity and metabolites characterization. Desalination 274:272–277

    Article  CAS  Google Scholar 

  • Bafana A, Krishnamurthi K, Devi SS, Chakrabarti T (2008) Biological decolourization of C.I. Direct Black 38 by E. gallinarium. J Hazard Mater 157:187–193

    Article  PubMed  CAS  Google Scholar 

  • Bakare AA, Mosuro AA, Osibanjo O (2000) Effect of simulated leachate on chromosomes and mitosis in roots of Allium cepa (L). J Environ Biol 21(3):263–271

    CAS  Google Scholar 

  • Beydilli MI, Pavlostathis SG, Tincher WC (1998) Decolorization and toxicity screening of selected reactive azo dyes under methanogenic conditions. Water Sci Technol 38(4–5):225–232

    CAS  Google Scholar 

  • Carita R, Marin-Morales MA (2008) Induction of chromosome aberrations in the Allium cepa test system caused by the exposure of seeds to industrial effluents contaminated with azo dyes. Chemosphere 72:722–725

    Article  PubMed  CAS  Google Scholar 

  • Carliell CM, Barclay SJ, Naidoo N, Buckley CA, Mulholland DA, Senior E (1995) Microbial decolourisation of a reactive azo dye under anaerobic conditions. Water SA 21(1):61–69

    CAS  Google Scholar 

  • Carliell CM, Barclay SJ, Shaw C, Wheatley AD, Buckley CA (1998) The effect of salts used in textile dyeing on microbial decolourisation of a reactive azo dye. Environ Technol 19:1133–1137

    Article  CAS  Google Scholar 

  • Chen KC, Wu JY, Liou DJ, Huang SCJ (2003) Decolorization of the textile dyes by newly isolated bacterial strains. J Biotechnol 101:57–68

    Article  PubMed  CAS  Google Scholar 

  • Chudgar RJ (1985) Azo dyes. In: Kroschwitz JI (ed) Kirk–Othmer encyclopedia of chemical technology, vol 3, 4th edn. Wiley, New York, pp 821–875

    Google Scholar 

  • Chung KT, Stevens JR (1993) Degradation of azo dyes by environmental microorganisms and helminths. Environ Toxicol Chem 12:2121–2132

    CAS  Google Scholar 

  • Cripps C, Bumpus JA, Aust SD (1990) Biodegradation of azo and heterocyclic dyes by Phanerochaete chrysosporium. Appl Environ Microbiol 56:1114–1118

    PubMed  CAS  Google Scholar 

  • Dawkar V, Jadhav U, Jadhav S, Govindwar S (2008) Biodegradation of disperse textile dye Brown 3REL by newly isolated Bacillus sp. VUS. J Appl Microbiol 105:14–24

    Article  PubMed  CAS  Google Scholar 

  • De Baere LA, Devocht M, Assche PV, Verstraete W (1984) Influence of high NaCl and NH4Cl salt levels on methanogenic associations. Water Res 18:543–648

    Article  Google Scholar 

  • de Campos B, Ventura-Camargo PP, Maltempi P, Marin-Morales MA (2011) The use of the cytogenetic to identify mechanisms of action of an azo dye in Allium cepa meristematic cells. J Environ Anal Toxicol 1:3

    Google Scholar 

  • Fiskesjo G (1993) The Allium cepa in wastewater monitoring. Environ Toxicol Water 8:291–298

    Article  Google Scholar 

  • Fiskesjo G (1997) Allium test for screening chemicals; evaluation of cytological parameters. In: Wang W, Gorsuch JW, Hughes JS (eds) Plants for environmental studies. Lewis, New York, pp 308–333

    Google Scholar 

  • Gopinath KP, Sahib HAM, Muthukumar K, Velan M (2009) Improved biodegradation of Congo Red by Bacillus sp. Bioresour Technol 100:670–675

    Article  PubMed  CAS  Google Scholar 

  • Grant WF (1994) The present status of higher plants bioassays for the detection of environmental mutagens. Mutat Res 310:175–185

    Article  PubMed  CAS  Google Scholar 

  • Jadhav UU, Dawkar VV, Ghodake GS, Govindwar SP (2008a) Biodegradation of Direct Red 5B, a textile dye by newly isolated Comamonas sp. UVS. J Hazard Mater 158:507–516

    Article  PubMed  CAS  Google Scholar 

  • Jadhav SU, Kalme SD, Govindwar SP (2008b) Biodegradation of methyl red by Galactomyces geotrichum MTCC 1360. Int Biodeter Biodegrad 62:135–142

    Article  CAS  Google Scholar 

  • Jadhav JP, Phugare SS, Dhanve RS, Jadhav BS (2009) Rapid biodegradation and decolorization of Direct Orange 39 (Orange TGLL) by an isolated bacterium Pseudomonas aeruginosa strain BCH. Biodegr 21:453–463

    Article  Google Scholar 

  • Jirasripongpun K, Nasanit R, Niruntasook J, Chotikasatian B (2007) Decolorization and degradation of C.I. Reactive Red 195 by Enterobacter sp., Thammasat. Int J Sci Tech 12:6–11

    Google Scholar 

  • Kalme SD, Parshetti GK, Jadhav SU, Govindwar SP (2006) Biodegradation of benzidine based dye Direct Blue-6 by Pseudomonas desmolyticum NCIM 2112. Bioresour Technol 98(7):1405–1410

    Article  PubMed  Google Scholar 

  • Kalyani DC, Telke AA, Dhanve RS, Jadhav JP (2009) Ecofriendly biodegradation and detoxification of Reactive Red 2 textile dye by newly isolated Pseudomonas sp. SUK1. J Hazard Mater 163:735–742

    Article  PubMed  CAS  Google Scholar 

  • Khalid A, Arshad M, Crowley DE (2008) Decolorization of azo dyes by Shewanella sp. under saline conditions. Appl Microbiol Biotechnol 79:1053–1059

    Article  PubMed  CAS  Google Scholar 

  • Kodam KM, Soojhawon I, Lohande PD, Gawai KR (2005) Microbial decolorization of reactive azo dyes under aerobic conditions. World J Microbiol Biotechnol 21:367–370

    Article  CAS  Google Scholar 

  • Leme DM, Marin-Morales MA (2009) Allium cepa test in environmental monitoring: a review on its application. Mutat Res 682:71–81

    Article  PubMed  CAS  Google Scholar 

  • Leme DM, Angelis DF, Marin-Morales MA (2008) Action mechanisms of petroleum hydrocarbons present in waters impacted by an oil spill on the genetic material of Allium cepa root cells. Aquatic Toxicol 88:214–219

    Article  CAS  Google Scholar 

  • Lin YH, Leu JY (2008) Kinetics of reactive azo dye decolorization by Pseudomonas luteola in a biological activated carbon process. Biochem Eng J 39:457–467

    Article  CAS  Google Scholar 

  • Matthews RS (1995) Artemia salina as a test organism for measuring superoxide mediated toxicity. Free Radic Biol Med 18:919–922

    Article  PubMed  CAS  Google Scholar 

  • Moller P, Wallin H (2000) Genotoxic hazards of azo pigments and other colorants related to 1-Phenylazo-2-hydroxynaphthalene. Mutat Res 462:13–30

    Article  PubMed  CAS  Google Scholar 

  • Moosvi S, Kehaira H, Madamwar D (2005) Decolorization of textile dye Reactive Violet 5 by a newly isolated bacterial consortium RVM 11.1. World J Microbiol Biotechnol 21:667–672

    Article  CAS  Google Scholar 

  • Pagga U, Taeger K (1994) Development of a method for adsorption of dyestuffs on activated sludge. Water Res 28:1051–1057

    Article  CAS  Google Scholar 

  • Pandey A, Singh P, Iyengar L (2007) Bacterial decolorization and degradation of azo dyes. Int Biodeterior Biodegrad 59:73–84

    Article  CAS  Google Scholar 

  • Pearcea CI, Lloydb JR, Guthriea JT (2003) The removal of colour from textile wastewater using whole bacterial cells: a review. Dyes Pigments 58:179–196

    Article  Google Scholar 

  • Rank J, Nielsen MH (1998) Genotoxicity testing of wastewater using the Allium cepa anaphase-telophase chromosome aberration assay. Mutat Res 418:113–119

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  • Sharma CBSR (1983) Plant meristems as monitors of genetic toxicity of environmental chemicals. Curr Sci 52:1000–1002

    CAS  Google Scholar 

  • Sharma AK, Sharma A (1980) Chromosome technique theory and practice, 3rd edn. Butterworths, London, UK, p 474

    Google Scholar 

  • Smaka-Kincl V, Stegnar P, Lovka M, Toman MJ (1996) The evaluation of waste, surface and ground water quality using the Allium cepa test procedure. Mutat Res 368:171–179

    Article  PubMed  CAS  Google Scholar 

  • Sorgeloos P, Persoone G (1975) Technological improvements for the cultivation of invertebrates as food for fishes and crustaceans. II. Hatching and culturing of the brine shrimp Artemia salina L. Aquaculture 6:303–317

    Article  Google Scholar 

  • Stolz A (2001) Basic and applied aspects in the microbial degradation of azo dyes. Appl Microbiol Biotechnol 56:69–80

    Article  PubMed  CAS  Google Scholar 

  • Turkoglu S (2007) Genotoxicity of five food preservatives tested on root tips of Allium cepa L. Mutat Res 626:4–14

    Article  PubMed  Google Scholar 

  • US-EPA (1996) Ecological effects test guidelines. Seed Germination Root Elongation Toxicity Test. Office of Prevention, Pesticides and Toxic Substances 850 4200. Washington DC: US Environmental Protection Agency. EPA 712-C-96-163

  • Wong PK, Yuen PY (1996) Decolorization and biodegradation of methyl red by Klebsiella pneumonia RS-13. Water Res 30:1736–1744

    Article  CAS  Google Scholar 

  • Wuhrmann K, Mechsner K, Kappeler T (1980) Investigation on rate-determining factors in the microbial reduction of azo dyes. Eur J Appl Microbiol 9:325–338

    Article  CAS  Google Scholar 

  • Yogesh MK, Kisan MK (2011) Decolorization of textile dyes by Alishewanella sp. KMK6. Appl Microbiol Biotechnol. doi:10.1007/s00253-011-3698-0

  • Zilly A, da Silva C-MJ, Bracht A, Marques de Souza CG, Carvajal AE, Koehnlein EA, Peralta RM (2011) Influence of NaCl and Na2SO4 on the kinetics and dye decolorization ability of crude laccase from Ganoderma lucidum. Int Biodeterior Biodegrad 65:340–344

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support of VIT University, Tamil Nadu, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. V. Bhaskara Rao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prasad, A.S.A., Rao, K.V.B. Aerobic biodegradation of Azo dye by Bacillus cohnii MTCC 3616; an obligately alkaliphilic bacterium and toxicity evaluation of metabolites by different bioassay systems. Appl Microbiol Biotechnol 97, 7469–7481 (2013). https://doi.org/10.1007/s00253-012-4492-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-012-4492-3

Keywords

Navigation