Skip to main content

Modeling and Simulation of Epoxy/Synthetic Fiber Composites

  • Living reference work entry
  • First Online:
Handbook of Epoxy/Fiber Composites

Abstract

Modeling and simulation of epoxy/synthetic fiber composites has gained a lot of attention in the last two decades, because of the numerous industries that employ such materials. In the last two decades, improvements of computational power have incremented the precision to simulate composite structures under multiple phenomena. Since the beginning of composite simulation, the transition from microscale to mesoscale and then to macroscale and vice versa has been one of the key issues to perform robust calculations and to obtain accurate results. In this chapter, we collect the improvements of modeling and simulation of epoxy/synthetic fiber composites by tackling two main topics for researchers: (1) interaction of resin fibers during manufacturing process and (2) mechanical performance of consolidated composite. Both topics are addressed in the three scales, because material and structure, in the case of composites, are created at the same time. Fist part deals with the simulation of liquid composite manufacturing (LCM) by approaching the interaction of a liquid with transient viscosity (epoxy resin) and a porous media (synthetic fiber preform). Weaving, fiber waviness, closure factor, and type of fiber define the preform permeability, resulting in impregnation paths and finally defining the final physical properties of the composite. Also, resin manufacturing parameters, such as injection pressure, temperature, and inlet-outlet position, influence the resin flow path, and in consequence the surface quality, the appearance of inner flaws, and, finally, defining the performance of the consolidated material. The main goal of this type of numerical simulation is to improve the efficiency of the manufacturing process and to obtain a good-quality product. Second part deals with the simulation of mechanical performance of fiber composites, by approaching multi-scale models where the micromechanics, cohesive conditions between fibers and matrix, define the unit cell behavior (tows, weave, and resin), and then the macroscopic properties are calculated. Stratified theory and failure criteria coupled with damage mechanics at the mesoscale currently result in robust simulations where delamination and crack path can be identified. Moreover, cohesive zone models plus extended finite element method (XFEM) is currently used to compute crack propagation or even fatigue. This chapter wants to be a summary where the reader can find the current state-of-the-art and novel trends for modeling and simulating epoxy/synthetic fiber composites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • H. Alhussein, R. Umer, S. Rao, E. Swery, S. Bickerton, W.J. Cantwell, Characterization of 3D woven reinforcements for liquid composite molding processes. J. Mater. Sci. 51, 3277–3288 (2016)

    Article  CAS  Google Scholar 

  • M.A. Ali, R. Umer, K.A. Khan, W.J. Cantwell, Application of X-ray computed tomography for the virtual permeability prediction of fiber reinforcements for liquid composite molding processes: A review. Compos. Sci. Technol. 184, 107828 (2019)

    Article  Google Scholar 

  • Z.P. Bažant, B.H. Oh, Crack band theory for fracture of concrete. Mater. Constr. 16, 155–177 (1983)

    Article  Google Scholar 

  • P.W.R. Beaumont, The structural integrity of composite materials and long-life implementation of composite structures. Appl. Compos. Mater. 27, 449–478 (2020)

    Article  Google Scholar 

  • E.B. Belov, S.V. Lomova, I. Verpoesta, T. Petersb, D. Rooseb, R.S. Parnasc, K. Hoesd, H. Sold, Modelling of permeability of textile reinforcements: Lattice Boltzmann method. Compos. Sci. Technol. 64, 1069–1080 (2004)

    Article  Google Scholar 

  • G.O. Brown, Henry Darcy and the making of a law. Water Resour. Res. 38(7), 1106 (2001)

    Google Scholar 

  • P.R. Budarapu, X. Zhuang, T. Rabczuk, S.P.A. Bordas, Multiscale modeling of material failure: Theory and computational methods. Adv. Appl. Mech. 52, 1–103 (2019)

    Article  Google Scholar 

  • L.P. Canal, C. González, J. Segurado, J.L. Lorca, Intraply fracture of fiber-reinforced composites: Microscopic mechanisms and modeling. Compos. Sci. Technol. 72, 1223–1232 (2012)

    Article  CAS  Google Scholar 

  • P. Carlone, F. Rubino, V. Paradiso, F. Tucci, Multi-scale modeling and online monitoring of resin flow through dual-scale textiles in liquid composite molding processes. Int. J. Adv. Manuf. Technol. 96, 2215–2230 (2018)

    Article  Google Scholar 

  • G. Catalanotti, C. Furtado, T. Scalici, G. Pitarresi, F.P. van der Meer, P.P. Camanho, The effect of through-thickness compressive stress on mode II interlaminar fracture toughness. Compos. Struct. 182, 153–163 (2017)

    Article  Google Scholar 

  • F. Collombet, M. Torres, B. Douchin, L. Crouzeix, Y.-H. Grunevald, J. Lubin, T. Camps, X. Jacob, G. Luyckx, K.-T. Wu, Multi-instrumentation monitoring for the curing process of a composite structure. Measurement 157, 107635 (2020)

    Article  Google Scholar 

  • F. Desrumaux, F. Meraghni, M.L. Benzeggagh, Micromechanical modelling coupled to a reliability approach for damage evolution prediction in composite materials. Appl. Compos. Mater. 7, 231–250 (2000)

    Article  Google Scholar 

  • M.R. Dusi, W.I. Lee, P.R. Ciriscioli, G.S. Springer, Cure kinetics and viscosity of fiberite 976 resin. J. Compos. Mater. 21, 243–261 (1987)

    Article  CAS  Google Scholar 

  • J.D. Eshelby, The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. R. Soc. London A Math. Phys. Eng. Sci. 241, 376–439 (1957)

    Google Scholar 

  • R. Fournier, T. Coupez, M. Vincent, Numerical determination of the permeability of fibre reinforcement for the RTM process. Revue Européenne des Éléments Finis 14, 803–818 (2005)

    Article  Google Scholar 

  • B. Gebart, Permeability of unidirectional reinforcements for RTM. J. Compos. Mater. 26, 1100–1133 (1992)

    Article  CAS  Google Scholar 

  • J.R. Gregory, S.M. Spearing, Nanoindentation of neat and in situ polymers in polymer-matrix composites. Compos. Sci. Technol. 65, 595–607 (2005)

    Article  CAS  Google Scholar 

  • J. Guo, W. Wen, H. Zhang, H. Cui, J. Song, Representative cell modeling strategy of 2.5D woven composites considering the randomness of weft cross-section for mechanical properties prediction. Eng. Fract. Mech. 237, 107255 (2020)

    Article  Google Scholar 

  • G. Han, Z. Guan, Z. Li, M. Zhang, T. Bian, S. Du, Multi-scale modeling and damage analysis of composite with thermal residual stress. Appl. Compos. Mater. 22, 289–305 (2015)

    Article  Google Scholar 

  • L.J. Hart-Smith, Maximum-strain failure models for certain fibrous composite laminates. Compos. Sci. Technol. 58, 1151–1178 (1998)

    Article  Google Scholar 

  • Z. Hashin, Failure criteria for unidirectional fiber composites. J. Appl. Mech. 47, 329–334 (1980)

    Article  Google Scholar 

  • C.W. Hirt, B.D. Nichols, Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 39(ll1), 201–225 (1981)

    Article  Google Scholar 

  • S.V. Hoa, Principles of the Manufacturing of Composite Materials (DEStech Publications, Inc, 2009)

    Google Scholar 

  • Z.M. Huang, S. Ramakrishna, Towards automatic designing of 2D biaxial woven and braided fabric reinforced composites. J. Compos. Mater. 36, 1541–1579 (2002)

    Article  Google Scholar 

  • A.S. Kaddour, M.J. Hinton, Input data for test cases used in benchmarking triaxial failure theories of composites. J. Compos. Mater. 46, 2295–2312 (2012)

    Article  Google Scholar 

  • M.K. Kang, J.J. Jung, W. Lee, Analysis of resin transfer moulding process with controlled multiple gates resin injection. Compos. A. Appl. Sci. Manuf. 31(5), 407–422 (2000)

    Article  Google Scholar 

  • M. Karaki, R. Younes, F. Trochu, P. Lafon, Progress in experimental and theoretical evaluation methods for textile permeability. J. Compos. Sci. 3(73), 1–28 (2019)

    Google Scholar 

  • H. Lin, L.P. Brown, A.C. Long, Modelling and simulating textile structures using TexGen. Adv. Mater. Res. 331, 44–47 (2011)

    Article  Google Scholar 

  • Z. Lu, Y. Zhou, Z. Yang, Q. Liu, Multi-scale finite element analysis of 2.5D woven fabric composites under on-axis and off-axis tension. Comput. Mater. Sci. 79, 485–494 (2013)

    Article  Google Scholar 

  • S. Mazumdar, Composites Manufacturing: Materials, Product, and Process Engineering (CRC Press, 2002)

    Google Scholar 

  • V. Michaud, A review of non-saturated resin flow in liquid composite moulding processes. Transp. Porous Media 115, 581–601 (2016)

    Article  Google Scholar 

  • S. Murakami, Mechanical modeling of material damage. ASME J. Appl. Mech. 55, 280–286 (1988)

    Article  Google Scholar 

  • N. Naik, M. Sirisha, A. Inani, Permeability characterization of polymer matrix composites by RTM/VARTM. Prog. Aerosp. Sci. 65, 22–40 (2014)

    Article  Google Scholar 

  • F. Naya, C. González, C.S. Lopes, S. Van der Veen, F. Pons, Computational micromechanics of the transverse and shear behavior of unidirectional fiber reinforced polymers including environmental effects. Compos. Part A Appl. Sci. Manuf. 92, 146–157 (2017)

    Article  CAS  Google Scholar 

  • N.D. Ngo, K.K. Tamma, Microscale permeability predictions of porous fibrous media. Int. J. Heat Mass Transf. 44(6), 3135–3145 (2001)

    Article  CAS  Google Scholar 

  • G. Pal, S. Kumar, Multiscale modeling of effective electrical conductivity of short carbon fiber-carbon nanotube-polymer matrix hybrid composites. Mater. Des. 89, 129–136 (2016)

    Article  CAS  Google Scholar 

  • J. Pan, L. Bian, H. Zhao, Y. Zhao, A new micromechanics model and effective elastic modulus of nanotube reinforced composites. Comput. Mater. Sci. 113, 21–26 (2016)

    Article  CAS  Google Scholar 

  • R.S. Parnas, F.R. Phelan Jr., Effect of heterogeneous porous media on mold filling in resin transfer molding. SAMPE Quart. 22(2), 53–60 (1991)

    CAS  Google Scholar 

  • K.M. Pillai, Modeling the unsaturated flow in liquid composite molding processes: A review and some thoughts. J. Compos. Mater. 38(23), 2097–2118 (2004)

    Article  CAS  Google Scholar 

  • K.M. Pillai, S.G. Advani, A model for unsaturated flow in woven fiber preforms during mold filling in resin transfer molding. J. Compos. Mater. 32(19), 1753–1783 (1998)

    Article  Google Scholar 

  • K.M. Pillai, T.L. Tuce, M.V. Bruschke, R.S. Parnas, S.G. Advani, Modeling the heterogeneities present in preforms during mold filling in RTM, in Advanced Materials: Expanding the Horizons, 25, 25th International SAMPE Technical Conference, (1993)

    Google Scholar 

  • A. Puck, H. Schürmann, Failure analysis of FRP laminates by means of physically based phenomenological models. Fail. Crit. Fibre-Reinf.-Polym. Compos., 264–297 (2004)

    Google Scholar 

  • M. Shabaze, P.K. Sahoo, V.L. Jagannatha Guptha, Multiscale material modelling and analysis of carbon fiber/MWCNT/epoxy composites to predict effective elastic constants. Mater. Today Proc. 19, 521–527 (2019)

    Article  CAS  Google Scholar 

  • S. Sharma, D.A. Siginer, Permeability measurement methods in porous media of fiber reinforced composites. Appl. Mech. Rev. 63, 020802 (2010)

    Article  Google Scholar 

  • A. Sharma, S. Daggumati, A. Gupta, W. Van Paepegem, On the prediction of the bi-axial failure envelope of a UD CFRP composite lamina using computational micromechanics: Effect of microscale parameters on macroscale stress–strain behavior. Compos. Struct. 251, 112605 (2020)

    Article  Google Scholar 

  • P. Soltani, M. Zarrebini, R. Laghaei, A. Hassanpour, Prediction of permeability of realistic and virtual layered nonwovens using combined application of X-ray CT and computer simulation. Chem. Eng. Res. Des. 124, 299–312 (2017)

    Article  CAS  Google Scholar 

  • C.T. Sun, J. Tao, A.S. Kaddour, The prediction of failure envelopes and stress/strain behavior of composite laminates: Comparison with experimental results. Fail. Crit. Fibre-Reinf.-Polym. Compos. 62, 890–902 (2004)

    Google Scholar 

  • H. Tan, K.M. Pillai, Multiscale modeling of unsaturated flow in dual-scale fiber preforms of liquid composite molding I: Isothermal flows. Compos. Part A Appl. Sci. Manuf. 43, 1–13 (2012)

    Article  Google Scholar 

  • M. Torres, F. Collombet, B. Douchin, L. Crouzeix, Y.-H. Grunevald, Comparison between the classic sensor embedding method and the monitoring patch embedding method for composites instrumentation. Appl. Compos. Mater. 21, 707–724 (2014)

    Article  CAS  Google Scholar 

  • M. Torres, L. Crouzeix, F. Collombet, B. Douchin, Y.H. Grunevald, Numerical and experimental value added of multi-instrumented technological evaluator for the analysis of thick monolithic composite structures with singularity details. Compos. Struct. 127, 41–50 (2015)

    Article  Google Scholar 

  • M. Torres, F. Collombet, B. Douchin, L. Crouzeix, Y.-H. Grunevald, Assessments on the mechanical behaviour of a monolithic composite structure instrumented with a monitoring patch. J. Compos. Mater. 51, 3597–3610 (2017)

    Article  Google Scholar 

  • M. Torres, S. Piedra, S. Ledesma, C.A. Escalante-Velázquez, G. Angelucci, Manufacturing process of high performance-low cost composite structures for light sport aircrafts. Aerospace 6, 11–27 (2019)

    Article  Google Scholar 

  • M. Torres-Arellano, V. Renteria-Rodríguez, E. Franco-Urquiza, Mechanical properties of natural-fiber-reinforced biobased epoxy resins manufactured by resin infusion process. Polymers 12, 2841–2285 (2020)

    Article  CAS  Google Scholar 

  • E. Totry, J.M. Molina-Aldareguía, C. González, J.L. Lorca, Effect of fiber, matrix and interface properties on the in-plane shear deformation of carbon-fiber reinforced composites. Compos. Sci. Technol. 70, 970–980 (2010)

    Article  CAS  Google Scholar 

  • I. Verpoest, S.V. Lomov, Virtual textile composites software WiseTex: Integration with micro-mechanical, permeability and structural analysis. Compos. Sci. Technol. 65, 2563–2574 (2005)

    Article  CAS  Google Scholar 

  • S. Wang, Y. Yang, L.M. Zhou, Y.W. Mai, Size effect in microcompression of epoxy micropillars. J. Mater. Sci. 47, 6047–6055 (2012)

    Article  CAS  Google Scholar 

  • J.R. Weitzenbock, R.A. Shenoi, P.A. Wilson, Radial flow permeability measurement. Part A: Theory. Compos. A. Appl. Sci. Manuf. 30, 781–796 (1999)

    Article  Google Scholar 

  • X. Xiao, Modeling the Structure-Permeability Relationship for Woven Fabrics. PhD thesis, Division of Materials, Mechanics & Structures Faculty of Engineering, The University of Nottingham (2012)

    Google Scholar 

  • Z. Yuan, B. Zhang, G. Yang, Z. Yang, A. Tang, S. Li, Y. Li, P. Zhao, Y. Wang, Multi-scale modeling of curing residual stresses in composite with random fiber distribution into consideration. Appl. Compos. Mater. 26, 983–999 (2019)

    Article  Google Scholar 

  • D. Zhang, L. Chen, Y. Sun, Y. Zhang, K. Qian, Multi-scale modeling of an integrated 3D braided composite with applications to helicopter arm. Appl. Compos. Mater. 24, 1233–1250 (2017a)

    Article  Google Scholar 

  • C. Zhang, C. Mao, Y. Zhou, Meso-scale damage simulation of 3D braided composites under quasi-static axial tension. Appl. Compos. Mater. 24, 1179–1199 (2017b)

    Article  Google Scholar 

  • D.T. Zhang, L. Chen, Y.J. Wang, Stress field distribution of warp-reinforced 2.5D woven composites using an idealized meso-scale voxel-based model. J. Mater. Sci. 52, 6814–6836 (2017c)

    Article  CAS  Google Scholar 

  • C. Zhang, C. Mao, J.L. Curiel-Sosa, T.Q. Bui, Meso-scale finite element simulations of 3D braided textile composites: Effects of force loading modes. Appl. Compos. Mater. 25, 823–841 (2018)

    Article  Google Scholar 

  • C. Zhang, J.L. Curiel-Sosa, T.Q. Bui, Meso-scale finite element analysis of mechanical behavior of 3D braided composites subjected to biaxial tension loadings. Appl. Compos. Mater. 26, 139–157 (2019)

    Article  Google Scholar 

  • Q. Zhenchao, Z. Nanxi, L. Yong, C. Wenliang, Prediction of mechanical properties of carbon fiber based on cross-scale FEM and machine learning. Compos. Struct. 212, 199–206 (2019)

    Article  Google Scholar 

  • F. Zhou, N. Kuentzer, P. Simacek, S.G. Advani, S. Walsh, Analytic characterization of the permeability of dual-scale fibrous porous media. Compos. Sci. Technol. 66, 2795–2803 (2006)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Mauricio Torres-Arellano and Saul Piedra thank the opportunity to write and share our experience of 25 years combined in the field of modeling and numerical simulation of composite structures by CFD and FEM.

Some images show results from our latest projects, mainly funded by National Council for Science and Technology of Mexico (CONACYT) and Mexican Space Agency (AEM).

The authors also give appreciation to the Program “Cátedras CONACYT.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mauricio Torres-Arellano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Torres-Arellano, M., Piedra, S. (2022). Modeling and Simulation of Epoxy/Synthetic Fiber Composites. In: Mavinkere Rangappa, S., Parameswaranpillai, J., Siengchin, S., Thomas, S. (eds) Handbook of Epoxy/Fiber Composites . Springer, Singapore. https://doi.org/10.1007/978-981-15-8141-0_15-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-8141-0_15-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-8141-0

  • Online ISBN: 978-981-15-8141-0

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics