Skip to main content

Respiratory Support Strategy for Sudden Cardiac Death

  • Chapter
  • First Online:
Sudden Death
  • 566 Accesses

Abstract

Cardiopulmonary resuscitation (CPR), as the main treatment for sudden cardiac arrest, includes circulation, airway, breathing, and defibrillation; each of them is important for the overall success of CPR. Mechanical ventilation has been widely applied in the treatment of patients suffering from sudden cardiac death. However, current guidelines do not mention other ventilatory parameters other than respiratory frequency. Therefore, heterogeneity of ventilation practices may occur. The optimal mechanical ventilation strategy still remains highly controversial. Additionally, clinicians are often wondering how to wean from ventilator. In this review, we aimed to offer practical suggestion for clinicians based on the available published data. In the first half of this review, we discuss how to ventilate during CPR and after a return of spontaneous circulation (ROSC). In the second half, we discuss the principles of weaning from invasive mechanical ventilation. Because strong hemodynamic changes associated with evacuation of ventilation can lead to cardiac failure, we also describe the latest progress in diagnosis and treatment of weaning-induced cardiac failure and highlight the noninvasive mechanical ventilation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chang MP, Idris AH. The past, present, and future of ventilation during cardiopulmonary resuscitation. Curr Opin Crit Care. 2017;23(3):188–92.

    Article  PubMed  Google Scholar 

  2. Ashoor HM, Lillie E, Zarin W, et al. Effectiveness of different compression-to-ventilation methods for cardiopulmonary resuscitation: a systematic review. Resuscitation. 2017;118:112–25.

    Article  PubMed  Google Scholar 

  3. Olasveengen TM, de Caen AR, Mancini ME, et al. 2017 international consensus on cardiopulmonary resuscitation and emergency cardiovascular care science with treatment recommendations summary. Resuscitation. 2017;121:201–14.

    Article  PubMed  Google Scholar 

  4. Hupfl M, Selig HF, Nagele P. Chest-compression-only versus standard cardiopulmonary resuscitation: a meta-analysis. Lancet. 2010;376(9752):1552–7.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Wang S, Li C, Ji X, et al. Effect of continuous compressions and 30:2 cardiopulmonary resuscitation on global ventilation/perfusion values during resuscitation in a porcine model. Crit Care Med. 2010;38(10):2024–30.

    Article  PubMed  Google Scholar 

  6. Ewy GA, Hilwig RW, Zuercher M, et al. Continuous chest compression resuscitation in arrested swine with upper airway inspiratory obstruction. Resuscitation. 2010;81(5):585–90.

    Article  PubMed  Google Scholar 

  7. Yannopoulos D, Matsuura T, McKnite S, et al. No assisted ventilation cardiopulmonary resuscitation and 24-hour neurological outcomes in a porcine model of cardiac arrest. Crit Care Med. 2010;38(1):254–60.

    Article  PubMed  Google Scholar 

  8. Deakin CD, O’Neill JF, Tabor T. Does compression-only cardiopulmonary resuscitation generate adequate passive ventilation during cardiac arrest? Resuscitation. 2007;75(1):53–9.

    Article  PubMed  Google Scholar 

  9. Safar P. Ventilation and circulation with closed-chest cardiac massage in man. JAMA. 1961;176(7):574.

    Article  CAS  PubMed  Google Scholar 

  10. Liu YC, Qi YM, Zhang H, et al. A survey of ventilation strategies during cardiopulmonary resuscitation. World J Emerg Med. 2019;10(4):222–7.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Cordioli RL, Brochard L, Suppan L, et al. How ventilation is delivered during cardiopulmonary resuscitation: an international survey. Respir Care. 2018;63(10):1293–301.

    Article  PubMed  Google Scholar 

  12. Winkler BE, Muellenbach RM, Wurmb T, et al. Passive continuous positive airway pressure ventilation during cardiopulmonary resuscitation: a randomized cross-over manikin simulation study. J Clin Monit Comput. 2017;31(1):93–101.

    Article  PubMed  Google Scholar 

  13. LeBlanc PA, Nadeau A. BET 1: continuous flow insufflation of oxygen in out-of-hospital cardiac arrest. Emerg Med J. 2018;35(1):65–6.

    Article  PubMed  Google Scholar 

  14. Fouche PF, Simpson PM, Bendall J, et al. Airways in out-of-hospital cardiac arrest: systematic review and meta-analysis. Prehosp Emerg Care. 2014;18(2):244–56.

    Article  PubMed  Google Scholar 

  15. Jabre P, Penaloza A, Pinero D, et al. Effect of bag-mask ventilation vs endotracheal intubation during cardiopulmonary resuscitation on neurological outcome after out-of-hospital cardiorespiratory arrest: a randomized clinical trial. JAMA. 2018;319(8):779–87.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Ruemmler R, Ziebart A, Moellmann C, et al. Ultra-low tidal volume ventilation—a novel and effective ventilation strategy during experimental cardiopulmonary resuscitation. Resuscitation. 2018;132:56–62.

    Article  PubMed  Google Scholar 

  17. Kill C, Galbas M, Neuhaus C, et al. Chest compression synchronized ventilation versus intermitted positive pressure ventilation during cardiopulmonary resuscitation in a pig model. PLoS One. 2015;10(5):e0127759.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Tan D, Xu J, Shao S, et al. Comparison of different inspiratory triggering settings in automated ventilators during cardiopulmonary resuscitation in a porcine model. PLoS One. 2017;12(2):e0171869.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Tian X, Fang W, Wu J. The effects of different mechanical ventilation flow model on the peak airway pressure during cardiopulmonary resuscitation. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. 2014;26(10):722–5.

    PubMed  Google Scholar 

  20. Chalkias A, Pavlopoulos F, Koutsovasilis A, et al. Airway pressure and outcome of out-of-hospital cardiac arrest: a prospective observational study. Resuscitation. 2017;110:101–6.

    Article  PubMed  Google Scholar 

  21. Callaway CW, Donnino MW, Fink EL, Geocadin RG, Golan E, Kern KB, Leary M, Meurer WJ, Peberdy MA, Thompson TM, Zimmerman JL. Part 8: post-cardiac arrest care: 2015 American Heart Association guidelines update for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation. 2015;132(18 Suppl 2):S465–82.

    PubMed  PubMed Central  Google Scholar 

  22. Vissers G, Soar J, Monsieurs KG. Ventilation rate in adults with a tracheal tube during cardiopulmonary resuscitation: a systematic review. Resuscitation. 2017;119:5–12.

    Article  PubMed  Google Scholar 

  23. Vissers G, Duchatelet C, Huybrechts SA, et al. The effect of ventilation rate on outcome in adults receiving cardiopulmonary resuscitation. Resuscitation. 2019;138:243–9.

    Article  CAS  PubMed  Google Scholar 

  24. Tan D, Sun J, Geng P. Duration of cardiac arrest requires different ventilation volumes during cardiopulmonary resuscitation in a pig model. J Clin Monit Comput. 2020;34(3):525–33.

    Article  PubMed  Google Scholar 

  25. Georgiou M, Papathanassoglou E, Xanthos T. Systematic review of the mechanisms driving effective blood flow during adult CPR. Resuscitation. 2014;85:1586–93.

    Article  PubMed  Google Scholar 

  26. Liu Y, Tian Z, Yu C, Walline J, Xu J, Zhu H, et al. Transesophageal echocardiography to assess mitral valve movement and flow during long term cardiopulmonary resuscitation: how cardiac effects fade with time. Int J Cardiol. 2016;223:693–8.

    Article  PubMed  Google Scholar 

  27. David HN, Haelewyn B, Chazalviel L, et al. Post-ischemic helium provides neuroprotection in rats subjected to middle cerebral artery occlusion-induced ischemia by producing hypothermia. J Cereb Blood Flow Metab. 2009;29(6):1159–65.

    Article  PubMed  Google Scholar 

  28. Liu Y, Xue F, Liu G, et al. Helium preconditioning attenuates hypoxia/ischemia-induced injury in the developing brain. Brain Res. 2011;1376:122–9.

    Article  CAS  PubMed  Google Scholar 

  29. Zhuang L, Yang T, Zhao H, et al. The protective profile of argon, helium, and xenonin a model of neonatal asphyxia in rats. Crit Care Med. 2012;40(6):1724–30.

    Article  CAS  PubMed  Google Scholar 

  30. Brevoord D, Beurskens CJ, van den Bergh WM. Helium ventilation for treatment of post-cardiac arrest syndrome: a safety and feasibility study. Resuscitation. 2016;107:145–9.

    Article  PubMed  Google Scholar 

  31. Fries M, Brücken A, Cizen A, et al. Combining xenon and mild therapeutic hypothermia preserves neurological function after prolonged cardiac arrest in pigs. Crit Care Med. 2012;40(4):1297–303.

    Article  CAS  PubMed  Google Scholar 

  32. Laitio R, Hynninen M, Arola O, et al. Effect of inhaled xenon on cerebral white matter damage in comatose survivors of out-of-hospital cardiac arrest: a randomized clinical trial. JAMA. 2016;315(11):1120–8.

    Article  CAS  PubMed  Google Scholar 

  33. Azzopardi D, Robertson NJ, Bainbridge A, et al. Moderate hypothermia within 6h of birth plus inhaled xenon versus moderate hypothermia alone after birth asphyxia (TOBY-Xe): a proof-of-concept, open-label, randomised controlled trial. Lancet Neurol. 2016;15(2):145–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yang Z, Zheng H, Lin L, et al. Alterations in respiratory mechanics and neural respiratory drive after restoration of spontaneous circulation in a porcine model subjected to different downtimes of cardiac arrest. J Am Heart Assoc. 2019;8(19):e012441.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Nolan JP, Berg RA, Callaway CW, et al. The present and future of cardiac arrest care: international experts reach out to caregivers and healthcare authorities. Intensive Care Med. 2018;44(6):823–32.

    Article  PubMed  Google Scholar 

  36. Johnson NJ, Caldwell E, Carlbom DJ, et al. The acute respiratory distress syndrome after out-of-hospital cardiac arrest: incidence, risk factors, and outcomes. Resuscitation. 2019;135:37–44.

    Article  PubMed  Google Scholar 

  37. Harmon MBA, van Meenen DMP, van der Veen ALIP, Binnekade JM, Dankiewicz J, Ebner F, Nielsen N, Pelosi P, Schultz MJ, Horn J, Friberg H, Juffermans NP, TTM trial investigators. Practice of mechanical ventilation in cardiac arrest patients and effects of targeted temperature management: a substudy of the targeted temperature management trial. Resuscitation. 2018;129:29–36.

    Article  PubMed  Google Scholar 

  38. Beitler JR, Ghafouri TB, Jinadasa SP, Mueller A, Hsu L, Anderson RJ, Joshua J, Tyagi S, Malhotra A, Sell RE, Talmor D. Favorable neurocognitive outcome with low tidal volume ventilation after cardiac arrest. Am J Respir Crit Care Med. 2017;195(9):1198–206.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Johnson NJ, Carlbom DJ, Gaieski DF. Ventilator management and respiratory care after cardiac arrest. Chest. 2018;153(6):1466–77.

    Article  PubMed  Google Scholar 

  40. Wang HE, Prince DK, Drennan IR, Grunau B, Carlbom DJ, Johnson N, Hansen M, Elmer J, Christenson J, Kudenchuk P, Aufderheide T, Weisfeldt M, Idris A, Trzeciak S, Kurz M, Rittenberger JC, Griffiths D, Jasti J, May S, Resuscitation Outcomes Consortium (ROC) Investigators. Post-resuscitation arterial oxygen and carbon dioxide and outcomes after out-of-hospital cardiac arrest. Resuscitation. 2017;120:113–8.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Eastwood GM, Schneider AG, Suzuki S, Peck L, Young H, Tanaka A, Mårtensson J, Warrillow S, McGuinness S, Parke R, Gilder E, Mccarthy L, Galt P, Taori G, Eliott S, Lamac T, Bailey M, Harley N, Barge D, Hodgson CL, Morganti-Kossmann MC, Pébay A, Conquest A, Archer JS, Bernard S, Stub D, Hart GK, Bellomo R. Targeted therapeutic mild hypercapnia after cardiac arrest: a phase II multi-centre randomized controlled trial (the CCC trial). Resuscitation. 2016;104:83–90.

    Article  PubMed  Google Scholar 

  42. Vaahersalo J, Bendel S, Reinikainen M, Kurola J, Tiainen M, Raj R, Pettilä V, Varpula T, Skrifvars MB, FINNRESUSCI Study Group. Arterial blood gas tensions afterresuscitation from out-of-hospital cardiac arrest: associations with long-term neurological outcome. Crit Care Med. 2014;42(6):1463–70.

    Article  PubMed  Google Scholar 

  43. Jakkula P, Reinikainen M, Hastbacka J, Loisa P, Tiainen M, Pettila V, Toppila J, Lahde M, Backlund M, Okkonen M, Bendel S, Birkelund T, Pulkkinen A, Heinonen J, Tikka T, Skrifvars MB, COMACARE study group. Targeting two different levels of both arterial carbon dioxide and arterial oxygen after cardiac arrest and resuscitation: a randomised pilot trial. Intensive Care Med. 2018;44(12):2112–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Babini G, Ristagno G, Boccardo A, De Giorgio D, De Maglie M, Affatato R, Ceriani S, Zani D, Novelli D, Staszewsky L, Masson S, Pravettoni D, Latini R, Belloli A, Scanziani E, Skrifvars M. Effect of mild hypercapnia on outcome and histological injury in a porcine post cardiac arrest model. Resuscitation. 2019;135:110–7.

    Article  PubMed  Google Scholar 

  45. Roberts BW, Kilgannon JH, Chansky ME, Trzeciak S. Association between initial prescribed minute ventilation and post-resuscitation partial pressure of arterial carbon dioxide in patients with post-cardiac arrest syndrome. Ann Intensive Care. 2014;4(1):9.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Tolins ML, Henning DJ, Gaieski DF, Grossestreuer AV, Jaworski A, Johnson NJ. Initial arterial carbon dioxide tension is associated with neurological outcome after resuscitation from cardiac arrest. Resuscitation. 2017;114:53–8.

    Article  PubMed  Google Scholar 

  47. Schmidt GA, Girard TD, Kress JP, Morris PE, Ouellette DR, Alhazzani W, Burns SM, Epstein SK, Esteban A, Fan E, Ferrer M, Fraser GL, Gong MN, Hough CL, Mehta S, Nanchal R, Patel S, Pawlik AJ, Schweickert WD, Sessler CN, Strøm T, Wilson KC, Truwit JD. Liberation from mechanical ventilation in critically III adults: executive summary of an official American college of chest physicians/American thoracic society clinical practice guideline. Chest. 2017;151(1):160–5.

    Article  PubMed  Google Scholar 

  48. Topjian AA, Berg RA, Taccone FS. Haemodynamic and ventilator management in patients following cardiac arrest. Curr Opin Crit Care. 2015;21(3):195–201.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Randhawa VK, Grunau BE, Debicki DB, Zhou J, Hegazy AF, McPherson T, Nagpal AD. Cardiac intensive care unit management of patients after cardiac arrest: now the real work begins. Can J Cardiol. 2018;34(2):156–67.

    Article  PubMed  Google Scholar 

  50. Frutos-Vivar F, Esteban A. Our paper 20 years later: how has withdrawal from mechanical ventilation changed? Intensive Care Med. 2014;40(10):1449–59.

    Article  PubMed  Google Scholar 

  51. Liu J, Shen F, Teboul JL, Anguel N, Beurton A, Bezaz N, Richard C, Monnet X. Cardiac dysfunction induced by weaning from mechanical ventilation: incidence, risk factors, and effects of fluid removal. Crit Care. 2016;20(1):369.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Roche-Campo F, Bedet A, Vivier E, Brochard L, Mekontso DA. Cardiac function during weaning failure: the role of diastolic dysfunction. Ann Intensive Care. 2018;8(1):2.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Konomi I, Tasoulis A, Kaltsi I, Karatzanos E, Vasileiadis I, Temperikidis P, Nanas S, Routsi CI. Left ventricular diastolic dysfunction—an independent risk factor for weaning failure from mechanical ventilation. Anaesth Intensive Care. 2016;44(4):466–73.

    Article  CAS  PubMed  Google Scholar 

  54. Liu F, Shao Q, Jiang R, Zeng Z, Liu Y, Li Y, Liu Q, Ding C, Zhao N, Peng Z. Qian K high-flow oxygen therapy to speed weaning from mechanical ventilation: a prospective randomized study. Am J Crit Care. 2019;28(5):370–6.

    Article  PubMed  Google Scholar 

  55. Subirà C, Hernández G, Vázquez A, Rodríguez-García R, González-Castro A, García C, Rubio O, Ventura L, López A, de la Torre MC, Keough E, Arauzo V, Hermosa C, Sánchez C, Tizón A, Tenza E, Laborda C, Cabañes S, Lacueva V, Del Mar Fernández M, Arnau A, Fernández R. Effect of pressure support vs t-piece ventilation strategies during spontaneous breathing trials on successful extubation among patients receiving mechanical ventilation a randomized clinical trial. JAMA. 2019;321(22):2175–82.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Tobin MJ. Extubation and themyth of “minimal ventilator settings”. Am J Respir Crit Care Med. 2012;185(4):349–50.

    Article  PubMed  Google Scholar 

  57. Cabello B, Thille AW, Roche-Campo F, Brochard L, Gómez FJ, Mancebo J. Physiological comparison of three spontaneous breathing trials in difficult-to-wean patients. Intensive Care Med. 2010;36(7):1171–9.

    Article  PubMed  Google Scholar 

  58. Thille AW, Cortés-Puch I, Esteban A. Weaning from the ventilator and extubation in ICU. Curr Opin Crit Care. 2013;19(1):57–64.

    Article  PubMed  Google Scholar 

  59. Sklar MC, Burns K, Rittayamai N, Lanys A, Rauseo M, Chen L, Dres M, Chen GQ, Goligher EC, Adhikari NKJ, Brochard L, Friedrich JO. Effort to breathe with various spontaneous breathing trial techniques: a physiologic meta-analysis. Am J Respir Crit Care Med. 2017;195(11):1477–85.

    Article  PubMed  Google Scholar 

  60. Kuhn BT, Bradley LA, Dempsey TM, Puro AC, Adams JY. Management of mechanical ventilation in decompensated heart failure. J Cardiovasc Dev Dis. 2016;3(4):pii: E33.

    Article  Google Scholar 

  61. Burns KEA, Soliman I, Adhikari NKJ, Zwein A, Wong JTY, Gomez-Builes C, Pellegrini JA, Chen L, Rittayamai N, Sklar M, Brochard LJ, Friedrich JO. Trials directly comparing alternative spontaneous breathing trial techniques: a systematic review and meta-analysis. Crit Care. 2017;21(1):127.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Quintard H, l’Her E, Pottecher J, Adnet F, Constantin JM, De Jong A, Diemunsch P, Fesseau R, Freynet A, Girault C, Guitton C, Hamonic Y, Maury E, Mekontso-Dessap A, Michel F, Nolent P, Perbet S, Prat G, Roquilly A, Tazarourte K, Terzi N, Thille AW, Alves M, Gayat E, Donetti L. Experts’ guidelines of intubation and extubation of the ICU patient of French Society of Anaesthesia and Intensive Care Medicine (SFAR) and French-speaking Intensive Care Society (SRLF) : In collaboration with the pediatric Association of French-speaking Anaesthetists and Intensivists (ADARPEF), French-speaking Group of Intensive Care and Paediatric emergencies (GFRUP) and Intensive Care physiotherapy society (SKR). Ann Intensive Care. 2019;9(1):13.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Teboul JL. Weaning-induced cardiac dysfunction: where are we today? Intensive Care Med. 2014;40(8):1069–79.

    Article  PubMed  Google Scholar 

  64. Harvey S, Harrison DA, Singer M, Ashcroft J, Jones CM, Elbourne D, Brampton W, Williams D, Young D, Rowan K, PAC-Man study collaboration. Assessment of the clinical effectiveness of pulmonary artery catheters in management of patients in intensive care (PAC-man): a randomized controlled trial. Lancet. 2005;366(9484):472–7.

    Article  PubMed  Google Scholar 

  65. Lamia B, Maizel J, Ochagavia A, Chemla D, Osman D, Richard C, Teboul JL. Echocardiographic diagnosis of pulmonary artery occlusion pressure elevation during weaning from mechanical ventilation. Crit Care Med. 2009;37(5):1696–701.

    Article  PubMed  Google Scholar 

  66. Dres M, Teboul JL, Anguel N, Guerin L, Richard C, Monnet X. Extravascular lung water, B-type natriuretic peptide and blood volume contraction enable diagnosis of weaning-induced pulmonary edema. Crit Care Med. 2014;42(8):1882–9.

    Article  CAS  PubMed  Google Scholar 

  67. Zapata L, Vera P, Roglan A, Gich I, Ordonez-Llanos J, Betbesé AJ. B-type natriuretic peptides for prediction and diagnosis of weaning failure from cardiac origin. Intensive Care Med. 2011;37(3):477–85.

    Article  CAS  PubMed  Google Scholar 

  68. Anguel N, Monnet X, Osman D, Castelain V, Richard C, Teboul JL. Increase in plasma protein concentration for diagnosing weaning-induced pulmonary oedema. Intensive Care Med. 2008;34(7):1231–8.

    Article  PubMed  Google Scholar 

  69. Dres M, Teboul JL, Anguel N, Guerin L, Richard C, Monnet X. Passive leg raising performed before a spontaneous breathing trial predicts weaning-induced cardiac dysfunction. Intensive Care Med. 2015;41:487–94.

    Article  PubMed  Google Scholar 

  70. Jaber S, Quintard H, Cinotti R, Asehnoune K, Arnal JM, Guitton C, Paugam-Burtz C, Abback P, Mekontso Dessap A, Lakhal K, Lasocki S, Plantefeve G, Claud B, Pottecher J, Corne P, Ichai C, Hajjej Z, Molinari N, Chanques G, Papazian L, Azoulay E, De Jong A. Risk factors and outcomes for airway failure versus non-airway failure in the intensive care unit: a multicenter observational study of 1514 extubation procedures. Crit Care. 2018;22(1):236.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JGF, Coats AJS, Falk V, González-Juanatey JR, Harjola VP, Jankowska EA, Jessup M, Linde C, Nihoyannopoulos P, Parissis JT, Pieske B, Riley JP, Rosano GMC, Ruilope LM, Ruschitzka F, Rutten FH, van der Meer P. ESC guidelines for the diagnosis and treatment of acute and chronic heart failure. Rev Esp Cardiol. 2016;69(12):1167.

    PubMed  Google Scholar 

  72. Nava S, Carbone G, DiBattista N, Bellone A, Baiardi P, Cosentini R, Marenco M, Giostra F, Borasi G, Groff P. Noninvasive ventilation in cardiogenic pulmonary edema: a multicenter randomized trial. Am J Respir Crit Care Med. 2003;168(12):1432–7.

    Article  PubMed  Google Scholar 

  73. Rittayamai N, Tscheikuna J, Rujiwit P. High-flow nasal cannula versus conventional oxygen therapy after endotracheal extubation: a randomized crossover physiologic study. Respir Care. 2014;59(4):485–90.

    Article  PubMed  Google Scholar 

  74. Luo JC, Lu MS, Zhao ZH, Jiang W, Xu B, Weng L, Li T, Du B. Positive end-expiratory pressure effect of 3 high-flow nasal cannula devices. Respir Care. 2017;62(7):888–95.

    Article  PubMed  Google Scholar 

  75. Liesching T, Nelson DL, Cormier KL, Sucov A, Short K, Warburton R, Hill NS. Randomized trial of bilevel versus continuous positive airway pressure for acute pulmonary edema. J Emerg Med. 2014;46(1):130–40.

    Article  PubMed  Google Scholar 

  76. Rochwerg B, Brochard L, Elliott MW, Hess D, Hill NS, Nava S, Navalesi P, Members of the Steering Committee, Antonelli M, Brozek J, Conti G, Ferrer M, Guntupalli K, Jaber S, Keenan S, Mancebo J, Mehta S, Raoof S, Members of the Task Force. Official ERS/ATS clinical practice guidelines: noninvasive ventilation for acute respiratory failure. Eur Respir J. 2017;50(2):pii: 1602426.

    Article  Google Scholar 

  77. Alviar CL, Miller PE, McAreavey D, Katz JN, Lee B, Moriyama B, Soble J, van Diepen S, Solomon MA, Morrow DA, ACC Critical Care Cardiology Working Group. Positive pressure ventilation in the cardiac intensive care unit. J Am Coll Cardiol. 2018;72(13):1532–53.

    Article  PubMed  Google Scholar 

  78. Makdee O, Monsomboon A, Surabenjawong U, Praphruetkit N, Chaisirin W, Chakorn T, Permpikul C, Thiravit P, Nakornchai T. High-flow nasal cannula versus conventional oxygen therapy in emergency department patients with cardiogenic pulmonary edema: a randomized controlled trial. Ann Emerg Med. 2017;70(4):465.e2–72.e2.

    Article  Google Scholar 

  79. Aramendi E, Lu Y, Chang MP, Elola A, Irusta U, Owens P, Idris AH. A novel technique to assess the quality of ventilation during pre-hospital cardiopulmonary resuscitation. Resuscitation. 2018;132:41–6.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kong, Y., Guo, W. (2021). Respiratory Support Strategy for Sudden Cardiac Death. In: Zhu, H. (eds) Sudden Death. Springer, Singapore. https://doi.org/10.1007/978-981-15-7002-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-7002-5_15

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-7001-8

  • Online ISBN: 978-981-15-7002-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics