Skip to main content

Semiochemicals for Integrated Pest Management

  • Chapter
  • First Online:
Sustainable Agrochemistry

Abstract

In Brazil, implementation of integrated pest management in the mid-1970s until the mid-1990s allowed to develop one of the most robust tropical agriculture systems in the world. However, at the beginning of this century, the intensification of the no-tillage cultivation system combined with multiple crops cultivated in a rotation system provided food and hosts for insects throughout the year. These two factors have been responsible for provoking pest outbreaks. In order to overcome these pest outbreaks, farmers started applying huge amounts of pesticides to arable crops. The excess of pesticides, climate changes and more restrictive laws concerning insecticide use combining with the high costs of developing new synthetic molecules, and taking into account the increase in the world’s population, have put pressure on all food production sectors to develop more sustainable tools for controlling pests. In this aspect, in the last years, scientists have put effort to develop new technologies based on semiochemicals aiming to provide more sustainable, with less cost pest control methods to farmers. In this chapter, the principles of semiochemical use for monitoring and controlling pests as well as the way in which these natural molecules work are presented and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Agrofit (2018) Agrotóxicos registrados no AGROFIT. http://agrofit.agricultura.gov.br/agrofit_cons/principal_agrofit_cons. Accessed 12 Oct 2018

  • Al Abassi SAL, Birkett MA, Pettersson J et al (2000) Response of the seven-spot ladybird to an aphid alarm pheromone and an alarm pheromone inhibitor is mediated by paired olfactory cells. J Chem Ecol 26:1765–1771

    Google Scholar 

  • Aldrich JR, Oliver JE, Lusby WR et al (1994) Identification of male-specific volatiles from Neartic and Neotropical stink bugs (Heteroptera: Pentatomidae). J Chem Ecol 20:1103–1111

    CAS  PubMed  Google Scholar 

  • Aldrich JR, Zanuncio JC, Vilela EF et al (1997) Field tests of predaceous pentatomid pheromones and semiochemistry of Podisus and Supputius species (Heteroptera: Pentatomidae: Asopinae). An Soc Entomol Brasil 26:1–14

    CAS  Google Scholar 

  • Andrade R, Rodrigues C, Oehlschager C (2000) Optimization of a pheromone lure for Spodoptera frugiperda (Smith) in central America. J Braz Chem Soc 11:609–613

    CAS  Google Scholar 

  • Aquino MFS, Sujii ER, Borges M et al (2018) Diversity of stink bug adults and their parasitoids in soybean crops in Brazil: influence of a latitudinal gradient and insecticide application intensity. Environ Entomol. Nyv 174. https://doi.org/10.1093/ee/nvy174

    Google Scholar 

  • Bhagat D, Samanta SK, Bhattacharya S (2013) Efficient management of fruit pests by pheromone nanogels. Sci Rep 3:1–8

    Google Scholar 

  • Baker R, Borges M, Cooke NG et al (1987) Identification and synthesis of (Z) (1′S,3′R,4′S)–2–(3′,4′–epoxy–4′–methylcyclohexyl)–6–methylhepta–2,5–diene, the sex pheromone of the southern green stink bug, Nezara viridula (L.). J Chem Soc D 6:414–416

    Google Scholar 

  • Baker TC, Heath JJ (2005) Pheromones – function and use in insect control. In: Gilbert LI, Iatro K, Gill SS (eds) Molecular insect science, vol 6. Elsevier, Academic press, London, pp 407–460

    Google Scholar 

  • Baker TC (2009) Use of pheromones in IPM (Chapter 21). In: Radcliffe EB, Hutchison WD, Cancelado RE. Integrated Pest Management. Cambridge University Press. Cambridge, UK

    Google Scholar 

  • Bakke A (1991) Using pheromones in the management of bark beetle outbreaks. In: Baranchikov Y, Mattson WJ, Hain FP, Payne TL (eds) Forest insect guilds: patterns of interaction with host trees; proceedings of a joint IUFRO working party symposium Abakan, Siberia, U.S.S.R. 13–17 Aug 1889

    Google Scholar 

  • Batista-Fereira LG, Stein K, De Paula AF et al (2006) Isolation, identification, synthesis, and field evaluation of the sex pheromone of the Brazilian population of Spodoptera frugiperda. J Chem Ecol 32:1085–1099

    CAS  PubMed  Google Scholar 

  • Beale MH, Birkett MA, Bruce TJ et al (2006) Aphid alarm pheromone produced by transgenic plants affects aphid and parasitoid behaviour. Proc Natl Acad Sci USA 103:10509–10513

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bergmann J, González A, Zarbin PHG (2009) Insect pheromone research in South America. J Braz Chem Soc 20:1206–1219

    CAS  Google Scholar 

  • Beroza M (2002) More efficient means of detecting insects. US. Patent 0144452, 19 July 2002

    Google Scholar 

  • Bino RJ, Hall RD, Fiehn O et al (2004) Potential of metabolomics as a functional genomics tool. Trends Plant Sci 9:418–425

    CAS  PubMed  Google Scholar 

  • Blassioli-Moraes MC, Laumann RA, Oliveira MWM et al (2012) Sex pheromone communication in two sympatric Neotropical stink bug species Chinavia ubica and Chinavia impicticornis. J Chem Ecol 38:836–845

    CAS  PubMed  Google Scholar 

  • Blassioli-Moraes MC, Borges M, Laumann RA (2013) Chemical ecology of insect parasitoids. In: Wajnberg E, Colazza S (eds) The application of chemical cues in arthropod pest management for arable crops. Wiley, New York, pp 225–244

    Google Scholar 

  • Blassioli-Moraes MC, Borges M, Michereff MFF et al (2016) Semiochemicals from plants and insects on the foraging behaviour of Platygastridae egg parasitoids. Pesqui Agropecu Bras 51:454–464

    Google Scholar 

  • Blassioli-Moraes MC, Khrimian A, Borges M et al (2018) The male produced sex pheromone of Tibraca limbativentris revisted: absolute configuration of zingiberenol stereoisomers. 34o International Society Chemical Ecology Meeting. Abstract Book, vol 1, p 68

    Google Scholar 

  • Bombardi LM (2017) Geografia do Uso de Agrotóxicos no Brasil e Conexões com a União Europeia—São Paulo: FFLCH—USP, 2017.296 p. ISBN:978-85-7506-310-1

    Google Scholar 

  • Borges M, Jepson PC, Howse PE (1987) Long-range mate location and close range courtship behavior of the green stink bug, Nezara viridula and its mediation by sex pheromones. Entomol Exp Appl 44:205–212

    CAS  Google Scholar 

  • Borges M, Aldrich JR (1992) Instar-specific defensive secretions of stink bugs (Heteroptera: Pentatomidae). Experientia 48:893–896

    CAS  Google Scholar 

  • Borges M, Schmidt FVG, Sujii ER et al (1998) Field responses of stink bugs to the natural and synthetic pheromone of the Neotropical brown stink bug, Euschistus heros, (Heteroptera: Pentatomidae). Physiol Entomol 23:202–207

    CAS  Google Scholar 

  • Borges M, Costa MLM, Sujii ER et al (1999) Semiochemical and physical stimuli involved in host recognition by Telenomus podisi (Hymenoptera: Scelionidae) toward Euschistus heros (Heteroptera: Pentatomidae). Physiol Entomol 24:227–233

    Google Scholar 

  • Borges M, Moraes MCB, Peixoto MF et al (2011) Monitoring the Neotropical brown stink bug Euschistus heros (F.) (Hemiptera: Pentatomidae) with pheromone-baited traps in soybean fields. J Appl Entomol 135:68–80

    Google Scholar 

  • Borges M, Blassioli-Moraes MC (2017) The semiochemistry of Pentatomidae in stink bugs. In: Čokl A, Borges M (eds) Biorational control based on communication processes, CRC Press, Taylor & Francis Group, Boca Raton, pp 95–124

    Google Scholar 

  • Borges M, Michereff MFF, Blassioli-Moraes MC et al (2017) Metodologias para o estudo da defesa de memória (Priming) em plantas frente a estresse biótico. Embrapa Recursos Genéticos e Biotecnologia. Circular Técnica, 91

    Google Scholar 

  • Bortolotto OC, Pomari AF, Bueno RCO et al (2015) The use of soybean integrated pest management in Brazil: a review. Agron Sci Biotechnol 1(25):32

    Google Scholar 

  • Braasch J, Kaplan I (2012) Over what distance are plant volatiles bioactive? Estimating the spatial dimensions of attraction in an arthropod assemblage. Entomol Exp Appl 145:115–123

    CAS  Google Scholar 

  • Bradbury JW, Vehrencamp SL (2011) Principles of animal communication. Sinauer Associates, Sunderland

    Google Scholar 

  • Bruce TJA, Pickett JA (2011) Perception of plant volatile blends by herbivorous insects—finding the right mix. Phytochemistry 72:1605–1611

    CAS  PubMed  Google Scholar 

  • Bruce TJA, Aradottir GI, Smart LE et al (2015) The first crop plant genetically engineered to release an insect pheromone for defence. Sci Rep 5:11183

    CAS  PubMed  PubMed Central  Google Scholar 

  • Butenandt VA, Beckmann R, Stamm D, Hecker E (1959) Über den sexuallockstoff des seidenspinners Bombyx mori. Reindarstellung und konstitution. Z. Naturforsch. B. 14:283–284

    Google Scholar 

  • Byers JA (2007) Simulation of mating disruption and mass trapping with competitive attraction and camouflage. Environ Entomol 36:1328–1338

    PubMed  Google Scholar 

  • Carson R (1962) Silent spring. Mariner Books, New York

    Google Scholar 

  • Chiozza MV, O’Neal ME, MacIntosh GC (2010) Constitutive and induced differential accumulation of amino acid in leaves of susceptible and resistant soybean plants in response to the Soybean Aphid (Hemiptera: Aphididae). Environ Entomol 39:856–864

    CAS  PubMed  Google Scholar 

  • Cook SM, Khan ZR, Pickett JA (2007) The use of push-pull strategies in integrated pest management. Annu Rev Entomol 52:375–400

    CAS  PubMed  Google Scholar 

  • D’Alessandro M, Held M, Triponez Y, Turlings TCJ (2006) The role of indole and other shikimic acid derived maize volatiles in the attraction of two parasitic wasps. J Chem Ecol 32:2733–2748

    PubMed  Google Scholar 

  • Dent D (2000) Insect Pest Management. CABI Publishing, Wallingford

    Google Scholar 

  • Dias AM, Pareja M, Laia M et al (2016) Attraction of Telenomus podisi to volatiles induced by Euschistus heros in three different plant species. Arthropod Plant Inte 10:419–428

    Google Scholar 

  • Dickens JC (1989) Green leaf volatiles enhance aggregation pheromone of boll weevil, Anthonomus grandis. Entomologia Experimentalis et Applicata 52(3):191–203

    CAS  Google Scholar 

  • Dowd PF, Vega FE (2003) Autodissemination of Beauveria bassiana by sap beetles (Coleoptera: Nitidulidae) to overwintering sites. Biocontrol Sci Technol 13:65–75

    Google Scholar 

  • Du YJ, Poppy GM, Powell W et al (1998) Identification of semiochemicals released during aphid feeding that attract parasitoid Aphidius ervi. J Chem Eco. 24:1355–1368

    CAS  Google Scholar 

  • Dudareva N, Klempien A, Muhlemann JK et al (2013) Biosynthesis, function and metabolic engineering of plant volatile organic compounds. New Phytol 198:16–32

    CAS  PubMed  Google Scholar 

  • Dunham W (2018) Semiohcemicals may be the fastest growing segment of the biopesticide market. PDF http://dunhamtrimmer.com/wp-content/uploads/2017/07/ProdTrends-2.pdf. Accessed on 01 Nov 2018

  • Edwards LJ, Siddal JB, Dunam LL et al (1973) trans-β-farnesene, alarm pheromone of the green peach aphid, Myzus persicae (Sulzer). Nature 214:126–127

    Google Scholar 

  • El-Sayed AM, Suckling DM, Wearing CH et al (2006) Potential of mass trapping for long-term pest management and eradication of invasive species. J Econ Entomol 99:550–1564

    Google Scholar 

  • El-Sayed AM, Suckling DM, Byers JA et al (2009) Potential of ‘lure and kill’ in long-term pest management and eradication of invasive species. J Econ Entomol 102:815–835

    CAS  PubMed  Google Scholar 

  • Engelberth J, Alborn HT, Schmelz EA et al (2004) Airborne signals prime plants against insect herbivore attack. Proc Natl Acad Sci USA 101:1781–1785

    CAS  PubMed  PubMed Central  Google Scholar 

  • Erb M, Veyrat N, Robert CAM et al (2015) Indole is an essential herbivore-induced volatile priming signal in maize. Nat Commun 6, Article number: 6273. https://doi.org/10.1038/ncomms7273

  • FAO (2018) AGP—integrated pest management. http://www.fao.org/agriculture/crops/thematic-sitemap/theme/pests/ipm/en/9. Accessed 15 Sept 2018

  • Francke W, Dettner K (2005) Chemical signalling in beetles. In: Schulz S (ed) Topics in current chemistry 240. Springer, Heildelberg, pp 85–166

    Google Scholar 

  • Frost CJ, Appel HM, Carlson JE et al (2007) Within-plant signalling via volatiles overcomes vascular constraints on systemic signalling and primes responses against herbivores. Ecol Lett 10:490–498

    PubMed  Google Scholar 

  • Geier PW (1966) Management of insect pests. Ann Rev Entomol 11:471–490

    CAS  Google Scholar 

  • Grootaert P, Pollet M, Dekoninck W et al (2010) Sampling insects: general techniques, strategies and remarks. In: Eymann J, Degreef J, Hauser CH et al (eds) Manual on field recording techniques and protocols for all taxa biodiversity inventories and monitoring. Abc Taxa, Belgium, pp 377–399

    Google Scholar 

  • Groot AT, Marr M, Schöfl G et al (2008) Host strain specific sex pheromone variation in Spodoptera frugiperda. Front Zool 5:20. https://doi.org/10.1186/1742-9994-520

    Article  PubMed  PubMed Central  Google Scholar 

  • Gordon-Weeks R, Smart L, Ahmad S et al (2010) The role of the benzoxazinone pathway in aphid resistance in wheat. HGCA Project Report 473:1–66

    Google Scholar 

  • Gurr GM, Wratten SD, Altieri MA (2004) Ecological engineering: a new direction for agricultural pest management. AFBM Journal 1:28–35

    Google Scholar 

  • Hassemer MJ, Sant’ana J, De Oliveira MW et al (2015) Chemical composition of Alphitobius diaperinus (Coleoptera: Tenebrionidae) abdominal glands and the Influence of 1,4-benzoquinones on its behavior. J Econ Entomol 108:2107–2116

    CAS  PubMed  Google Scholar 

  • Hardie J, Pickett JA, Pow EM et al (1999) In: Hardie J, Minks AK (eds) Pheromones of non-lepidopteran insects associated with agricultural plants. CAB CABI Publishing, Wallingford, pp 227–250

    Google Scholar 

  • Hellmann C, Greiner A, Wendorff JH (2011) Design of pheromone releasing nanofibers for plant protection. Polym Adv Tecnol 22:407–413

    CAS  Google Scholar 

  • Hilker M, Schwachtje J, Baier M et al (2016) Priming and memory of stress response in organisms lacking a nervous system. Biol Rev 91:1118–1133

    PubMed  Google Scholar 

  • Hill AS, Roelofs WL (1981) Sex pheromone of the saltmarsh caterpillar moth, Estugmene acrea. J Chem Ecol 7:655–668

    CAS  PubMed  Google Scholar 

  • Heil M, Bueno JCS (2007) Within-plant signalling by volatiles leads to induction and priming of an indirect plant defense in nature. Proc Natl Acad Sci USA 104:5467–5472

    CAS  PubMed  PubMed Central  Google Scholar 

  • IBAMA Semioquímicos (2017). http://www.ibama.gov.br/agrotoxicos/relatorios-decomercializacao-de-agrotoxicos. Accessed in 28 Jan 2019

  • Jones VP, Steffan SA, Wiman NG et al (2011) Evaluation of herbivore-induced plant volatiles for monitoring green lacewings in Washington apple orchards. Biol Control 56:98–105

    Google Scholar 

  • Jones VP, Mills DR, Unruh NJ et al (2016) Evaluating plant volatiles for monitoring natural enemies in apple, pear and walnut orchards. Biol Control 102:53–65

    CAS  Google Scholar 

  • Khan ZR, Midega CAO, Pittchar JO et al (2014) Achieving food security for one million sub-Saharan African poor through push-pull innovation by 2020. Philos Trans R Soc Lond B Biol Sci 369:1–11

    Google Scholar 

  • Kim J, Felton GW (2013) Priming of anti herbivore defensive responses in plants. Insect Sci 20:273–285

    CAS  PubMed  Google Scholar 

  • Kreutz J, Zimmermann G, Vaupel O (2004) Horizontal transmission of the entomopathogenic fungus Beauveria bassiana among the spruce bark beetle, Ips typographus (Col., Scolytidae) in the laboratory and under field conditions. Biocontrol Sci Technol 14:837–848

    Google Scholar 

  • Kogan M (1998) Integrated pest management: historical perspectives and contemporary developments. Ann Rev Entomol 43(1):243–270

    CAS  PubMed  Google Scholar 

  • Kovaleski A, Mumford JD (2007) Pulling out the evil by the root: the codling moth eradication program in Brazil. In: Vreysen MJB, Robinson AS, Hendrichs J (eds) Area wide control of insect pests: from research to field implementation. Springer, Dordrecht, pp 581–590

    Google Scholar 

  • Kunert G, Otto S, Weisser WW et al (2005) Alarm pheromone mediates production of winged morphs.in aphids. Ecol Lett 8:596–603

    Google Scholar 

  • Lampson BD, Han YJ, Khalilian A (2013) Automatic detection and identification of brown stink bug, Euschistus servus, and southern green stink bug, Nezara viridula, (Heteroptera: Pentatomidae) using intraspecific substrate borne vibrational signals. Comp Elect Agr 91:154–159

    Google Scholar 

  • Landis DA, Wratten SD, Gurr GM (2000) Habitat management to conserve natural enemies of arthropod pests in agriculture. Ann Rev Entomol 45:175–201

    CAS  Google Scholar 

  • Laumann RA, Bottura DM, Čokl A (2017) Use of vibratory signals for stink bug monitoring and control. In: Čokl A, Borges M (eds) Stink bugs: biorational control based on communication. CRC Press, Boca Raton, pp 226–245

    Google Scholar 

  • Lopes RB, Laumann RA, Moore D, Oliveira WM, Faria M (2014) Combination of the fungus and pheromone in an attract-and-kill strategy against the banana weevil. Entomologia Experimentalis et Applicata 151(1):75–85

    CAS  Google Scholar 

  • McKibben GH, Smith JW, McGovern WL (1990) Design of an attract-and-kill device for the boll weevil (Coleoptera: Curculionidae). J Entomol Sci 25:581–586

    Google Scholar 

  • Magalhães DM, Borges M, Laumann RA et al (2012) Semiochemicals from herbivory induced cotton plants enhance the foraging behavior of the cotton boll weevil, Anthonomus grandis. J Chem Ecol 38:1528–1538

    PubMed  Google Scholar 

  • Magalhães DM, Borges M, Laumann RA et al (2016) Influence of two acyclic homoterpenes (tetranorterpenes) on the foraging behavior of Anthonomus grandis Boh. J Chem Ecol 42:305–313

    PubMed  Google Scholar 

  • Magalhães DM, Borges M, Laumann RA et al (2018) Identification of volatile compounds involved in host location by Anthonomus grandis (Coleoptera: Curculionidae). Front Ecol Evol 6:98. https://doi.org/10.3389/fevo.2018.00098

    Article  Google Scholar 

  • Market & Market (2018) Pheromones Market in Agriculture worth 4.23 Billion USD by 2002. https://www.marketsandmarkets.com/PressReleases/pheromone.asp. Accessed on 05 Nov 2018

  • Michereff MFF, Laumann RA, Borges M et al (2011) Volatiles mediating plant herbivory-natural enemy interaction in resistant and susceptible soybean cultivars. J Chem Ecol 37:73–285

    Google Scholar 

  • Michereff MFF, Borges M, Diniz IR et al (2013) Influence of volatile compounds from herbivore-damaged soybean plants on searching behavior of the egg parasitoid. Entomol Exp Appl 147:9–17

    CAS  Google Scholar 

  • Michereff MFF, Borges M, Santos MA et al (2016) The influence of volatile semiochemicals from stink bug eggs and oviposition-damaged plants on the foraging behaviour of the egg parasitoid Telenomus podisi. Bull Entomol Res 106:663–671

    CAS  PubMed  Google Scholar 

  • Michereff MFF, Magalhães DM, Hassemer MJ et al (2018) Variability in herbivore induced defence signalling across different maize genotypes impacts on natural enemy foraging behaviour. J Pest Sci. https://doi.org/10.1007/s10340-018-1033-6

    Google Scholar 

  • Midega CA, Murage AW, Pittchar JO, Khan ZR (2016) Managing storage pests of maize: Farmers’ knowledge, perceptions and practices in western Kenya. Crop Protect 90:142–149

    Google Scholar 

  • Miller JR, Mcghee PS, Siegert PY et al (2010) General principles of attraction and competitive attraction as revealed by large-cage studies of moths responding to sex pheromone. Proc Natl Acad Sci USA 107:22–27

    CAS  PubMed  Google Scholar 

  • Moscardi F, Soza-Gomes DR, Corrêa-Ferreira BS (1999) Soybean IPM in Brazil, with emphasis on biological control tactics. In: Proceeding of VI world soybean research conference, Chicago Illinois, USA 1: 331–339

    Google Scholar 

  • Neves RCS, Torres JB, Barros EM et al (2018) Boll weevil within season and off season activity monitored using a pheromone-and-glue reusable tube trap. Sci Agric 75:313–320

    Google Scholar 

  • Nordlund DA, Lewis WJ (1976) Terminology of chemical releasing stimuli in intraspecific and interspecific interactions. J Chem Ecol 2:211–220

    Google Scholar 

  • Oehlschlager AC, Chinchilla C, Castillo G et al (2002) Control of red ring disease by mass trapping of Rhynchophorus palmarum (Coleoptera: Curculionidae). Fla Entomol 85:507–513

    Google Scholar 

  • Oliveira MWM, Borges M, Andrade CKZ et al (2013) Zingiberenol, (1R,4R,1′S)-4 (1′,5′-Dimethylhex-4′-enyl)-1-methylcyclohex-2-en-1-ol, identified as the sex pheromone produced by males of the rice stink bug Oebalus poecilus (Heteroptera: Pentatomidae). J Agric Food Chem 61:777–7785

    Google Scholar 

  • Oliveira CM, Auad AM, Mendes SM et al (2014) Crop losses and economic impact of insect pests on Brazilian agriculture. Crop Prot 56:50–54

    Google Scholar 

  • Padilha AC, Arioli CJ, Boff MIC, Rosa JM, Botton M (2018) Traps and Baits for Luring Grapholita molesta (Busck) Adults in Mating Disruption-Treated Apple Orchards. Neotropical Entomology 47(1):152–159

    PubMed  Google Scholar 

  • Panizzi AR (2013) History and contemporary perspectives of the integrated pest management of soybean in Brazil. Neotrop Entomol 42:119–127

    CAS  PubMed  Google Scholar 

  • Pavis C, Malosse PH (1986) Mise en evidence d’un attractif sexuel produit par les males de Nezara viridula (L.) (Heteroptera: Pentatomidae). C.R Acad Sci Series III 7:272–276

    Google Scholar 

  • Pareja M, Mohib A, Birkett MA et al (2009) Multivariate statistics coupled to generalized linear models reveal complex use of chemical cues by a parasitoid. Anim Beh 77:901–909

    Google Scholar 

  • Petschenka G, Agrawal AA (2015) Milkweed butterfly resistance to plant toxins is linked to sequestration, not coping with a toxic diet. Proc R Soc B 282:20151865. https://doi.org/10.1098/rspb.2015.1865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pherobase (2018) Pherobase database of pheromones and semiochemicals. www.pherobase.com

  • Pichersky E, Gang DR (2000) Genetics and biochemistry of secondary metabolites in plants: an evolutionary perspective. Trends Plant Sci 5:439–445

    CAS  PubMed  Google Scholar 

  • Price PW (1997) Insect ecology. Wiley, New York, pp 73–138

    Google Scholar 

  • Ridgway RL, Inscoe MN, Dickerson WA (1990) Role of the boll weevil pheromone in pest management. In: Ridgway RL, Silverstein RM, Inscoe MN (eds) Behavior modifying chemicals for insect management. Marcel Dekker, New York, pp 437–471

    Google Scholar 

  • Rodriguez-Saona CR, Rodriguez-Saona LE, Frost CJ (2009) Herbivore-induced volatiles in the perennial shrub, Vaccinium corymbosum, and their role in inter-branch signaling. J Chem Ecol 35:163–175

    CAS  PubMed  Google Scholar 

  • Rostás M (2007) The effects of 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one on two species of Spodoptera and the growth of Setosphaeria turcica in vitro. J Pest Sci 80(35):41

    Google Scholar 

  • Sant’Ana J, Bruni R, Abdul-Baki AA et al (1997) Pheromone-induced movement of nymphs of the predator, Podisus maculiventris (Heteroptera: Pentatomidae). Biol Control 10:123–128

    Google Scholar 

  • Schnee C, Köllner TG, Held M et al (2006) The products of a single maize sesquiterpene synthase form a volatile defense signal that attracts natural enemies of maize herbivores. Proc Natl Acad Sci USA 103:1129–1134

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schulz S (2005) The chemistry of pheromones and other semiochemicals I. Part of the topics in current chemistry book series (TOPCURRCHEM, vol 239). Springer, Heidelberg

    Google Scholar 

  • Simpson M, Gurrr GM, Simmons AT et al (2011a) Insect attraction to synthetic herbivorie-induced plant volatile-treated field crops. Agric For Entomol 13:45–57

    Google Scholar 

  • Simpson M, Gurrr GM, Simmons AT et al (2011b) Field evaluation of the ‘attract and reward’ biological control approach in vineyards. Ann Appl Biol 159:69–78

    Google Scholar 

  • Smith JW, McKibben GH, Villavaso E et al (1995) Management of the cotton boll weevil with attract-and-kill-devices. In: Constable GA, Forrester NW (eds) Challenging the future: proceedings of the world cotton conference, Brisbane, pp 480–484

    Google Scholar 

  • Smith JW (1998) Boll weevil eradication: area-wide pest management. Ann Entomol Soc Am 91:239–247

    Google Scholar 

  • Steiner S, Hermann N, Ruther J (2006) Characterization of a female-produced courtship pheromone in the parasitoid Nasonia vitripennis. J Chem Ecol 32:1687–1702

    CAS  PubMed  Google Scholar 

  • Steiner S, Ruther J (2009) Mechanism and behavioral context of male sex pheromone release in Nasonia vitripennis. J Chem Ecol 35:416–421

    CAS  PubMed  Google Scholar 

  • Stenberg JA (2017) A conceptual framework for integrated pest management. Trend Plant Sci 22(9):759–769

    CAS  PubMed  Google Scholar 

  • Stern VM, Smith RF, van den Bosch R et al (1959) The integrated control concept. Hilgardia 29:81–101

    CAS  Google Scholar 

  • Tewari S, Leskey TC, Nielsen AL, Piñero JC, Rodriguez-Saona CR (2014a) Use of pheromones in insect pest management, with special attention to weevil pheromones. In: Abrol DP (eds) Integrated Pest Management, Academic Press, pp 141–168. ISBN 9780123985293. https://doi.org/10.1016/B978-0-12-398529-3.00010-5

    Google Scholar 

  • Tewari S, Leskey TC, Nielsen AL, Piñero JC, Rodriguez-Saona CR (2014b) Use of Pheromones in Insect Pest Management, with Special Attention to Weevil Pheromones. In: INTEGRATED PEST MANAGEMENT: Current Concepts and Ecological Perspective. Edited by Dahram P. Abrol. Elsevier, London, UK. 2014

    Google Scholar 

  • Tilmann PG, Cottrel T (2017) Use of pheromones for monitoring phytophagous stink bugs (Hemiptera: Pentatomidae) In: Colk A, Borges M (eds) Stink bugs: biorational control based on communication. CRC Press, Boca Raton, pp 210–225

    Google Scholar 

  • Trigo JR (2000) The chemistry of antipredator defense by secondary compounds in Neotropical Lepidoptera: facts, perspectives and Caveats. J Braz Chem Soc 11:551–561

    CAS  Google Scholar 

  • Tognon R, Sant’ana J, Jahnke SM (2014) Influence of original host on chemotaxic behaviour and parasitism in Telenomus podisi Ashmead (Hymenoptera: Platygastridae). Bull Entomol Res 104:781–787

    CAS  PubMed  Google Scholar 

  • Vega FE, Dowd PF, Bartelt RJ (1995) Dissemination of microbial agents using an auto inoculating device and several insect species as vectors. Biol Control 5:545–552

    Google Scholar 

  • Vieira CR, Moraes MCB, Borges M et al (2013) cis-Jasmone indirect action on egg parasitoids (Hymenoptera: Scelionidae) and its application in biological control of soybean stink bugs (Hemiptera: Pentatomidae). Biol Control 64:75–82

    CAS  Google Scholar 

  • Vieira CR, Moraes MCB, Borges M et al (2014) Field evaluation of (E)-2-hexenal efficacy for behavioral manipulation of egg parasitoids in soybean. Biocontrol 1:1–13

    Google Scholar 

  • Yasuda K (1999) Auto-infection system for the sweet potato weevil, Cylas formicarius (Fabricius) (Coleoptera: Curculionidae) with entomopathogenic fungi, Beauveria bassiana, using a modified sex pheromone trap in the field. App Entomol Zoo 34(501):505

    Google Scholar 

  • Weber DC, Khrimian A, Blassioli-Moraes MC et al (2018) Semiochemistry of pentatomoidea. In: McPherson JE (ed) Invasive stink bugs and related Species (Pentatomoidea): biology, higher systematics, semiochemistry, and management. CRC Press Boca Raton, pp 677–725

    Google Scholar 

  • Wermelinger B (2004) Ecology and management of the spruce bark beetle Ips typographus a review of recent research. For Ecol Manag 202:67–82

    Google Scholar 

  • Witzgall P, Kirsch P, Cork A (2010) Sex pheromones and their impact on pest management. J Chem Ecol 36:80–100

    CAS  PubMed  Google Scholar 

  • Wheeler CA, Cardé RT (2014) Following in their footprints: cuticular hydrocarbons as overwintering aggregation site markers in Hippodamia convergens. J Chem Ecol 40:418–428

    CAS  PubMed  Google Scholar 

  • Wouters FC, Reichelt M, Glauser G et al (2014) Reglucosylation of the benzoxazinoid DIMBOA with inversion of stereochemical configuration is a detoxification strategy in Lepidopteran herbivores. Angew Chem-Ger Edit 126:11502–11506

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria C. Blassioli-Moraes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Blassioli-Moraes, M.C., Laumann, R.A., Michereff, M.F.F., Borges, M. (2019). Semiochemicals for Integrated Pest Management. In: Vaz Jr., S. (eds) Sustainable Agrochemistry. Springer, Cham. https://doi.org/10.1007/978-3-030-17891-8_3

Download citation

Publish with us

Policies and ethics