Skip to main content

Insecticides Derived from Natural Products: Diversity and Potential Applications

  • Chapter
  • First Online:
Current Trends in Microbial Biotechnology for Sustainable Agriculture

Part of the book series: Environmental and Microbial Biotechnology ((EMB))

Abstract

Entomopathogenic microbes viz., bacteria, actinomycetes, fungi, virus, protozoans; microbial metabolites; phytochemicals from plants viz., neem, chrysanthemum, tobacco, derris, basil, citrus, etc., and compounds of animal origins viz., nereistoxin and insect pheromones have evidenced excellent protection against crop pests and are commercially available. Most of these microbes and bioactive molecules of natural origins are target specific, biodegradable, and eco-friendly. Insecticides from natural products will act as an effective alternative to pollution-causing synthetic agrochemicals with high health hazard to nontarget organism in the ecosystem. Extensive research to screen and identify environmentally safe biomolecules of natural origin with high efficacy against target organisms and intensive studies on their biological activity, mode of action, and ways to enhance their bio-efficacy using biotechnological tools may help in improving their bioactivity and target specificity. This chapter discusses about diverse group of entomopathogens, microbial metabolites, botanicals, insecticidal toxins of animal origin, and semiochemicals conferring plant protection against herbivorous insect pests and their potential application for crop protection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbasipour H, Rastegar F, Mahmoudvand M (2011) Insecticidal activity of extract from Datura stramonium against Callosobruchs maculatus. Integrat Protect Stored Prod 69:251–256

    Google Scholar 

  • Aguirre EPA, Krugg JHW (2014) Effect of Lecanicillium lecanii and Beauveria bassiana on the Panonychus citri mite under laboratory conditions. REBIOL 34:42–50

    Google Scholar 

  • Ahmad T, Rasool A, Gull S et al (2019) Ascomycota and integrated pest management. In: Khan M, Ahmad W (eds) Microbes for sustainable insect Pest management. Sustainability in plant and crop protection. Springer, Champ, pp 151–183

    Chapter  Google Scholar 

  • Aldrich JR, Zanuncio JC, Vilela EF et al (1997) Field tests of predaceous pentatomid pheromones and semiochemistry of Podisus and Supputius species (Heteroptera: Pentatomidae: Asopinae). An Soc Entomol Bras 26:1–14

    Article  CAS  Google Scholar 

  • Amatuzzi RF, Cardoso N, Poltronieri AS et al (2018) Potential of endophytic fungi as biocontrol agents of Duponchelia fovealis (Zeller) (Lepidoptera: Crambidae). Braz J Biol 78:429–435

    Article  CAS  PubMed  Google Scholar 

  • Anonymous (2019) Microbial pesticides market - growth, trends and forecasts (2019–2024). https://www.mordorintelligence.com/industry-reports/microbial-pesticides-market

  • Atalah AB, Smagghe G, Orysata VDEJ (2014) A jacalin-related lectin from rice, could protect plants against biting-chewing and piercing-sucking insects. Plant Sci 21:221–222

    Google Scholar 

  • Atwal AS, Dhaliwal GS (2005) Agricultural pests of South Asia and their management, vol 280. Kalyani Publishers, New Delhi

    Google Scholar 

  • Baumann PAUL, Clark MA, Baumann LINDA et al (1991) Bacillus sphaericus as a mosquito pathogen: properties of the organism and its toxins. Microbiol Mol Biol Rev 55:425–436

    CAS  Google Scholar 

  • Bedding R, Molyneux A (1982) Penetration of insect cuticle by infective juveniles of Heterorhabditis spp. (Heterorhabditidae: Nematoda). Nematol 28:354–359

    Google Scholar 

  • Bhagawan CN, Reddy KD, Sukumar K (1992) Annona-induced growth anomalies and protein depletion in red cotton bug Dysdercus koenigii. Indian J Exp Biol 30:908–912

    Google Scholar 

  • Bharathi Y, Vijaya Kumar S, Pasalu IC et al (2011) Pyramided rice lines harbouring Allium sativum (asal) and Galanthus nivalis (gna) lectin genes impart enhanced resistance against major sap-sucking pests. J Biotechnol 152:63–71

    Article  CAS  PubMed  Google Scholar 

  • Bischoff JF, Rehner SA, Humber RA (2006) Metarhizium frigidum sp. nov.: a cryptic species of M. anisopliae and a member of the M. flavoviride complex. Mycol 98:737–745

    Article  CAS  Google Scholar 

  • Bischoff JF, Rehner SA, Humber RA (2009) A multilocus phylogeny of the Metarhizium anisopliae lineage. Mycol 101:512–530

    Google Scholar 

  • Blassioli-Moraes MC, Laumann RA, Michereff MF et al (2019) Semiochemicals for integrated Pest management. In: Vaz S Jr (ed) Sustainable Agrochemistry. Springer, Cham, pp 85–112

    Chapter  Google Scholar 

  • Bloomquist JR (1993) Toxicology, mode of action and target site-mediated resistance to insecticides acting on chloride channels. Comp Biochem Physiol Part C: Pharmacol Toxicol Endocrine 106:301–314

    CAS  Google Scholar 

  • Borges M, Costa MLM, Sujii ER et al (1999) Semiochemical and physical stimuli involved in host recognition by Telenomus podisi (Hymenoptera: Scelionidae) toward Euschistus heros (Heteroptera: Pentatomidae). Physiol Entomol 24:227–233

    Article  Google Scholar 

  • Bravo A, Gill SS, Soberon M (2007) Mode of action of Bacillus thuringiensis cry and Cyt toxins and their potential for insect control. Toxicon 49:423–435

    Article  CAS  PubMed  Google Scholar 

  • Brooks FM (1988) Entomogenous protozoa. In: Ignoffo CM, Mandava MB (eds) Handbook of natural pesti-cides, vol V, Microbial insecticides, part A, entomogenous protozoa and fungi. CRC Press Inc., Boca Raton, pp 1–149

    Google Scholar 

  • Burges HD (1981) Microbial control of pests and plant diseases 1970–1980. Academic Press, London, pp 1–949

    Google Scholar 

  • Caballero-Gallardo K, Olivero-Verbel J, Stashenko EE (2012) Repellency and toxicity of essential oils from Cymbopogon martinii, Cymbopogon flexuosus and Lippia origanoides cultivated in Colombia against Tribolium castaneum. J Stored Prod Res 50:62–65

    Google Scholar 

  • Cabizza M, Angioni A, Melis M, Cabras M, Tuberoso CV, Cabras P (2004) Rotenone and rotenoids in cubé resins, formulations, and residues on olives. J Agric Food Chem 52:288–293

    Article  CAS  PubMed  Google Scholar 

  • Cabras P, Caboni P, Cabras M, Angioni A, Russo M (2002) Rotenone residues on olives and in olive oil. J Agric Food Chem 50:2576–2580

    Article  CAS  PubMed  Google Scholar 

  • Casanova H, Ortiz C, Pel’aez C, Vallejo A, Moreno ME, Acevedo M (2002) Insecticide formulations based on nicotine oleate stabilized by sodium caseinate. J Agric Food Chem 50:6389–6394

    Article  CAS  PubMed  Google Scholar 

  • Casida JE (1973) Pyrethrum the natural insecticide. Academic Press, New York, p 329

    Google Scholar 

  • Charles JF, Delecluse A, Nielsen-Le Roux C (eds) (2013) Entomopathogenic bacteria: from laboratory to field application. Springer Science & Business Media, p 532

    Google Scholar 

  • Chaubey MK (2017) Study of insecticidal properties of garlic, Allium sativum (Alliaceae) and Bel, Aegle marmelos (Rutaceae) essential oils against Sitophilus zeamais (Coleoptera: Curculionidae). J Entomol 14:191–198

    Article  CAS  Google Scholar 

  • Chen W, Isman MB, Chiu SF (1995) Antifeedant and growth inhibitory effects of the limonoid toosendanin and Melia toosendan extracts on the variegated cutworm, Peridroma saucia (Lep., Noctuidae). J Appl Entomol 119:367–370

    Article  Google Scholar 

  • Chiu SF (1988) Recent advances in research on botanical insecticides in China. In: Arnason AT, Philogène BJR, Morand P (eds) Insecticides of plant origin. American Chemical Society, Washington, DC, pp 69–77

    Google Scholar 

  • Chowdhury NY, Islam W, Khalequzzaman M (2011) Insecticidal activity of compounds from the leaves of Vitex negundo (Verbenaceae) against Tribolium castaneum (Coleoptera: Tenebrionidae). Int J Tropic Insect Sci 31:174–181

    Article  Google Scholar 

  • Claydon N, Grove JF (1982) Insecticidal secondary metabolic products from the entomogenous fungus Verticillium lecanii. J Invertebr Pathol 40:413–418

    Google Scholar 

  • Colazza S, Peri E, Cusumano A (2013) Application of chemical cues in arthropod pest management for orchards and vineyards. Chem Ecol Insect Parasitoids:245–265

    Google Scholar 

  • Copping LG, Duke SO (2007) Natural products used commercially as crop protection agents. Pest Manag Sci 63:524–554

    Article  CAS  PubMed  Google Scholar 

  • Copping LG, Menn JJ (2000) Biopesticides: a review of their action, applications and efficacy. Pest Manag Sci 56:651–676

    Article  CAS  Google Scholar 

  • Cordova-Kreylos AL, Fernandez LE, Koivunen M et al (2013) Isolation and characterization of Burkholderia rinojensis sp. nov., a non-Burkholderiacepacia complex soil bacterium with insecticidal and miticidal activities. Appl Environ Microbiol 79:7669–7678

    Google Scholar 

  • Croizier G, Croizier L, Argaud O et al (1994) Extension of Autographa californica nuclear polyhedrosis virus host range by interspecific replacement of a short DNA sequence in the p143 helicase gene. Proc Natl Acad Sci 91:48–52

    Google Scholar 

  • Cully DF, Vassilatis DK, Liu KK et al (1994) Cloning of an avermectin-sensitive glutamate-gated chloride channel from Caenorhabditise legans. Nature 371:707

    Article  CAS  PubMed  Google Scholar 

  • Das P, Borah B, Saikia P et al (2019) Efficacy of Beauveria bassiana and Isaria fumosorosea against Eublemma amabilis (Noctuidae: Lepidoptera): a predator of lac insect, Kerria lacca (Kerr). J Entomol Zool Studies 7:1239–1241

    Google Scholar 

  • David BV, Sukumaran D, Kandasamy C (1988) The Indian privet Vitex negundo Linn – a plant possessing promising pesticidal activity. Pesticides (Bombey) 22:27–29

    Google Scholar 

  • David BV, Chandrasehar G, Selvam PN (2018) Pseudomonas fluorescens: a plant-growth-promoting Rhizobacterium (PGPR) with potential role in biocontrol of pests of crops. In: Prasad R, Gill SS, Tuteja N (eds) Crop improvement through microbial biotechnology. Elsevier, pp 221–243

    Google Scholar 

  • Demchak RJ, Dybas RA (1997) Photostability of abamectin/zein microspheres. J Agric Food Chem 45:260–262

    Article  CAS  Google Scholar 

  • Deng SQ, Zou WH, Li DL et al (2019) Expression of Bacillus thuringiensis toxin Cyt2Ba in the entomopathogenic fungus Beauveria bassiana increases its virulence towards Aedes mosquitoes. PLoS Negl Trop Dis 13:e0007590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dimetry NZ (2012) Prospects of botanical pesticides for the future in integrated pest management programme (IPM) with special reference to neem uses in Egypt. Arch Phytopathol & Plant Prot 45:1138–1161

    Article  CAS  Google Scholar 

  • Disi JO, Mohammad HK, Lawrence K et al (2019) A soil bacterium can shape belowground interactions between maize, herbivores and entomopathogenic nematodes. Plant Soil 437:83–92

    Article  CAS  Google Scholar 

  • Dorsch JA, Candas M, Griko NB et al (2002) Cry1A toxins of Bacillus thuringiensis bind specifically to a region adjacent to the membrane-proximal extracellular domain of BT-R1 in Manduca sexta: involvement of a cadherin in the entomopathogenicity of Bacillus thuringiensis. Insect Biochem Mol Biol 32:1025–1036

    Article  CAS  PubMed  Google Scholar 

  • Ekbom BS (1979) Investigations on the potential of a parasitic fungus (Verticillium lecanii) for biological control of the greenhouse whitefly (Trialeurodes vaporariorum). Swedish J Agric Res 9:129–138

    Google Scholar 

  • El-Wakeil NE (2013) Botanical pesticides and their mode of action. GesundePflanzen 65:125–149

    CAS  Google Scholar 

  • Enan E (2001) Insecticidal activity of essential oils: octopaminergic sites of action. Comp Biochem Physiol 130C:325–337

    CAS  Google Scholar 

  • Enright MR, Griffin CT (2005) Effects of Paenibacillus nematophilus on the entomopathogenic nematode Heterorhabditis megidis. J Invertebr Pathol 88:40–48

    Article  PubMed  Google Scholar 

  • EPA (2006) EPA Factsheet. Accessed 14/12/2006. http://www.iaszoology.com/corcyra-cephalonica/. http://www.uniprot.org/taxonomy/176275

  • Erayya JJ, Sajeesh PK, Vinod U (2013) Nuclear Polyhedrosis virus (NPV), a potential biopesticide: a review. Res J Agric Forestry Sci 1:30–33

    Google Scholar 

  • Erler F, Yalcinkaya B (2006) Repellent activity of five essential oils against Culex pipiens. Science Direct 77:491–494

    CAS  Google Scholar 

  • Evans HC, Hywel-Jones NL (1997) Entomopathogenic Fungi. World Crop Pests:3–27. https://doi.org/10.1016/s1572-4379(97)80075-9

  • Fabrick JA, Tabashnik BE (2007) Binding of Bacillus thuringiensis toxin Cry1Ac to multiple sites of cadherin in pink bollworm. Insect Biochem Mol Biol 37:97–106

    Article  CAS  PubMed  Google Scholar 

  • Fernandes EK, Rangel DE, Braga GU et al (2015) Tolerance of entomopathogenic fungi to ultraviolet radiation: a review on screening of strains and their formulation. Curr Genet 61:427–440

    Article  CAS  PubMed  Google Scholar 

  • Ferreira T, Malan AP (2014) Xenorhabdus and Photorhabdus, bacterial symbionts of the entomopathogenic nematodes Steinernema and Heterorhabditis and their in vitro liquid mass culture: a review. Afr Entomol 22:1–14

    Google Scholar 

  • Flipsen JT, Mans RM, Kleefsman AW et al (1995) Deletion of the baculovirus ecdysteroid UDP-glucosyl transferase gene induces early degeneration of Malpighian tubules in infected insects. J Virol 69:4529–4532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fornazier RF, Ferreira RR, Vitoria AP et al (2002) Effects of cadmium on antioxidant enzyme activities in sugar cane. Biol Plant 45:91–97

    Article  CAS  Google Scholar 

  • Gao Q, Jin K, Ying SH et al (2011) Genome sequencing and comparative transcriptomics of the model entomopathogenic fungi Metarhizium anisopliae and M. acridum. PLoS Genet 7:e1001264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geng P, Wan X, Cheng J et al (2018) vB_LspM-01: a novel myovirus displaying pseudo lysogeny in Lysinibacillus sphaericus C3-41. Appl Microbiol Biotech 102:10691–10702

    Google Scholar 

  • Gibson DM, Donzelli BG, Krasnoff SB et al (2014) Discovering the secondary metabolite potential encoded within entomopathogenic fungi. Natural product rep 31:1287–1305

    Article  CAS  Google Scholar 

  • Glynne-Jones A (2001) Pyrethrum. Pestic Outlook 12:195–198

    Article  Google Scholar 

  • Gorashi NE, Tripathi M, Kalia V et al (2014) Identification and characterization of the Sudanese Bacillus thuringiensis and related bacterial strains for their efficacy against Helicoverpa armigera and Tribolium castaneum. 52:637–649

    Google Scholar 

  • Grady EN, MacDonald J, Liu L et al (2016) Current knowledge and perspectives of Paenibacillus: a review. Microb Cell Factories 15:203

    Article  Google Scholar 

  • Grewal P, Lewis E, Gaugler R et al (1994a) Host finding behaviour as a predictor of foraging strategy in entomopathogenic nematodes. Parasitology 108:207–215

    Article  Google Scholar 

  • Grewal PS, Selvan S, Gaugler R (1994b) Thermal adaptation of entomopathogenic nematodes-niche breadth for infection, establishment and reproduction. J Therm Biol 19:245–253

    Article  Google Scholar 

  • Grewal PS, Ehlers RU, Shapiro-Ilan DI (2005) Nematodes as Biocontrol Agents. CABI, New York, NY

    Book  Google Scholar 

  • Gurr GM, Wratten SD, Altieri MA (2004) Ecological engineering: advances in habitat manipulation for arthropods. CSIRO Publishing, Mel-bourne, Vic., Australia

    Book  Google Scholar 

  • Guthrie FE (2013) The nature and significance of pesticide residues on tobacco and in tobacco smoke. Beitrage zur Tabakforschung. https://doi.org/10.2478/cttr-2013-0190

  • Henry JE (1981) Natural and applied control of insects by protozoa. Annu Rev Entomol 26:49–73

    Article  Google Scholar 

  • Hernández-Lambraño R, Caballero-Gallardo K, Olivero-Verbel K (2014) Toxicity and anti-feedant activity of essential oils from three aromatic plants grown in Colombia against Euprosterna elaeasa and Acharia fusca (Lepidoptera: Limacodidae). Asian Pacific J Tropic Biomed 4:695–700

    Article  Google Scholar 

  • Hilder VA, Gatehouse AMR, Sheerman SE et al (1987) A novel mechanism of insect resistance engineered into tobacco. Nature 300:160–163

    Article  Google Scholar 

  • Hirano SS, Upper CD (2000) Bacteria in the leaf ecosystem with emphasis on Pseudomonas syringae–a pathogen, ice nucleus, and epiphyte. Microbiol Mol Biol Rev 64:624–653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoa TD, Khac P, Uena T et al (2016) Control efficacy of pongam leaf extract against the turnip aphid. J Fac Agr Kyushu Univ 61:141–145

    Google Scholar 

  • Hoover K, Grove M, Gardner M (2011) Gene for an extended phenotype. Sci 333:1401

    Article  CAS  Google Scholar 

  • Horn AS (1915) The occurrence of fungi on Aleurodes vaporariorum in Great Britain. Ann Appl Biol 2:109–111

    Google Scholar 

  • Hu X, Xiao G, Zheng P et al (2014) Trajectory and genomic determinants of fungal-pathogen speciation and host adaptation. Proc Natl Acad Sci 111:16796–16801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hua G, Jurat-Fuentes JL, Adang MJ (2004) Fluorescent-based assays establish Manduca sexta Bt-R1a cadherin as a receptor for multiple Bacillus thuringiensis Cry1A toxins in Drosophila S2 cells. Insect Biochem Mol Biol 34:193–202

    Article  CAS  PubMed  Google Scholar 

  • Huang K-x, Xia L et al (2009) Recent advances in the biochemistry of spinosyns. Appl Microbiol Biotechnol 82:13–23

    Google Scholar 

  • Humber RA (1984) Foundations for an evolutionary classification of the Entomophthorales (Zygomycetes). In: Wheeler Q, Blackwell M (eds) Fungus-insect relationships. Columbia University Press, New York, pp 167–183

    Google Scholar 

  • Humber RA (2008) Evolution of entomopathogenicity in fungi. J Invertebr Pathol 98:262–266

    Article  PubMed  Google Scholar 

  • Hussie AI, Nahed Ibrahim A, Hatem AES et al (2011) Activida dinsecticida y fijadora de nitrogeno de la bacteria transformada Paenibacillus polymyxa que expresa Cry1C. Rev Col Entomol 37:192–197

    Google Scholar 

  • Ibrahim NAGA, Hussien AI, Hatem AES et al (2014) Persistence of the transformed Paenibacillus polymyxa expressing CRY1C in the plant leaves and its effect on chlorophyll and carotenoid. Life Sci J 11:433–442

    Google Scholar 

  • Ironside JE (2013) Diversity and recombination of dispersed ribosomal DNA and protein coding genes in microsporidia. PLoS One 8:e55878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Isman MB (2006) Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. Annu Rev Entomol 51:45–66

    Article  CAS  PubMed  Google Scholar 

  • Isman MB, Grieneisen ML (2014) Botanical insecticide research: many publications, limited useful data. Trends Plant Sci 19:140–145

    Article  CAS  PubMed  Google Scholar 

  • Jackson TA (2003) Environmental safety of inundative application of a naturally occurring biocontrol agent, Serratia entomophila. In: Environmental impacts of microbial insecticides. Springer, Dordrecht, pp 169–176

    Chapter  Google Scholar 

  • Jackson TA, Klein MG (2006) Scarabs as pests: a continuing problem. Coleopt Bull 60:102–119

    Article  Google Scholar 

  • Jackson TA, Pearson JF, Ocallaghan M et al (1992) Pathogen to product-development of Serratia entomophila (Enterobacteriaceae) as a commercial biological control agent for the New Zealand grass grub (Costelytra zealandica). In: Jackson TA, Glare TR (eds) Use of pathogens in scarab pest management. Intercept, Andover, UK, pp 191–198

    Google Scholar 

  • Jackson TA, Boucias DG, Thaler JO (2001) Pathobiology of amber disease caused by Serratia spp., in the New Zealand grass grub, Costelytra zealandica. J Invertebr Pathol 78:232–243

    Article  CAS  PubMed  Google Scholar 

  • Jaronski ST (2010) Ecological factors in the inundative use of fungal entomopathogens. Biol Control 55:159–185

    Google Scholar 

  • Johnson HA, Oberlies NH, Alali FQ, McLaughlin JE (2000) Thwarting resistance: annonaceous acetogenins as new pesticidal and antitumor agents. In: Cutler SJ, Cutler JG (eds) Biological active natural products: pharmaceuticals. CRC Press, Boca Raton, pp 173–183

    Google Scholar 

  • Johny S, Kanginakudru S, Muralirangan MC et al (2006) Morphological and molecular characterization of a new microsporidian (Protozoa: Microsporidia) isolated from Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae). Parasitology 132:803–814

    Article  CAS  PubMed  Google Scholar 

  • Jones VP, Steffan SA, Wiman NG et al (2011) Evaluation of herbivore-induced plant volatiles for monitoring green lacewings in Washington apple orchards. Biol Control 56:98–105

    Article  Google Scholar 

  • Juliya RF (2019) Biocontrol potential and genetic diversity of Metarhizium anisopliae lineage in agricultural habitats. J Appl Microbiol 127:556–564

    Google Scholar 

  • Kachhawa D (2017) Microorganisms as a biopesticides. J Entomol Zool Studies 5:468–473

    Google Scholar 

  • Kaiser D, Bacher S, Mene-Saffrane L et al (2019) Efficiency of natural substances to protect Beauveria bassiana conidia from UV radiation. Pest Manag Sci 75:556–563

    Article  CAS  PubMed  Google Scholar 

  • Kalha CS, Singh PP, Kang SS et al (2014) Entomopathogenic viruses and bacteria for insect-pest control. In: Integrated Pest management. Academic Press, pp 225–244

    Google Scholar 

  • Kanaoka M, Isogai A, Murakoshi S et al (1978) Bassianolide, a new insecticidal cyclodepsi peptide from Beauveria bassiana and Verticillium lecanii. Agri Biol Chem 42:629–635

    CAS  Google Scholar 

  • Kao KN, Constabel F, Michayluk MR et al (1974) Plant protoplast fusion and growth of intergeneric hybrid cells. Planta 120:215–227

    Article  CAS  PubMed  Google Scholar 

  • Kaya HK, Gaugler R (1993) Entomopathogenic nematodes. Annu Rev Entomol 38:181–206

    Article  Google Scholar 

  • Keller A, Brandel A, Becker MC et al (2018) Wild bees and their nests host Paenibacillus bacteria with functional potential of avail. Microbiome 6:229

    Article  PubMed  PubMed Central  Google Scholar 

  • Kepler RM, Rehner SA (2013) Genome-assisted development of nuclear intergenic sequence markers for entomopathogenic fungi of the Metarhizium anisopliae species complex. Mol Ecol Resour 13:210–217

    Google Scholar 

  • Khambay BP, Batty D, Jewess PJ, Bateman GL, Hollomon DW (2003) Mode of action and pesticidal activity of the natural product dunnione and of some analogues. Pest Manag Sci 59:174–182

    Article  CAS  PubMed  Google Scholar 

  • Kim B, Song GC, Ryu CM (2016) Root exudation by aphid leaf infestation recruits root-associated Paenibacillus spp. to lead plant insect susceptibility. J Microbiol Biotechnol 26:549–557

    Google Scholar 

  • Klein MG (1988) Pest management of soil-inhabiting insects with microorganisms. Agric Eco Environ 24:337–349

    Article  Google Scholar 

  • Koppenhofer AM, Jackson TA, Klein MG (2012) Bacteria for use against soil-inhabiting insects. Manual of Techniques in Invertebrate Pathology pp 129–149

    Google Scholar 

  • Koul O (2011) Microbial biopesticides: opportunities and challenges. CAB Rev 6:1–26

    Article  Google Scholar 

  • Kour D, Rana KL, Yadav N, Yadav AN, Singh J, Rastegari AA et al (2019) Agriculturally and industrially important fungi: current developments and potential biotechnological applications. In: Yadav AN, Singh S, Mishra S, Gupta A (eds) Recent advancement in white biotechnology through Fungi, Perspective for value-added products and environments, vol 2. Springer International Publishing, Cham, pp 1–64. https://doi.org/10.1007/978-3-030-14846-1_1

    Chapter  Google Scholar 

  • Kour D, Rana KL, Sheikh I, Kumar V, Yadav AN, Dhaliwal HS et al (2020a) Alleviation of drought stress and plant growth promotion by Pseudomonas libanensis EU-LWNA-33, a drought-adaptive phosphorus-solubilizing bacterium. Proc Natl Acad Sci India B. https://doi.org/10.1007/s40011-019-01151-4

  • Kour D, Rana KL, Yadav AN, Yadav N, Kumar M, Kumar V et al (2020b) Microbial biofertilizers: bioresources and eco-friendly technologies for agricultural and environmental sustainability. Biocatal Agric Biotechnol 23:101487. https://doi.org/10.1016/j.bcab.2019.101487

    Article  Google Scholar 

  • Kraus W (2002a) Biologically active ingredients – azadirachtin and other triterpenoids (part I). In: Schmutterer H (ed) . loc cit, pp 39–78

    Google Scholar 

  • Kraus W (2002b) Azadirachtin and other triterpenoids - part II. In: Schmutterer H (ed) . loc cit, pp 80–111

    Google Scholar 

  • Krishnaveni KV, Nayaki RT, Balasubramanian M (2015) Effect of Gliricidia sepium leaves extracts on Aedes aegypti: Larvicidal activity. J Phytology 7:26–31

    Article  CAS  Google Scholar 

  • Kumar V, Chandrashekar K, Sidhu OM (2006) Efficacy of karanjin and different extracts of Pongamia pinnata against selected insect pests. J Ent Res 30:103–108

    Google Scholar 

  • Kumar AP, Amalnath D, Dutta TK (2011) Cartap poisoning: a rare case report. Indian Journal Critic Care Med 15:233

    Article  CAS  Google Scholar 

  • Landis DA, Wratten SD, Gurr GM (2000) Habitat management to conserve natural enemies of arthropod pests in agriculture. Annu Rev Entomol 45:175–201

    Article  CAS  PubMed  Google Scholar 

  • Lannoo N, Van Damme EJ (2010) Nucleocytoplasmic plant lectins. Biochem Biophys Acta 1800:190–201

    Google Scholar 

  • Lasota JA, Dybas RA (1990) Abamectin as a pesticide for agricultural use. Acta Leiden 59:217–225

    CAS  PubMed  Google Scholar 

  • Lasota JA, Dybas RA (1991) Avermectins, a novel class of compounds: implications for use in arthropod pest control. Annu Rev Entomol 36:91–117

    Article  CAS  PubMed  Google Scholar 

  • Lawrence PK, Koundal KR (2002) Plant protease inhibitors in control of phytophagous insects. Electron J Biotechnol 5:1. https://doi.org/10.2225/vol5-issue1-fulltext-3

    Article  Google Scholar 

  • Leatemia JA, Isman MB (2004) Efficacy of crude seed extracts of Annona squamosa against Plutella xylostella L. in the greenhouse. Int J Pest Manag 50:129–133

    Article  Google Scholar 

  • Lee YS, Kim YC (2019) Tobacco growth promotion by the entomopathogenic fungus, Isaria javanica pf185. Mycobiol 47:126–133

    Article  Google Scholar 

  • Lee YS, Han JH, Kang BR et al (2019) Dibutyl succinate, produced by an insect-pathogenic fungus, Isaria javanica pf185, is a metabolite that controls of aphids and a fungal disease, anthracnose. Pest Manag Sci 75:852–858

    Article  CAS  PubMed  Google Scholar 

  • Lewis MA, Arnason J et al (1993) Inhibition of respiration at site I by asimicin, an insecticidal acetogenin of the pawpaw, Asimina triloba (Annonaceae). Pestic Biochem Physiol 45:15–23

    Google Scholar 

  • Lipke H, Fraenkel GS, Liener IE (1954) Effects of soybean inhibitors on growth of Tribolium confusum. J Sci Food Agric 2:410–415

    Article  CAS  Google Scholar 

  • Liu WZ, Boucias DG, McCoy CW (1995) Extraction and characterization of the insecticidal toxin hirsutellin a produced by Hirsutella thompsonii var. thompsonii. Exp Mycol 19:254–262

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Wang X, Dai Y et al (2019) Expressing double-stranded RNAs of insect hormone-related genes enhances baculovirus insecticidal activity. Int J Mol Sci 20:419

    Article  PubMed Central  CAS  Google Scholar 

  • Loper JE, Hassan KA, Mavrodi DV et al (2012) Comparative genomics of plant-associated Pseudomonas spp.: insights into diversity and inheritance of traits involved in multitrophic interactions. PLoS Genet 8:e1002784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lopes RB, Faria M (2019) Influence of two formulation types and moisture levels on the storage stability and insecticidal activity of Beauveria bassiana. Biocontrol Sci Tech 29:437–450

    Article  Google Scholar 

  • Lozano LC, Ayala JA, Dussan J (2011) Lysinibacillus sphaericus S-layer protein toxicity against Culex quinquefasciatus. Biotechnol Lett 33:2037–2041

    Article  CAS  PubMed  Google Scholar 

  • Macedo ML, Oliveira CF, Oliveira CT (2015) Insecticidal activity of plant lectins and potential application in crop protection. Molecules 20:2014–2033

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Maimala S, Tartar A et al (2002) Detection of the toxin Hirsutellin A from Hirsutella thompsonii. J Invertebr Pathol 80:112–126

    Google Scholar 

  • Mannino MC, Huarte-Bonnet C, Davyt-Colo B et al (2019) Is the insect cuticle the only entry gate for fungal infection? Insights into alternative modes of action of entomopathogenic fungi. J Fungi 5:33

    Article  CAS  Google Scholar 

  • Martin PA, Gundersen-Rindal D, Blackburn M et al (2007) Chromo bacterium subtsugae sp. nov., a betaproteo bacterium toxic to Colorado potato beetle and other insect pests. Int J Syst Evol Microbiol 57:993–999

    Article  CAS  PubMed  Google Scholar 

  • Mascarin GM, Jaronski ST (2016) The production and uses of Beauveria bassiana as a microbial insecticide. World J Microbiol Biotech 32:177

    Google Scholar 

  • Mashtoly TA, Abolmaaty A, Thompson N et al (2010) Enhanced toxicity of Bacillus thuringiensis japonensis strain Buibui toxin to oriental beetle and northern masked chafer (Coleoptera: Scarabaeidae) larvae with Bacillus sp. NFD2. J Econ Entomol 103:1547–1554

    Google Scholar 

  • Mathew LG, Ponnuraj J, Mallappa B et al (2018) ABC transporter mis-splicing associated with resistance to Bt toxin Cry2Ab in laboratory-and field-selected pink bollworm. Sci Rep 8:13531

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • McCoy C, Quintela ED, De Faria M (2000) Environmental persistence of entomopathogenic fungi. In: Baur ME, Fuxa JR (eds) Factors affecting the survival of entomopathogens. Lousiana State University Agricultural Center, Southern Cooperative Series Bulletin, p 400

    Google Scholar 

  • McLaughlin JL, Zeng L, Oberlies NH et al (1997) Annonaceous acetogenins as new natural pesticides: recent progress. In: Hedin PA, Hollingworth RM, Masler EP et al (eds) Phytochemicals for pest control. American Chemical Society, Washington, DC, pp 117–133

    Chapter  Google Scholar 

  • Melo ALDA, Soccol VT, Soccol CR (2016) Bacillus thuringiensis: mechanism of action, resistance, and new applications: a review. Crit Rev Biotechnol 36:317–326

    Article  CAS  PubMed  Google Scholar 

  • de Mendonca Santos EM, de Melo Chalegre KD, de Albuquerque AL et al (2019) Frequency of resistance alleles to Lysinibacillus sphaericus in a Culex quinquefasciatus population treated with a L. sphaericus/Bti bio larvicide. Biol Control 132:95–101

    Article  CAS  Google Scholar 

  • Mertz FP, Yao RC (1990) Saccharopolyspora spinosa sp. nov. isolated from soil collected in a sugar mill rum still. Int J Systematic Bacteriol 40:34–39. https://doi.org/10.1099/00207713-40-1-34

    Article  Google Scholar 

  • Michereff MFF, Borges M, Aquino MFS et al (2016) The influence of volatile semiochemicals from stink bug eggs and oviposition-damaged plants on the foraging behaviour of the egg parasitoid Telenomus podisi. Bulletin Entomol Res 106:663–671

    Article  CAS  Google Scholar 

  • Midega CA, Murage AW, Pittchar JO et al (2016) Managing storage pests of maize: Farmers' knowledge, perceptions and practices in western Kenya. Crop Prot 90:142–149

    Article  Google Scholar 

  • Mikolajczak KL, McLaughlin JL, Rupprecht JK (1988) Control of Pests with Annonaceous Acetogenins. (divisional patent on asimicin) U.S. Patent No. 4,855,319

    Google Scholar 

  • Moeschler HF, Pfuger W, Wendlisch D (1987) Pure annonin and a process for the preparation thereof. US Patent No 4:689,323

    Google Scholar 

  • Morgan ED (2009) Azadirachtin, a scientific gold mine. Bioorg Med Chem 17:4096–4105

    Article  CAS  PubMed  Google Scholar 

  • Mossa ATH, Mohafrash SM, Chandrasekaran N (2018) Safety of natural insecticides: toxic effects on experimental animals. Biomed Res Int 2018:4308054

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Naureen Z, Rehman NU, Hussain H et al (2017) Exploring the potentials of Lysinibacillus sphaericus ZA9 for plant growth promotion and biocontrol activities against phytopathogenic fungi. Front Microbiol 8:1477

    Article  PubMed  PubMed Central  Google Scholar 

  • Nawaz M, Mabubu JI, Hua H (2016) Current status and advancement of biopesticides microbial and botanical pesticides. J Entomol Zool Stud 4:241–246

    Google Scholar 

  • Nishiyama K, Tsuruta K, Ikeda M et al (2016) Sensitive electrochemical detection of Nereistoxin by reductive desorption from au (111) and au (100). Electrochemistry 84:349–353

    Article  CAS  Google Scholar 

  • Nukmal N, Rosa E, Apriliyani et al (2017) Insecticidal effects of the flavonoid-rich fraction of leaves extract of Gamal (Gliricidia sepium) on the coffee Mealybugs (Planococcus citri Risso.). ARRB 16:1–9

    Article  Google Scholar 

  • Okonkwo CO, Ohaeri OC (2018) Essential oils from the leaves of Euphorbia milieu exert insecticidal activity through disruption in ionic composition. IOSR J Pharma Biol Sci 13: 46–9

    Google Scholar 

  • Oliveira-Hofman C, Kaplan F, Stevens G et al (2019) Pheromone extracts act as boosters for entomopathogenic nematodes efficacy. J Invertebr Pathol 164:38–42

    Article  CAS  PubMed  Google Scholar 

  • Oostendorp M, Sikora RA (1989) Seed treatment with antagonistic rhizobacteria for the suppression of Heterodera schachtii early root infection of sugar beet. Rev Nematol 12:77–83

    Google Scholar 

  • Oostendorp M, Sikora RA (1990) In vitro interrelationships between rhizosphere bacteria and Heterodera schachtii. Rev Nematol 13:269–274

    Google Scholar 

  • Ortiz-Urquiza A, Riveiro-Miranda L, Santiago-Alvarez C et al (2010) Insect-toxic secreted proteins and virulence of the entomopathogenic fungus Beauveria bassiana. J Invertebr Pathol 105:270–278

    Article  CAS  PubMed  Google Scholar 

  • Oulevey C, Widmer F, Kolliker R et al (2009) An optimized microsatellite marker set for detection of Metarhizium anisopliae genotype diversity on field and regional scales. Mycol Res 113:1016–1024

    Article  CAS  PubMed  Google Scholar 

  • Pathma J, Sakthivel N (2013) Molecular and functional characterization of bacteria isolated from straw and goat manure based vermicompost. Appl Soil Ecol 70:33–47

    Article  Google Scholar 

  • Pathma J, Ayyadurai N, Sakthivel N (2010a) Assessment of genetic and functional relationship of antagonistic fluorescent pseudomonads of rice rhizosphere by repetitive sequence, protein coding sequence and functional gene analyses. J Microbiol 48:715–727

    Article  CAS  PubMed  Google Scholar 

  • Pathma J, Kamaraj Kennedy R, Sakthivel N (2010b) Mechanisms of fluorescent pseudomonads that mediate biological control of phytopathogens and plant growth promotion of crop plants. In: Maheshwari DK (ed) Bacteria in agro-biology: plant growth. Springer-Verlag, Berlin Heidelberg, pp 77–105

    Google Scholar 

  • Pathma J, Rahul GR, Kamaraj Kennedy R, Subashri R, Sakthivel N (2011) Secondary metabolite production by bacterial antagonists. J Biol Control 25:165–181

    Google Scholar 

  • Pathma J, Raman G, Kennedy RK et al (2019a) Recent advances in plant-microbe interaction. In: Sharma SG, Sharma M, Sharma NR (eds) Microcosm: microbial diversity, interventions and scope. Springer International. (in Press)

    Google Scholar 

  • Pathma J, Raman G, Sakthivel N (2019b) Microbiome of rhizospheric soil and vermicompost and their applications in soil fertility, pest and pathogen management for sustainable agriculture. In: Panpatte DG, Jhala YK (eds) Soil fertility Management for Sustainable Development. Springer, Nature Singapore, pp 189–210

    Chapter  Google Scholar 

  • Pathma J, Kennedy RK BLS et al (2020) Microbial biofertilizers and biopesticides: Nature’s assets fostering sustainable agriculture. In: Panwar JS, Prasad R (eds) Recent developments in microbial technologies. Springer. (in Press)

    Google Scholar 

  • Pedras MSC, Zaharia LI, Ward DE (2002) The destruxins: synthesis, biosynthesis, biotransformation, and biological activity. Phytochemistry 59:579–596

    Article  CAS  PubMed  Google Scholar 

  • Pedrini N (2018) Molecular interactions between entomopathogenic fungi (Hypocreales) and their insect host: perspectives from stressful cuticle and hemolymph battlefields and the potential of dual RNA sequencing for future studies. Fungal Biol 122:538–545

    Article  CAS  PubMed  Google Scholar 

  • Peumans WJ, VanDamme EJM (1995) Lectins as PIantDefense proteins. Plant Physiol 109:347–352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pigott CR, Ellar DJ (2007) Role of receptors in Bacillus thuringiensis crystal toxin activity. Microbiol Mol Biol Rev 71:255–281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pittarelli GW, Buta JG, Neal JW Jr, et al (1993) Biological pesticide derived from Nicotiana Plants. U.S. Patent No. 5,260,281

    Google Scholar 

  • Pitterna TC, Jerome H, Ottmar FJ et al (2009) New ventures in the chemistry of avermectins. Bioorg Med Chem 17:4085–4095

    Article  CAS  PubMed  Google Scholar 

  • Plata-Rueda A, Martínez LC, Santos MHD et al (2017) Insecticidal activity of garlic essential oil and their constituents against the mealworm beetle, Tenebrio molitor Linnaeus (Coleoptera: Tenebrionidae). Sci Rep 7:46406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pradhan S, Jotwani MG, Rai BK (1962) The neem seed deterrent to locust. Indian Farm 12:7–11

    Google Scholar 

  • Prado END, Iannacone J, Gomez H (2008) Effect of two entomopathogenic fungi in controlling Aleurodicus cocois (Curtis 1846) (Hemiptera: Aleyrodidae). Chil J Agric Res 68:21–30

    Google Scholar 

  • Rai PK, Singh M, Anand K, Saurabhj S, Kaur T, Kour D et al (2020) Role and potential applications of plant growth promotion rhizobacteria for sustainable agriculture. In: Rastegari AA, Yadav AN, Yadav N (eds) Trends of microbial biotechnology for sustainable agriculture and biomedicine systems: diversity and functional perspectives. Elsevier, Amsterdam, pp 49–60. https://doi.org/10.1016/B978-0-12-820526-6.00004-X

    Chapter  Google Scholar 

  • Rajashekar Y, Ravindra KV, Bakthavatsalam N (2014) Leaves of Lantana camara Linn. (Verbenaceae) as a potential insecticide for the management of three species of stored grain insect pests. J Food Sci Technol 51:3494–3499

    Article  CAS  PubMed  Google Scholar 

  • Rastegari AA, Yadav AN, Yadav N (2020a) New and future developments in microbial biotechnology and bioengineering: Trends of microbial biotechnology for sustainable agriculture and biomedicine systems: diversity and functional perspectives. Elsevier, Amsterdam

    Google Scholar 

  • Rastegari AA, Yadav AN, Yadav N (2020b) New and future developments in microbial biotechnology and bioengineering: Trends of microbial biotechnology for sustainable agriculture and biomedicine systems: perspectives for human health. Elsevier, Amsterdam

    Google Scholar 

  • Regnault-Roger C, Philogene BJR (2008) Past and current prospects for the use of botanicals and plant allelochemicals in integrated pest management. Pharm Biol 46:41–52

    Article  CAS  Google Scholar 

  • Reisig DD, Kurtz R (2018) Bt resistance implications for Helicoverpa zea (Lepidoptera: Noctuidae) insecticide resistance management in the United States. Environ Entomol 47:1357–1364

    Google Scholar 

  • Rezende TMT, Rezende AM, Wallau GL et al (2019) A differential transcriptional profile by Culex quinquefasciatus larvae resistant to Lysinibacillus sphaericus IAB59 highlights genes and pathways associated with the resistance phenotype. Parasit Vectors 12(1):407

    Google Scholar 

  • Richardson MJ (1991) Seed storage proteins: the enzyme inhibitors. In: Richardson MJ (ed) Methods in plant biochemistry. Academic Press, New York, pp 259–305

    Google Scholar 

  • Robertson DR, Smith-Vaniz WF (2008) Rotenone: an essential but demonized tool for assessing marine fish diversity. Bioscience 58:165–170

    Article  Google Scholar 

  • Robles-Acosta IN, Chacon-Hernandez JC, Torres-Acosta RI et al (2019) Entomopathogenic fungi as biological control agents of Phyllocoptruta oleivora (Prostigmata: Eriophyidae) under greenhouse conditions. Fla Entomol 102:303–308

    Article  CAS  Google Scholar 

  • Roh JY, Choi JY, Li MS (2007) Bacillus thuringiensis as a specific, safe, and effective tool for insect pest control. Microb Biotechnol 17:547

    Google Scholar 

  • Ruiu L (2015) Insect pathogenic bacteria in integrated pest management. Insects 6:352–367

    Article  PubMed  PubMed Central  Google Scholar 

  • Ruiu L (2018) Microbial biopesticides in agroecosystems. Agronomy 8:235

    Article  CAS  Google Scholar 

  • Sahay H, Yadav AN, Singh AK, Singh S, Kaushik R, Saxena AK (2017) Hot springs of Indian Himalayas: potential sources of microbial diversity and thermostable hydrolytic enzymes. 3. Biotech 7:1–11

    Google Scholar 

  • Samson RA, Evans HC, Latge JP (eds) (1988) Atlas of Entomopathogenic Fungi. Springer-Verlag, Berlin

    Google Scholar 

  • Sandhu SS, Mishra M (1994) Larvicidal activity of fungal isolates Beaveria bassiana, Metarhizium anisopliae and Aspergillus flavus against mosquito sp. Culex pipiens. In: Proc Natl Symp Advan bio control insect pests, pp 145–150

    Google Scholar 

  • Santhi A, Sivakumar CV (1995) Biocontrol potential of Pseudomonas fluorescens (Migula) against root-knot nematode, Meloidogyne incognita (Kofoid and white, 1919) Chitwood, 1949 on tomato. J Bio Control 9:113–115

    Google Scholar 

  • Sarker S, Lim UT (2018) Extract of Nicotiana tabacum as a potential control agent of Grapholita molesta (Lepidoptera: Tortricidae). PLoS One 13(8):e0198302

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Saxena AK, Yadav AN, Rajawat M, Kaushik R, Kumar R, Kumar M et al (2016) Microbial diversity of extreme regions: an unseen heritage and wealth. Indian J Plant Genet Resour 29:246–248

    Article  Google Scholar 

  • Saxena AK, Padaria JC, Gurjar GT, Yadav AN, Lone SA, Tripathi M et al (2020) Insecticidal formulation of novel strain of Bacillus thuringiensis AK 47. Indian Patent 340541

    Google Scholar 

  • Schmidt GH, Rembold H, Ahmed AAI et al (1998) Effect of Melia azedarach fruit extract on juvenile hormone titer and protein content in the hemolymph of two species of noctuid lepidopteran larvae (Insecta: Lepidoptera: Noctuidae). Phytoparasitica 26:283–292

    Article  Google Scholar 

  • Schmutterer H (ed) (2002) The neem tree. Neem Found, Mumbai

    Google Scholar 

  • Schrank A, Vainstein MH (2010) Metarhizium anisopliae enzymes and toxins. Toxicon 56:1267–1274

    Google Scholar 

  • Schunemann R, Knaak N, Fiuza LM (2014) Mode of action and specificity of Bacillus thuringiensis toxins in the control of caterpillars and stink bugs in soybean culture. ISRN Microbiol 2014:135675

    Google Scholar 

  • Schwartz JL, Laprade R (2000) Membrane permeabilisation by Bacillus thuringiensis toxins: protein insertion and pore formation. In: Charles JF, Delecluse A, Nielsen-LeRoux C (eds) Entomopathogenic bacteria: from laboratory to field application. Kluwer Associate Publishing, Norwell, MA, pp 199–218

    Google Scholar 

  • Senthil-Nathan S (2006) Effects of Melia azedarach on nutritional physiology and enzyme activities of the rice leaf folder Cnaphalocrocis medinalis (Guenée) (Lepidoptera: Pyralidae). Pestic Biochem Physiol 84:98–108

    Article  CAS  Google Scholar 

  • Simpson M, Gurr GM, Simmons AT et al (2011a) Insect attraction to synthetic herbivore-induced plant volatile-treated field crops. Agric For Entomol 13:45–57

    Article  Google Scholar 

  • Simpson M, Gurr GM, Simmons AT et al (2011b) Field evaluation of the ‘attract and reward’ biological control approach in vineyards. Ann Appl Biol 159:69–78

    Article  Google Scholar 

  • Singh J, Yadav AN (2020) Natural bioactive products in sustainable agriculture. Springer, Singapore

    Book  Google Scholar 

  • Singh AK, Ghodke I, Chhatpar HS (2009) Pesticide tolerance of Paenibacillus sp. D1 and its chitinase. J Environ Manag 91:358–362

    Article  CAS  Google Scholar 

  • Singh A, Kumar R, Yadav AN, Mishra S, Sachan S, Sachan SG (2020) Tiny microbes, big yields: microorganisms for enhancing food crop production sustainable development. In: Rastegari AA, Yadav AN, Yadav N (eds) Trends of microbial biotechnology for sustainable agriculture and biomedicine systems: diversity and functional perspectives. Elsevier, Amsterdam, pp 1–15. https://doi.org/10.1016/B978-0-12-820526-6.00001-4

    Chapter  Google Scholar 

  • Snyder DE, Meyer J, Zimmermann AG et al (2007) Preliminary studies on the effectiveness of the novel pulicide, spinosad, for the treatment and control of fleas on dogs. Veter Parasitol 150:345–351

    Article  CAS  Google Scholar 

  • Soares-da-Silva J, Pinheiro VCS, Litaiff-Abreu E et al (2015) Isolation of Bacillus thuringiensis from the state of Amazonas, in Brazil, and screening against Aedesa egypti (Diptera, Culicidae). Revista Brasileira de Entomol 59:1–6

    Article  Google Scholar 

  • Soman AG, Gloer JB, Angawi RF et al (2001) Vertilecanins: new phenopicolinic acid analogues from Verticillium lecanii. J Nat Prod 64:189–192

    Article  CAS  PubMed  Google Scholar 

  • Steiner S, Hermann N, Ruther J (2006) Characterization of a female-produced courtship pheromone in the parasitoid Nasonia vitripennis. J Chem Ecol 32:1687–1702

    Article  CAS  PubMed  Google Scholar 

  • Stevenson PC, Nyirenda SP, Mvumi BM et al (2012) Pesticidal plants: a viable alternative insect pest management approach for resource-poor farming in Africa. In: Koul O, Dhaliwal GS, Khokhar S et al (eds) Biopesticides in environment and food security: issues and strategies. Scientific Publishers, India, pp 212–238

    Google Scholar 

  • Stock CA, McLoughlin TJ, Klein JA et al (1990) Expression of Bacillus thuringiensis crystal protein gene in Pseudomonas cepacia 526. Can J Microbiol 36:879–884

    Article  CAS  Google Scholar 

  • Stoger E, Williams S, Christou P et al (1999) Expression of the insecticidal lectin from snowdrop (Galanthusnivalis agglutinin; GNA) in transgenic wheat plants: effects on predation by the grain aphid Sitobion avenae. Mol Breed 5:65–73

    Article  CAS  Google Scholar 

  • Suman A, Yadav AN, Verma P (2016) Endophytic microbes in crops: diversity and beneficial impact for sustainable agriculture. In: Singh D, Abhilash P, Prabha R (eds) Microbial inoculants in sustainable agricultural productivity. Research Perspectives. Springer-Verlag, India, pp 117–143. https://doi.org/10.1007/978-81-322-2647-5_7

    Chapter  Google Scholar 

  • Thacker JMR (2002) An introduction to arthropod pest control. Cambridge University Press, Cambridge, p 343

    Google Scholar 

  • Thakur N, Kaur S, Tomar P, Thakur S, Yadav AN (2020) Microbial biopesticides: current status and advancement for sustainable agriculture and environment. In: Rastegari AA, Yadav AN, Yadav N (eds) Trends of microbial biotechnology for sustainable agriculture and biomedicine systems: diversity and functional perspectives. Elsevier, Amsterdam, pp 243–282. https://doi.org/10.1016/B978-0-12-820526-6.00016-6

    Chapter  Google Scholar 

  • Thomsen L, Eilenberg J (2000) Time-concentration mortality of Pieris brassicae (Lepidoptera: Pieridae) and Agrotis segetum (Lepidoptera: Noctuidae) larvae from different destruxins. Environ Entomol 29:1041–1047

    Article  Google Scholar 

  • Tounou AK, Kooyman C, Douro-Kpindou OK et al (2008) Combined field efficacy of Paranosema locustae and Metarhizium anisopliae var. acridum for the control of Sahelian grasshoppers. BioControl 53:813

    Article  Google Scholar 

  • Uma MS, Prasanna PM, Manjunathareddy GV et al (2009) Efficacy of some Euphorbiaceae plant extracts against cabbage diamondback moth, Plutella xylostella L. Karnataka J Agric Sci 22:688–689

    Google Scholar 

  • Usha Rani P, Hymavathi A, Suresh Babu K et al (2013) Bioactivity evaluation of prenylated isoflavones derived from Derris scandens Benth against two stored pest larvae. J Bio pesticides 6:14–21

    CAS  Google Scholar 

  • Vachon V, Laprade R, Schwartz JL (2012) Current models of the mode of action of Bacillus thuringiensis insecticidal crystal proteins: a critical review. J Invertebr Pathol 111:1–12

    Google Scholar 

  • Van Damme EJM, Allen AK, Peumans WJ (1987) Isolation and characterization of a lectin with exclusive specificity towards mannose from snowdrop (Galanthus nivalis) bulbs. FEBS Lett 215:140–114

    Article  Google Scholar 

  • Vega FE (2008) Insect pathology and fungal endophytes. J Invertebr Pathol 98:277–279

    Article  PubMed  Google Scholar 

  • Verma P, Yadav AN, Kazy SK, Saxena AK, Suman A (2013) Elucidating the diversity and plant growth promoting attributes of wheat (Triticum aestivum) associated acidotolerant bacteria from southern hills zone of India. Natl J Life Sci 10:219–227

    CAS  Google Scholar 

  • Verma P, Yadav AN, Khannam KS, Panjiar N, Kumar S, Saxena AK et al (2015) Assessment of genetic diversity and plant growth promoting attributes of psychrotolerant bacteria allied with wheat (Triticum aestivum) from the northern hills zone of India. Ann Microbiol 65:1885–1899

    Article  CAS  Google Scholar 

  • Verma P, Yadav AN, Khannam KS, Kumar S, Saxena AK, Suman A (2016) Molecular diversity and multifarious plant growth promoting attributes of bacilli associated with wheat (Triticum aestivum L.) rhizosphere from six diverse agro-ecological zones of India. J Basic Microbiol 56:44–58

    Article  CAS  PubMed  Google Scholar 

  • Verma P, Yadav AN, Kumar V, Khan MA, Saxena AK (2018) Microbes in termite management: potential role and strategies. In: Khan MA, Ahmad W (eds) Termites and sustainable management: volume 2 - economic losses and management. Springer International Publishing, Cham, pp 197–217. https://doi.org/10.1007/978-3-319-68726-1_9

    Chapter  Google Scholar 

  • Verma P, Yadav AN, Khannam KS, Mishra S, Kumar S, Saxena AK et al (2019) Appraisal of diversity and functional attributes of thermotolerant wheat associated bacteria from the peninsular zone of India. Saudi J Biol Sci 26:1882–1895. https://doi.org/10.1016/j.sjbs.2016.01.042

    Article  PubMed  Google Scholar 

  • Viggor S, Juhanson J, Joesaar M et al (2013) Dynamic changes in the structure of microbial communities in Baltic Sea coastal seawater microcosms modified by crude oil, shale oil or diesel fuel. Microbiol Res 168:415–427

    Article  CAS  PubMed  Google Scholar 

  • Vodovar N, Vinals M, Liehl P et al (2005) Drosophila host defense after oral infection by an entomopathogenic Pseudomonas species. Proc Natl Acad Sci U S A 102:11414–11419

    Google Scholar 

  • Wahengbam J, Raut AM, Mandal SK (2018) Efficacy of new generation insecticides against Trichogramma chilonis Ishii and Trichogramma pretiosum Riley. Mortality 10:100

    Google Scholar 

  • Wang M, Hu Z (2019) Cross-talking between baculoviruses and host insects towards a successful infection. Philos T R Soc B 374:20180324

    Article  CAS  Google Scholar 

  • Ware GW (1983) Pesticides. Theory and application. Freeman, San Francisco, p 308

    Google Scholar 

  • Weller DM, Raaijmakers JM, Gardener BBM, Thomashow LS (2002) Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annu Rev Phytopathol 40:309–348

    Article  CAS  PubMed  Google Scholar 

  • Williams CE, Collier CC, Nemacheck JA et al (2002) A lectin-like wheat gene responds systemically to attempted feeding by avirulent first-instar hessian fly larvae. J Chem Ecol 28:1411–1428

    Article  CAS  PubMed  Google Scholar 

  • Woessner JF (2013) Carboxy peptidase MeCPA. In: Rawlings ND, Salvesen G (eds) Handbook of Proteolytic enzymes. Academic Press, pp 1329–1331

    Google Scholar 

  • Wraight SP, Carruthers RI, Jaronski ST et al (2000) Evaluation of the entomopathogenic fungi Beauveria bassiana and Paecilomyces fumosoroseus for microbial control of the silver leaf whitefly, Bemisia argentifolii. Biol Control 17:203–217

    Article  Google Scholar 

  • Xiao G, Ying SH, Zheng P et al (2012) Genomic perspectives on the evolution of fungal entomopathogenicity in Beauveria bassiana. Sci Rep 2:483

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xu XM, Jeffries P, Pautasso M et al (2011) Combined use of biocontrol agents to manage plant diseases in theory and practice. Phytopathology 101:1024–1031

    Article  CAS  PubMed  Google Scholar 

  • Yadav AN (2019) Fungal white biotechnology: conclusion and future prospects. In: Yadav AN, Singh S, Mishra S, Gupta A (eds) Recent advancement in white biotechnology through Fungi, Perspective for sustainable environments, vol 3. Springer International Publishing, Cham, pp 491–498. https://doi.org/10.1007/978-3-030-25506-0_20

    Chapter  Google Scholar 

  • Yadav AN, Sachan SG, Verma P, Saxena AK (2015a) Prospecting cold deserts of north western Himalayas for microbial diversity and plant growth promoting attributes. J Biosci Bioeng 119:683–693. https://doi.org/10.1016/j.jbiosc.2014.11.006

    Article  CAS  PubMed  Google Scholar 

  • Yadav AN, Sachan SG, Verma P, Tyagi SP, Kaushik R, Saxena AK (2015b) Culturable diversity and functional annotation of psychrotrophic bacteria from cold desert of Leh Ladakh (India). World J Microbiol Biotechnol 31:95–108. https://doi.org/10.1007/s11274-014-1768-z

    Article  CAS  PubMed  Google Scholar 

  • Yadav AN, Verma P, Kumar M, Pal KK, Dey R, Gupta A et al (2015c) Diversity and phylogenetic profiling of niche-specific bacilli from extreme environments of India. Ann Microbiol 65:611–629

    Article  Google Scholar 

  • Yadav AN, Sachan SG, Verma P, Saxena AK (2016) Bioprospecting of plant growth promoting psychrotrophic bacilli from cold desert of north western Indian Himalayas. Indian J Exp Biol 54:142–150

    PubMed  Google Scholar 

  • Yadav AN, Kumar R, Kumar S, Kumar V, Sugitha T, Singh B et al (2017) Beneficial microbiomes: biodiversity and potential biotechnological applications for sustainable agriculture and human health. J Appl Biol Biotechnol 5:45–57. https://doi.org/10.7324/JABB.2017.50607

    Article  CAS  Google Scholar 

  • Yadav AN, Verma P, Kumar S, Kumar V, Kumar M, Singh BP et al. (2018) Actinobacteria from Rhizosphere: molecular diversity, distributions and potential biotechnological applications. In: Singh B, Gupta V, Passari A (eds) New and future developments in microbial biotechnology and bioengineering. Elsevier, Amsterdam, pp 13–41. https://doi.org/10.1016/B978-0-444-63994-3.00002-3

  • Yadav AN, Gulati S, Sharma D, Singh RN, Rajawat MVS, Kumar R et al (2019) Seasonal variations in culturable archaea and their plant growth promoting attributes to predict their role in establishment of vegetation in Rann of Kutch. Biologia 74:1031–1043. https://doi.org/10.2478/s11756-019-00259-2

    Article  Google Scholar 

  • Yadav AN, Mishra S, Kour D, Yadav N, Kumar A (2020a) Agriculturally important Fungi for sustainable agriculture, volume 1: perspective for diversity and crop productivity. Springer International Publishing, Cham

    Book  Google Scholar 

  • Yadav AN, Mishra S, Kour D, Yadav N, Kumar A (2020b) Agriculturally important Fungi for sustainable agriculture, volume 2: functional annotation for crop protection. Springer International Publishing, Cham

    Book  Google Scholar 

  • Yadav AN, Singh J, Rastegari AA, Yadav N (2020c) Plant microbiomes for sustainable agriculture. Springer, Cham

    Book  Google Scholar 

  • Yamamoto C, Kurokawa M (1970) Synaptic potentials recorded in brain slices and their modification by changes in the level of tissue ATP. Exp Brain Res 10:159–170

    Article  CAS  PubMed  Google Scholar 

  • Yeo H (2000) Mycoinsecticides for aphid management: a biorational approach (doctoral dissertation). University of Nottingham, Nottingham

    Google Scholar 

  • Yokoyama T, Tanaka M, Hasegawa M (2004) Novel cry gene from Paenibacillus lentimorbus strain Semadara inhibits ingestion and promotes insecticidal activity in Anomala cuprea larvae. J Invertebr Pathol 85:25–32

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Hodgman TC, Krieger L et al (1997) Cloning and analysis of the first cry gene from Bacillus popilliae. J Bacteriol 179:4336–4341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Q, Li P, Wang G et al (1998) On the biochemical mechanism of induced resistance of cotton to cotton bollworm by cutting off young seedling at plumular axis. Acta Phytophylacica Sinica 25:209–212

    Google Scholar 

  • Zhang W, Peumans WJ, Barre A et al (2000) Isolation and characterization of a jacalin-related mannose-binding lectin from salt-stressed rice (Oryza sativa) plants. Planta 210:970–978

    Article  CAS  PubMed  Google Scholar 

  • Zhou L, Alphey N, Walker AS et al (2018) Combining the high-dose refuge strategy and self-limiting transgenic insects in resistance management - a test in experimental mesocosms. Evol Appl 11:727–738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wahengbam, J., Bhushan, L.S., Patil, J.B., Pathma, J. (2021). Insecticides Derived from Natural Products: Diversity and Potential Applications. In: Yadav, A.N., Singh, J., Singh, C., Yadav, N. (eds) Current Trends in Microbial Biotechnology for Sustainable Agriculture . Environmental and Microbial Biotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-15-6949-4_17

Download citation

Publish with us

Policies and ethics